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Theoretical studies on triplet—triplet (Ty — Tg) fluorescence of the
arylated trimethylenemethane (TMM) biradicals, 32, were carried out
using post-Hartree—Fock ab initio and various first principles density
functional theory methods. Analysis of optimized geometries
including bond alternations and spin distributions indicates that the
triplet ground (2*°) and excited (32"**) states of these biradicals have
aromatic and quinoidal characteristics, respectively. Inspection of their
calculated electronic structures shows that, in comparison to 32'*, one
of the spins in 32'** is more delocalized onto arene-rings linked to the
TMM framework.

The trimethylenemethane' (TMM, Fig. 1) biradical is a repre-
sentative non-Kekulé molecule that has a triplet ground state
(T,) owing to its Dy, symmetry and pair of degenerate singly-
occupied molecular orbitals (SOMOs). As a result of this char-
acteristic, many theoretical and experimental studies have been
carried out probing the curious electronic structures and
magnetic properties of TMM biradicals.> The fact that these
biradicals emit triplet-triplet (T; — T,) fluorescence has
received great attention.**

In previous studies, Matsui, Ikeda, and coworkers described
the observation of T; — T, fluorescence from the excited states
of the 1-methyl-1-phenyl-, 1,1-diphenyl-, and 1-(2-naphthyl)-1-
phenyl-substituted TMM biradicals, *2a-¢*** (Scheme 1). For
this purpose, thermoluminescence (TL)® and two-color two-laser
flash photolysis measurements were conducted using the
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investigations of triplet—triplet fluorescence in
trimethylenemethane biradicalst
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corresponding aryl-substituted methylenecyclopropanes 1a-c.®
Moreover, T; — T, fluorescence of these biradicals was utilized
as the basis for the design of a new organic light-emitting diode,
termed “organic radical light-emitting diode”.>*

The electronic configurations of the excited T, states of the
TMM biradicals are complicated by their multi-configuration
character. Additionally, electronic transition wavelengths and
T, geometries of compound *2b, computed using time-
dependent (TD) density functional theory (DFT)® with the
B3LYP/cc-pVDZ method, are considerably different from the
absorption and emission wavelengths observed experimen-
tally.” Thus, more accurate and rigorous ab initio quantum
chemical studies, and a detailed analysis of geometry relaxation
occurring in the T, state are required to have a greater under-
standing of the electronic structures of the excited states of
TMM biradicals.

In the investigation described below, we carried out a theo-
retical study of the triplet-triplet fluorescence mechanism to
accurately predict structural, electronic and T; — T, emission
properties of triplet aryl-substituted trimethylenemethane bir-
adicals *2°"*. Ab initio post-Hartree-Fock methods and three
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Fig. 1 (Top) Frontier molecular orbitals of the parent TMM biradical
and (bottom) its corresponding Lewis resonance structures.
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Scheme 1 Chemical structures of 1la—c and electronic structures of
32a—c™ and 32a—c’** associated with To—T; and T;-To transitions
accompanying fluorescence.

different (TD-)DFT functionals were used for this purpose.
When treating open-shell systems, DFT methods often suffer
from spin contamination, which usually is more severe when
excited rather than ground states are computed. To validate the
(TD-)DFT results, high-level ab initio benchmark calculations
where carried out on ®2°* and the calculated spin densities and
excitation energies obtained by using both types of methods
were compared. In this effort, the triplet excited states of three
model aryl-substituted TMM biradicals were theoretically
studied because they each emit one of the three primary colors
(blue, green, and red) (Scheme 1).°*

All (TD-)DFT geometry optimizations were performed using
the spin-unrestricted UB3LYP, UMO06-2X, and CAM-UB3LYP
functionals® in conjunction with the 6-31G(d) basis set.® (TD-)
DFT single point energies were obtained using the same
methods, however, the larger 6-311+G(d)** basis set was
employed. For the smallest, methyl-phenyl substituted bir-
adical, ®2a"", complete ab initio active space self-consistent field
(CASSCF)* single point energy calculations with 10 m-orbitals
and 10 electrons were performed, followed by a multireference
second-order Mgller-Plesset perturbation (MRMP2) treat-
ment.” All DFT calculations were conducted using Gaussian
09," while the GAMESS-US" and MOLPRO™ program packages
were employed for the post-Hartree-Fock calculations. Below,
we will refer to T; and T, states of 2°* simply as *2""* and *2"",
respectively.

In the first phase of this study, molecular geometry optimi-
zations were carried out on *2a-c¢’* and *2a-¢""* using various
DFT functionals.”® The geometries of triplet ground (T,) and
excited (T;) states of these biradicals, obtained by using
UB3LYP/6-31G(d), are displayed in Fig. 2, and selected bond
lengths are listed in Table 1. The lengths of the C5-C6, C6-C7
and C7-C8 bonds (see Fig. 2 for atom numbering) for *2a’* are
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Fig. 2 Optimized structures and atom labeling of (left) 32a"** and
(center) 32b***, and (right) 32¢"**. Pink and blue bonds indicate elon-
gated and shortened bonds of 32" * relative to *2°".

in the range of 1.39-1.42 A, which is typical for benzene-rings
having a small degree of bond alternation. The results of
applying a simulated harmonic oscillator model of the aroma-
ticity (HOMA)*® of the phenyl group in *2a’* (0.927) suggests that
its aromaticity is relatively high (i.e., roughly equal to that of
benzene). In contrast, the respective C5-C6, C6-C7 and C7-C8
bond lengths in *2a’** are 1.47, 1.37, and 1.44 A, suggesting that
the degree of bond alternation is higher than in the ground
state and, as a result, that the aromatic character of the phenyl
group is reduced upon excitation to the T; state. The greatly
lower HOMA value (0.187) calculated for the phenyl group of
32a’"* also indicates that its aromaticity is strongly reduced.

The changes in the C-C bond lengths taking place in
proceeding from the diphenyl-substituted TMM biradical, *2b"",
to *2b""* are similar but somewhat less pronounced in
comparison to those seen for the *2a"*/*2a""* system (Table 1).
The calculated HOMA value changes are in accord with the
reduction of aromaticity taking place in the phenyl group of
32a-b"" upon electronic excitation, with the largest change
occurring in the monophenyl-substituted TMM biradical *2a"".
On the other hand, the calculated bond lengths and HOMA
values for 32¢"*/32¢"** deviate from this trend. In this case, the
degree of aromaticity of the single phenyl group is less affected
by excitation, presumably because excitation is localized mainly
in the larger m-conjugated naphthyl group. The calculated
dihedral angles composed of C1-C3-C4-C5 (yellow, Fig. 2) and
C3-C4-C5-C6 (green) for the 32°/*2"** systems also follow these
trends.

An analysis of their electronic structures provides further
information about the nature of the excited TMM biradicals
32°"* Spin distributions of *2a-¢** and *2a-c¢"** at Franck-

Table 1 Geometry parameters of *2a—c* and 32a—c"** Obtained by
using (TD-)UB3LYP/6-31G(d)

Bond lengths/A

Biradicals C3-C4 C4-C5 C5-C6 C6-C7 C7-C8 HOMA“
32a’ 1.45 1.46 1.42 1.39 1.40 0.927
3a""* 1.44 1.44 1.47 1.37 1.44 0.187
32b° 1.47 1.47 1.42 1.39 1.40 0.929
32b* 1.49 1.43 1.45 1.37 1.42 0.583
3¢ 1.47 1.47 1.42 1.39 1.40 0.931
3¢ 1.47 1.45 1.39 1.42 1.40 0.896

¢ Aromaticity indices of the phenyl group.
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Fig. 3 (a) Spin distributions for 32a—c** and 32a—c*** at Franck—
Condon geometries. Blue and gray represent positive and negative
areas of spin densities, respectively. (b) T;—Tq difference charges
occurring in the 32°** — 32'* transitions calculated from natural
orbitals for a- and @-spin. Red and blue represent the increase and
decrease of a-spin density, respectively, upon excitation.

Condon geometries were determined at the (TD-)UB3LYP/6-
31G* level of theory (Fig. 3a). The results show that the spin
densities of both *2a"* and *2b"* are almost completely localized
at C4 (benzylic), C1 (allylic), and C2 (allylic). For *2a-¢"*, the spin
densities at C1 and C2 are almost identical to those of the
corresponding ground state, *2a-c¢’*. In contrast, the spin
density at C4 of *2a’"* is located close to the ipso-position (C5)
of the phenyl group. The change taking place in spin densities
at each atom in the *2b"" — ?2b’** transition is similar to those
occurring in the *2a”* — ®2a’"* transition. Interestingly, the
spin density changes caused by the 2¢’* — 32¢""* transition
occur most prominently in the 2-naphthyl group. The alter-
ations in electronic structure are consistent with the geomet-
rical changes that take place in all of the *2°* — *2°** transitions
(see the discussion in the previous section).

To express the spin distribution changes that take place in
327** — 32" transitions in a quantitative manner, we express

View Article Online
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the difference in the spin density of the ith atom, N;" ™ by the
equation given in eqn (1),

NI = (@ 6F) - (o - 67) 8

where ociTl/ T and ﬂiTl/ " are the respective natural spin densities
estimated from « and @ natural orbitals for ®2°"* and *2"* (see
Tables S7-S9t). Inspection of the data listed in Fig. 3a shows
that the spin distributions at C1, C2 and C3 (the allyl moiety) do
not significantly change during the *2°** — 32" transition.
Moreover, the sum of their spin densities is approximately 1.1
each for *2a-c¢"* and 32a-c*** (see Table S107). Thus, it appears
that one unpaired electron is delocalized over the allyl moieties
of both *2a-¢'* and *2a-c¢"**. The other unpaired electron in the
T, excited state (*2""*) is delocalized over the remainder of the
molecule, whereas it is localized on C4 in *2a-c"*. The electronic
structure change occurring upon excitation is also made
apparent by inspection of the flow of spin density from C4 to C5
(Fig. 3b). The excitation-promoted, spin density reorganization
decreases on proceeding from *2a"" to *2¢’". In addition,
introduction of benzene or naphthalene rings leads to an
enhancement in electron delocalization in the T, state (Tables
S7-S97). The analysis presented above indicates that electronic
structures of *2a—¢’* and *2a-c¢*** can be schematically depicted
in the manner shown in Scheme 1. As a result, the distribution
of the second unpaired electron is controlled by introduction of
aromatic groups on the TMM biradical backbone (e.g:, *2¢").

Previously, Ikeda and co-workers experimentally determined
the wavelength maxima for T; — T, fluorescence of *2'** by
using TL methods.> The TL maxima of *2a""*, *2b"** and *2¢""*
in methylcyclohexane matrices at ca. 130 K are 451, 501, and 602
nm, respectively. In the present work, we calculated the fluo-
rescence wavelengths of *2a-c¢’** using various TD-DFT func-
tionals (Table 2). Interestingly, the fluorescence wavelengths
obtained by using the UB3LYP method match well with the
experimentally determined values.® Although use of the UMO06-
2X method also gives maxima that are close to the experimental
values, it slightly overestimates the excitation energies. Utili-
zation of the long-range corrected CAM-UB3LYP functional does
not lead to improved results, suggesting that charge-transfer
interactions are not important in 32°"*, The use of UHF in this
functional for treatment of large electronic separations suffers
from a more serious spin contamination ((S*) ~2.54-4.01),
especially in the case of *2¢"".

(-

Table 2 Fluorescence wavelength maxima (Agn,) and oscillator strengths (f) of TMM biradicals obtained by experimental and various TD-DFT

methods

Exp” TD-DFT?

TL UB3LYP UMO06-2X CAM-UB3LYP
Biradical Ap/nm Jem/mm ((S*), f) Agm/mm ((5*), f) Aem/mm ((8%), f)
2a" 451 443 (2.43, 0.003) 438 (2.28, 0.005) 440 (3.10, 0.001)
32b" 501 479 (2.24, 0.010) 464 (2.23, 0.018) 443 (2.54, 0.007)
32¢" 602 613 (2.63, 0.002) 554 (2.39, 0.004) 903 (4.01, 0.000)

@ From ref. 5a. ”
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The 6-311+G(d) and 6-31G(d) basis sets were employed for single point calculations and optimizations, respectively.
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Table 3 NOON Values of 32a°* and *2a"** obtained using CASSCF(100, 10e) calculations
32a
Orbital No. 4
%24+
Orbital No. 4 5 6 7
NOON Orbital no. 1 2 3 4 5 6 7 8 9 10
32a""* 1.92 1.90 1.88 1.47 1.02 0.97 0.55 0.12 0.09 0.07
2a"" 1.96 1.92 1.90 1.87 1.00 1.00 0.13 0.10 0.08 0.04

To validate the (TD-)DFT results presented above, the elec-
tronic configuration of *2a’** was evaluated by employing post-
Hartree-Fock CASSCF and multireference MP2 calculations.
First, 10 m-orbitals of 2a’" were obtained using the RHF/6-
311+G(d) method for the singlet spin state. Subsequent CASSCF
calculations were carried out using a full w-orbital (10e, 100)
active space for the triplet ground state. In Table 3 are listed the
corresponding natural orbital occupation numbers (NOON),
where 2, 1, and 0 indicates doubly-, singly-, and un-occupied
orbitals, respectively. Importantly, a deviation of NOON from
integer numbers implies that the wavefunction has multi-
reference character.”’ Analysis of the NOON values for *2a"
indicates the existence of four doubly-occupied (NOON > 1.87),
two singly-occupied (NOON ~ 1.00), and four un-occupied
(NOON < 0.13) orbitals within the active space. On the other
hand, the NOON values of orbitals numbers 4 and 7 in 32a""*
deviate largely from integer values, signaling that the wave-
function has multireference character. Except for natural
orbitals 4-7, the NOON values and orbital shapes of *2a’** and
32a’* are almost identical. The singly-occupied natural orbital of
32a"" is localized on the TMM moiety, while singly occupied
natural orbitals of *2a"** (Table 3) are delocalized on the phenyl
group. The fact that this finding is consistent with the natural
charge distributions obtained by using (TD-)DFT calculations
(Fig. 3) validates the DFT-based results.

The CASSCF-determined emission energy of the benchmark
model *2a"" is 2.62 eV (473 nm) and that arising from MRMP2 is
2.51 eV (495 nm). The MRMP2 result is in good agreement with
that determined experimentally (2.74 eV, 451 nm), and the
TD-DFT determined emission energy (2.82 eV, 440 nm) is also
close to the experimental value. These findings suggest that
awell-balanced use of dynamic and non-dynamic correlations is
necessary for quantitatively accurate assessment of the emis-
sion wavelengths of *2°**, The somewhat surprising similarity
of the MRMP2 and UB3LYP results show that conceptually more
simple density functional approaches can be applied to the
complex electronic and molecular structures of *2°**. This is
most likely a consequence of fortuitous error compensations.

In conclusion, studies aimed at understanding the T,-T,
fluorescence of aryl-substituted TMM biradicals *2°"* were

This journal is © The Royal Society of Chemistry 2016

carried out using quantum chemical calculations. The results of
calculations using high-level ab initio and various DFT func-
tionals reveal that the wavefunctions of 2"** possesses signifi-
cant multireference character. However, use of DFT approaches
with sufficiently large basis sets leads to predictions of
reasonable emission wavelengths of *2°**. In addition, the
calculated changes of bond lengths and spin distributions
demonstrate that significant relaxation of molecular geometries
occurs in T; on going from an aromatic ground state to quinoid
structured excited state. The overall results of this work
demonstrate that it is possible to use DFT-based methods to
estimate accurately the fluorescence properties of organic open-
shell species.'® This ability should accelerate the development
and application of luminescent radical materials.
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