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Recent research has shown the potential of rationally designed

geometrical features for controlling the functionality of advanced

materials. Of particular recent interest has been the use of geometry

for controlling the buckling behaviour of soft materials under

compression. However, the effects of geometry may be mixed with

those of themechanical properties. In this paper, we present a specific

class of 2D cellular soft matter for which the geometry, independent

from the mechanical properties of the bulk material, activates the

instability pathways of the material, thereby controlling the instability

threshold and the instabilitymode (instability pattern). The geometrical

parameters include those characterizing the shape of the voids and

the porosity of the cellular solid. A critical strain that solely depends on

the geometry controls the transition to instability. Depending on the

above-mentioned geometrical parameters, the onset of instability is

followed by either symmetric compaction or side buckling. We

provide instability maps that relate the geometrical parameters to the

critical strain and the instability mode of the presented cellular soft

material. These open up the possibility of using geometry for

programming the functionalities of materials.
The relationship between geometry and functional properties of
(so) materials has recently received increasing attention. For
example, magnicent mechanical and physical properties of
natural materials such as iridescent and lightweight structures
may be achieved via a certain arrangement of the microstruc-
tures forming a cellular solid.1–3 Using similar principles, some
creatures disguise themselves by switching their structural
color in response to environmental factors.1,4 A major theme
within this line of research is the rational geometrical design of
, Faculty of Mechanical, Maritime, and

echnology (TU Del), Mekelweg 2, 2628

z@tudel.nl; Tel: +31-15-2783133

ment of Rheumatology, UMC Utrecht,

etherlands

tion (ESI) available. See DOI:

hemistry 2016
materials so as enable them to exhibit desired and occasionally
unprecedented properties and functionalities.

An important example, which denes the context for the
current study, is the case of so cellular solids that exhibit
sudden transformation in their original structural patterns
under compression, when a certain loading threshold is
reached.5,6 The geometry of pores and mechanical properties of
the materials can regulate buckling instability in this kind of
periodic structures so as to make them show specic behaviors
in response to diverse stimuli.7–10 For example, so cellular solid
composed of an array of repetitive unit cells may display
reversible and repeatable pattern switching.6,7,11–13 This type of
behavior could be used for a variety of applications where arti-
cial responsive materials change their conguration in
response to diverse stimuli such as loads, moisture, etc.9,14,15

Equipped with cellular conguration, activated structures can
exhibit shape shiing that could be of tremendous value in so
robotics and smart bodies.16,17 Moreover, cellular conguration
of materials in combination with optimization techniques
opens an avenue towards design of optimal materials.18–21

Notably, Bertoldi and co-workers have extensively explored 2D
periodic cellular materials.5,7,8,12,13,22–25

In this paper, we use both experimental and computational
approaches to study how n-fold symmetric voids, a square array
of so hyperelastic porous unit cells, control the critical strain
of 2D so periodic structures under compression, where n (the
number of folds) is an even number. The pore shapes consid-
ered here conform to amodied version of an analytical angular
function that was originally used to formulate the shape
evolutions caused by deposition of graphene monolayers on Cu
foils.26 That original function was modied and re-written as
a polar vector (V) to generate n-fold symmetric shapes:

VðqÞ ¼ c
�
ð1þ rÞ � dð�1Þnþ2

2 ðr� 1ÞcosðnqÞ
�

(1)

where 0 # q # 2p, scalar coefficient c is used to control the
porosity in the unit cell, r controls the sharpness of folds,
d ¼ �1 adjusts the orientation of the voids, and n determines
RSC Adv., 2016, 6, 20431–20436 | 20431
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the number of folds (Fig. 1a). As r decreases from 1, the pore
shape evolves from a circular geometry to shapes with sharper
folds/edges (Fig. 1a). For a given porosity, a, the scale factor c is
calculated, independent from the number of folds, as follows:

c ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð3þ 3r2 þ 2rÞap

L0

pð3þ 3r2 þ 2rÞ (2)

where L0 is the edge length in the 2D square unit cells. More-
over, a and L0 are chosen such that

VðqÞ\ L0
2 cosðq� np=2Þ; n ¼ 0; 1 to maintain the integrity of

the unit cells.
All geometries depicted in Fig. 1a were included in our

computational study. The geometries were chosen so as to
preserve the integrity of the structure while ensuring that the
size of voids allows for pattern transition. Five sample struc-
tures were chosen for an experimental study to validate our
computational ndings. In both computational and experi-
mental studies, the specimens comprised arrays of 7 by 7
Fig. 1 (a) The pore shape of the cellular soft materials studied here and
(painted in grey) were selected for the experimental study. Different colou
(b) Comparison between the experimental and computational stress–
dimensions were used in the simulations, the nominal values are presen

20432 | RSC Adv., 2016, 6, 20431–20436
repeating unit cells with two additional half unit cells on both
sides of the specimens (Fig. 2d). This arrangement of unit cells
is the minimum size that nite structures need for symmetric
pattern transition. The actual dimensions of the pores in the
experimental specimens were measured and used for creating
the computational models whose results were compared with
the experimental observations. That involved offsetting the
boundaries of the pores inwards by 250 mm (the approximate
deviation of the dimensions of the actual specimens from the
designed dimensions).

Specimens were compressed uniaxially in the vertical direc-
tion with a deformation rate of 2–10 mm min�1. A digital
camera was used to follow the deformation and instability
patterns as loading progressed. The height and cross-section
area of the structure were respectively used for calculating the
nominal strain and nominal stress values.

The incompressible Neo-Hookean material model with
a material parameter C10 ¼ 105 kPa was used to describe the
mechanical behaviour of the bulk material. An implicit
the parameters that define their geometry. Five of these pore shapes
rs of the pore contour indicate different pore sizes and, thus, porosities.
strain curves of the five selected structures. Even though the actual
ted in the caption of this figure.

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 (a–c) The computationally predicted configuration of the five cellular structures for which experiments were performed before loading, at
the critical state, and when loaded beyond the critical state (i.e. 3cr + 0.05). (d) The experimentally observed configuration of the five cellular
structures for which experiments were performed when loaded beyond the critical strain (i.e. 3cr + 0.05).
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nonlinear nite element solver (abaqus/standard) was used to
solve the governing equations of deformation. An explicit
nonlinear solver (abaqus/explicit) was used when the contact
between the internal sides of the closing pores was taken into
account. A mesh convergence study was conducted to select the
appropriate mesh density. Based on the convergence study,
a maximum seed size equal to 3.5% of the length of the unit cell
edges was selected, resulting in 800–1350 elements per unit cell.
Triangular quadratic plane strain hybrid elements (CPE6H)
were used for the implicit solutions, while the modied type of
the same element (CPE6M) was used for explicit analysis. To
This journal is © The Royal Society of Chemistry 2016
detect the instability patterns, eigenvalue buckling analysis
(subspace technique) was performed. The post-bulking simu-
lations included an initial geometric imperfection equal to 0.01
of the magnitude of the deformation in the rst buckling mode
of the structure. The nite element simulations were quasi-
static. Clamped boundary conditions were used on both sides
of the specimens.

There was generally good agreement between the experi-
mentally determined stress–strain curves and the correspond-
ing computational curves except for the very nal stages of
deformation where the experimental and computational curves
RSC Adv., 2016, 6, 20431–20436 | 20433
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Fig. 3 Stress–strain curves of the cellular structures when four
different material properties where used for modelling the bulk
material. The structures with circular and 4-fold type two voids follow
symmetric compaction instability (a, c), and the structure 4-fold type
one experience side buckling (b). Each structure show the same critical
strain for different elastomers independent of material.
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started to deviate from each other (Fig. 1b). The predicted
instability patterns very well matched the experimentally
observed instability patterns for all the structures for which
both experimental and computational data were available
(Fig. 2).

The stress–strain curves generally showed an initial linear
behaviour followed by a stress plateau region where the stress
did not substantially increase (Fig. 1b). The stress nally started
to increase due to the closing pores and the resulting contact
between the internal walls of the pores (Fig. 1b). For every
cellular structure, the transition from the linear region to the
stress plateau occurred aer a specic level of strain that is
called the critical strain in the current study (Fig. 1b). We
dened the critical strain as the strain for which the maximum
stress at the end of the linear region was recorded (Fig. 1b),
unless there was no clear stress peak in which case the
maximum radius of curvature in the stress–strain curve was
used as a criterion for detecting the critical strain. A parametric
study showed that the computational results are not over-
sensitive to the magnitude of the imperfections and do not
drastically change when the imperfection size is perturbed
around the chosen values. Once the loading progressed beyond
the critical strain, a rapid transformation in the pattern of the
cellular structures occurred, which was considered as the hall-
mark of buckling (Fig. 2). Depending on the geometry of the
pores, e.g. the number of folds and the porosity of the cellular
structures, two different types of instability patterns were
observed, namely side buckling (Fig. 2ii and v) and symmetric
compaction (Fig. 2i, iii and iv).

To study the material effect on the critical strain of so
cellular structures, in addition to the material used in our
experiments, the mechanical properties of three different types
of polydimethylsiloxane (PDMS) elastomers were taken from.27

The difference between the mixing ratio of the base polymer
and the curing agent causes a great difference in themechanical
properties of PDMS elastomers. Three different material models
Neo-Hookean, Yeoh, and Ogden (order 3) were chosen to eval-
uate the effect of constitutive equation on the response of the
considered structures. The material model constants of PDMS
elastomers were obtained by tting the uniaxial stress–strain
curves up to the point where the stress started to increase as
a result of bond stretching.‡ This led to closer material prop-
erties for all the three models, especially in compression. Three
extreme geometries (circular as well as four-fold types 1 and 2,
all having porosities of 0.45 and fold sharpness of r ¼ 0.7) were
used to study the effects of material properties on the buckling
behaviour. All considered cases showed pattern transition at
relatively large strains. Numerical results clearly showed that
the critical strain remains the same regardless of the material
properties (Fig. 3). This independency from material properties
held also for the type of instability, i.e. side buckling vs.
symmetric compaction. The sole effect of the material proper-
ties was shiing the load at which pattern transition occurred
(Fig. 3). Microstructures experience both tensile and compres-
sive stresses when the structures are compressed uniaxially.

Geometry of pores inuences both the pattern instability and
critical strain. For the circular pores, the instability pattern was
20434 | RSC Adv., 2016, 6, 20431–20436
symmetric compaction for larger (i.e. >0.35) porosities and side
buckling for smaller (i.e. <0.35) porosities (Fig. 4). For 2-fold
structures, the instability pattern was similar to that of the
structures with circular pores when rz 1 (Fig. 4). For r� 1, side
buckling was the instability pattern of the 2-fold structures
(Fig. 4). For n-fold structures (n > 2), three distinct regions could
This journal is © The Royal Society of Chemistry 2016
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Fig. 4 The critical strains calculated for the different types of cellular
structures with different pore shapes. The colour codes show the type
of instability pattern that resulted from any given type of pore
geometry.
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be observed in the maps of the instability patterns (Fig. 4). In
the rst region (painted yellow in Fig. 4), the instability pattern
was side buckling. In the second region (painted magenta in
Fig. 4), the instability pattern was symmetric compaction. In the
third region (painted blue in Fig. 4), the instability pattern was
dependent on the convexity/concavity of the curve that denes
This journal is © The Royal Society of Chemistry 2016
the pore shape at the location where the curve meets the hori-
zontal symmetry line (see Fig. 1a). When the curve dening the
pore shape was convex/concave at its intersection with the
horizontal symmetry line, the instability pattern was always side
buckling/symmetric compaction (Fig. 4). The concavity/
convexity were dened with respect to the observer standing
at the centre of the unit cell.

In side buckling, the middle row of the specimens experi-
enced relatively small deformation (Fig. 2) that means specic
areas that are protected from excessive deformation could exist
even when the other areas experienced excessive deformation.
This type of areas may need to be included in the positions
within the structure that require protection from excessive
deformation. Even before reaching the critical strain, pre-
cursors to the instability patterns could be identied both for
side buckling and symmetric compaction (Fig. 2b). In the case
of side buckling, the pre-cursors were manifested in terms of
curvy boundaries, while the boundaries between the unit cells
exhibited increasing levels of waviness in the case of symmetric
compaction (Fig. 2d–i, iii and iv). In symmetric compaction, the
contact between the inner walls of closing pores, which occurs
for very large strains, induced some levels of geometric frus-
tration that elicited side buckling in addition to symmetric
compaction. As r approaches 1, the pore shapes approach
a circle (Fig. 1a). A sudden shi in the type of the instability
pattern was therefore detected for some structures somewhere
between r ¼ 0.9 and r ¼ 1.0 (Fig. 4).

Except for structures with 2-fold pores, the critical strains of
all other types of structures more or less linearly increased as r
increased from 0.6 to 1.0 (Fig. 4). The same linear behaviour was
observed for all porosities and both orientations of the pores
(i.e. d ¼ �1) (Fig. 4). One could therefore conclude that the
critical strain values are smaller when pores with sharper folds
are used in the cellular structure. In general, the difference
between the critical strains of structures with different orien-
tation of pores (i.e. d¼�1) tended to decrease, as the number of
folds, n, increased. This can be attributed to the more symmetry
lines in pore shapes with larger number of folds that minimizes
the effect of orientation (i.e. rotation) of pores on the stress
distribution of the cellular structures.

In summary, we presented a specic class of cellular so
matter whose instability patterns and instability thresholds (i.e.
critical strains) are exclusively controlled by the geometry of the
pores. The possibility of decoupling instability patterns and
instability thresholds from the properties of the bulk material
opens new avenues for utilizing geometry as a tool for
programing and controlling the state of the so-called
‘programmable materials’. Despite the rich mechanical behav-
iour that the presented cellular structures exhibit, in most
cases, their critical strains linearly change with the sharpness of
the folds and are simple functions of the other geometrical
parameters. These relatively simple relationships together with
the instability maps (Fig. 4) provide us with some design rules
that could be potentially used in development of programmable
materials that exploit geometry as a way of controlling the
buckling behaviour.
RSC Adv., 2016, 6, 20431–20436 | 20435
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