Issue 75, 2016

Cross-linked nanofilms for tunable permeability control in a composite microdomain system

Abstract

Fabrication of microcapsule based composite materials with precise control over diffusion is desirable for applications in anti-corrosive agent release, drug delivery, and biosensing. Self-assembled layer-by-layer (LbL) nanofilms may be used to control analyte flux in these advanced materials because they allow accurate manipulation of interface properties on the nanoscale. The transport of a model analyte was evaluated across glutaraldehyde cross-linked PAH [poly(allylamine hydrochloride)]/PSS [poly(sodium 4-styrenesulfonate)] nanofilm constructs to determine the potential of these bilayers to precisely control small-molecule diffusion. Measurements of glucose permeation rates across nanofilms deposited on planar porous substrates revealed that glutaraldehyde-mediated cross-linking drastically decreased transport across PAH-containing bilayers. Additionally, we found that analyte permeation rates can be finely tuned by controlling the degree of intralayer and interlayer PAH cross-linking. To realize the practical application of these nanofilms in micro-scale flux-based devices, the planar multilayer scheme was used to line glucose-sensing microdomains entrapped in alginate matrices. These glucose sensing nanocomposite hydrogels exhibited sensitivity and analytical range that are adjustable depending upon the characteristics of the multilayers; cross-linking of the nanofilm lining the microdomains to limit glucose diffusion resulted in an extension of the analytical range by ≈249% and a decrease in the corresponding sensitivity by ≈85%. This demonstration of control over small-molecule diffusion in microdomain-populated hydrogel materials opens the possibility to use these devices for multifunctional purposes, including biosensing and controlled release of encapsulated species such as drugs, coloring/flavoring agents, anti-corrosives, and other active molecules.

Graphical abstract: Cross-linked nanofilms for tunable permeability control in a composite microdomain system

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2016
Accepted
21 Jul 2016
First published
22 Jul 2016

RSC Adv., 2016,6, 71781-71790

Cross-linked nanofilms for tunable permeability control in a composite microdomain system

A. Biswas, A. T. Nagaraja, Y. You, J. R. Roberts and M. J. McShane, RSC Adv., 2016, 6, 71781 DOI: 10.1039/C6RA13507B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements