Issue 84, 2016, Issue in Progress

UV-visible and near-infrared active NaGdF4:Yb:Er/Ag/TiO2 nanocomposite for enhanced photocatalytic applications

Abstract

A near infra-red (NIR) active NaGdF4:Yb:Er/Ag/TiO2 nanocomposite photocatalyst was successfully synthesized by a one-pot thermal decomposition method. The composite structure, morphology and elemental mapping of the synthesized NaGdF4:Yb:Er/Ag/TiO2 nanocomposite were characterized by X-ray diffraction and transmission electron microscopy analysis. The energy transfer among NaGdF4:Yb:Er, Ag, and TiO2 was revealed by upconversion photoluminescence measurements at 980 nm. The Ag and NaGdF4 nanoparticles enhanced the visible and NIR light absorption property of the NaGdF4:Yb:Er/Ag/TiO2 nanocomposite. The NIR and UV-visible light induced photocatalytic study of the NaGdF4:Yb:Er/Ag/TiO2 composite was examined by rhodamine B degradation. The energy transfer among NaGdF4:Yb:Er, Ag, and TiO2 significantly influenced the photocatalytic activity under NIR irradiation. The catalysts produced oxidative species during NIR irradiation, which are responsible for the photocatalytic degradation of rhodamine B. NaGdF4:Yb:Er/Ag/TiO2 showed photocatalytic activity under NIR and UV-visible radiation (full solar irradiation), which is superior to a UV or visible light active photocatalyst. The study provided a UV-visible and NIR-responsive photocatalyst and its energy transfer mechanism.

Graphical abstract: UV-visible and near-infrared active NaGdF4:Yb:Er/Ag/TiO2 nanocomposite for enhanced photocatalytic applications

Article information

Article type
Paper
Submitted
20 Apr 2016
Accepted
10 Aug 2016
First published
10 Aug 2016

RSC Adv., 2016,6, 80655-80665

UV-visible and near-infrared active NaGdF4:Yb:Er/Ag/TiO2 nanocomposite for enhanced photocatalytic applications

N. Prakash, D. Thangaraju, R. Karthikeyan, M. Arivanandhan, Y. Shimura and Y. Hayakawa, RSC Adv., 2016, 6, 80655 DOI: 10.1039/C6RA10208E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements