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1. Introduction

Optimization of the process parameters for the
adsorption of ternary dyes by Ni doped FeO(OH)-
NWs—AC using response surface methodology and
an artificial neural networkf

Farshid Nasiri Azad,® Mehrorang Ghaedi,*® Arash Asfaram,? Arsalan Jamshidi,**°
Ghasem Hassani,® Alireza Goudarzi,® Mohammad Hossein Ahmadi Azghandi’
and Abdolmohammad Ghaedi®

The present study deals with the simultaneous removal of chrysoidine G (CG), rhodamine B (RB) and
disulfine blue (DB) by Ni doped ferric oxyhydroxide FeO(OH) nanowires on activated carbon (Ni doped
FeO(OH)-NWs—-AC). The adsorbent was characterized using X-ray diffraction (XRD), field emission
scanning electron microscopy (FE-SEM) and scanning electron microscopy (SEM). Derivative
spectrophotometry was used for investigation of simultaneous dye adsorption by an artificial neural
network (ANN) and response surface methodology (RSM) to analyse and model their adsorption
behavior. Using the ANN analysis, the optimal configuration of the ANN model for modeling of the
adsorption process was found to be (6:(4-6):3). The effect of adsorption parameters such as initial pH,
adsorbent mass, sonication time and initial CG, RB and DB concentration was studied using central
composite design (CCD), while design results were also utilized as a training set for the ANN. After
predicting the model using RSM and ANN, the two methodologies were statistically compared by their
coefficient of determination, root mean square error, absolute average deviation and mean absolute
error based on the validation data set. Results suggest that ANN has better prediction performance as
compared to RSM. It was also found that response surface methodology (RSM) predicts the suitability of
output parameters. The adsorption mechanism and process rates were investigated by analyzing time
dependency data using various conventional kinetic models such as pseudo-first-order and second
order, intra-particle diffusion and Elovich models and the best fit was obtained by a pseudo-second-
order kinetic model with good agreement between the equilibrium and expected adsorption data. The
experimental results revealed that dye adsorption was highly linear and followed the Langmuir isotherm
model with maximum adsorption capacities of 187.420 (CG), 210.170 (RB) and 235.650 mg g~* (DB).

water.* Some of these dyes are aesthetic pollutants and their
presence interferes with light penetration and affects aquatic

A great amount of the pollution associated with different
aquatic ecosystems is related to dyes,"* which are extensively
used in the textile industry and other related activities.®> Their
wastewater discharge is composed of a high content of dye
color, suspended solids and dissolved organics and salts that
significantly affect the physicochemical properties of fresh
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ecosystems.® There are many unique and distinguished clean-
ing procedures for treating the dye-containing wastewater,®
such as biodegradation, coagulation/flocculation, adsorption,
chemical oxidation, ozone treatment, membrane filtration, and
photocatalysis, but adsorption is the highly preferred technique
in view of its effectiveness, high efficiency, economy, simplicity
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of design and ease of operation. However, good adsorption,
regeneration, and isolation characteristics of adsorbents are
desirable. Therefore, more research work is required to design
new adsorbents with high adsorption capacity, regeneration
properties, and easy isolation from an aquatic environment.”
Activated carbon (AC), which is widely applied in industrial
processes, has a microporous, homogenous structure with high
surface area and radiation stability.® Furthermore, there are
many problems with AC regeneration that can simply be
removed by its modification with a nanoscale material that can
simultaneously enhance the surface reactive atoms available, as
well as its surface area and porosity. Ni doped ferric oxy-
hydroxide FeO(OH) nanowires, due to their high aspect ratio,
high mechanical strength and high surface area, are suitable for
efficient adsorption of trace (ppb range) levels of metals and
other contaminants. Iron oxide and iron oxyhydroxide particles,
particularly the goethite a-FeOOH phase, are environmentally
friendly materials which are applicable as adsorbents.
Spectrophotometric methods, despite their convenient
properties including simplicity, cost-effectiveness and wide
availability in most quality control laboratories, are not selective
and sensitive enough for simultaneous quantification of CG, RB
and DB. This difficulty is due to the high overlap of their
absorption spectra (Fig. 1a), which can be overcome by the
application of derivative spectroscopy and derivative ratio
spectrophotometry, which simultaneously increase selectivity
and sensitivity.”™
Response surface methodology (RSM) is a powerful tech-
nique for testing multiple process variables via a minimum
number of experimental trials compared to a “one-factor-at-a-
time” method."** In addition, significant interactions among
the variables identified and quantified by this technique allows
simultaneous optimization of conditions widely performed by
Central Composite Design (CCD) or Box-Wilson design.***’
This work is devoted to the modeling and optimization of the
ternary dye adsorption process onto Ni doped FeO(OH)-NWs-
AC using derivative spectrophotometry. CCD of the RSM was
employed to investigate the effects of significant operating
parameters including initial dye concentrations, pH, adsorbent
mass and sonication time on dye adsorption to find the most
suitable combination of variables to achieve maximum dye
adsorption efficiency. The second-order polynomial equation
(regression model) provides an excellent explanation of the
relationship between the response (R% CG, RB and DB) and
independent parameters. This study proposed a three layer ANN
model using a back propagation (BP) algorithm to predict
adsorption efficiency and subsequently investigate the mecha-
nism kinetics and isotherms.

2. Materials and methods
2.1. Materials

Chemicals including nickel(n) sulfate hexahydrate (NiSO,-
-6H,0) were provided by the Scharlau. Iron(u) sulfate heptahy-
drate (FeSO,-7H,0) and ammonium iron(m) sulfate
dodecahydrate (NH,Fe(SO,),-12H,0) were purchased from
Sigma. Sulfuric acid (H,SO,), hydrochloric acid (HCI) sodium
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hydroxide (NaOH) and chrysoidine G (CG, C;,H;3N,Cl), rhoda-
mine B (RB, C,3H3;CIN,03) and disulfine blue (DB, C,;H3;N,-
NaOgS,) were purchased from Merck. The adsorption spectra
and chemical structures of CG, RB and DB dyes are shown in
Fig. 1a. A stock solution (100 mg L") of each dye was prepared
by dissolving 100 mg of solid dye in 100 mL double distilled/
deionized water (Milli-Q, Millipore, Bedford, Massachusetts,
USA) and the working concentrations were prepared daily by
suitable dilution.

2.2. Instrumental analysis

All of spectrum was recorded by an UV-Vis spectrophotometer
(Lambda 25 UV-Vis spectrometer from Perkin-Elmer Instru-
ments, Wellesley, Massachusetts, USA). The concentration of
the dyes were calculated at wavelength of 411.7, 464.3 and 660
nm obtained from first order derivative spectra for CG, RB and
DB, respectively. The ultrasonic device (TECNO-GAZ, Parma,
Italy) was equipped with a digital timer and temperature
controller. A pH meter (Ino Lab pH 730, Weilheim, Germany)
was used to determine the pH of solutions. A HERMLE bench
centrifuge (Hermle-Labortechnik 2206A, Gosheimer Str., Ger-
many) was used to accelerate phase separation. X-ray diffraction
(XRD, Philips, PW1800, Eindhoven, Netherlands) was per-
formed to characterize the phase and structure of the prepared
nanoparticles using Cu K, radiation (40 kv and 40 mA) at angles
ranging from 20 to 80°. The morphologies of the nanoparticles
were observed by scanning electron microscopy and field
emission scanning electron microscopy (FE-SEM: Hitachi S-
4160, Tokyo, Japan) under an acceleration voltage of 15 kv.

2.3. Ultrasound assisted adsorption experiments

The adsorption of dye solutions onto Ni doped FeO(OH)-NWs—
AC was examined using ultrasound as follows: 0.01-0.03 g of Ni
doped FeO(OH)-NWs-AC was added into 50 mL of dye solution
with a concentration (C,) between 4-50 (mg L") at pH 5.0,
which was adjusted using 0.1 mol L™ HCI and/or NaOH, in
a glass beaker covered with plastic paraffin film. Then it was
mounted on an ultrasound device for 2-6 min at constant
temperature (25 °C) to reach equilibrium. Then the sample was
immediately centrifuged and effluent solutions were analyzed
for the final concentration of CG, RB and DB via derivative
spectrophotometric method at 411.7, 464.3 and 660 nm,
respectively. The amount of each dye was analyzed via the cor-
responding calibration curve at the aforementioned wave-
length. In ternary solutions, first order derivatives of the
absorbance spectra were used to find the optimal wavelength
for each dye at which the impact of the other components was
minimized. The CG, RB and DB removal percentage (R%) was
calculated using the following equation:

CO* CI
0

Percent adsorption (R%) = x 100% (1)

where C, (mg L") and C; (mg L") are the initial dye concen-

tration and after time ¢, respectively. The amount adsorbed (ge,
in mg g~ ') is calculated using the following relationship:
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Fig.1 (a) Zero order derivative spectra for CG, RB, DB and ternary mixture. (b) First order derivative spectra for CG, RB, DB and ternary mixture. (c)

Calibration graph at 411.7 nm for CG, 464.3 for RB and 660 nm for DB.

g =G @)

Co and C. are the initial and final concentrations (mg L") of
dye, respectively, V(L) is the volume of the solution and W is the
mass of the adsorbent (g).

2.4. Adsorption kinetics

Adsorption kinetic experiments were carried out at various
contact times (0.5-8 min) using optimum conditions of other
variables. The samples were removed at various time intervals
(0.5-8 min) followed by centrifuging and subsequent analysis of
the amount of adsorbed dye. Pseudo-first and second order,

19770 | RSC Adv., 2016, 6, 19768-19779

intra particle diffusion and Elovich models were selected to find
an efficient model for the best description of the dye adsorption
kinetics.

The adsorption kinetics of dyes was plotted using a pseudo
first-order equation:*®

k
toe(a: ~ 4 =tz . — ( 31353)" ®)

where g. and g, are the amount of dye adsorbed (mg g ") at
equilibrium and at time ¢ (min), &, is the overall rate constant of
pseudo-first order adsorption (min~*). Values of k, were calcu-
lated from the linear plots of In(g. — g,) versus t.

This journal is © The Royal Society of Chemistry 2016
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Table 1 Experimental factors and levels in the central composite design for the dyes adsorption
Levels
Central
Factors Low (—1) (0) High (+1) —a +a
A: CG concentration (mg L) 8 12 16 4 20
B: RB concentration (mg L) 8 12 16 4 20
C: DB concentration (mg L") 8 12 16 4 20
D: pH 4.0 5.0 6.0 3.0 7.0
E: adsorbent mass (g) 0.015 0.020 0.025 0.010 0.030
F: sonication time (min) 3 4 5 2 6
Factors Response
R%
Run A B C D E F CG R% RB R% DB
1 12 12 12 3.0 0.020 4 77.84 33.69 43.25
2 12 12 12 5.0 0.020 2 77.25 85.63 62.56
3 16 16 8 4.0 0.025 5 75.23 63.25 50.36
4 8 16 16 4.0 0.015 3 48.27 21.88 28.63
5 8 16 16 6.0 0.025 3 33.75 42.72 23.12
6 16 8 16 6.0 0.015 5 71.23 79.36 48.36
7 8 8 16 4.0 0.015 5 52.08 56.96 38.56
8 12 12 12 5.0 0.030 4 59.32 31.23 48.64
9 12 12 12 5.0 0.010 4 21.43 70.20 19.26
10 12 12 12 5.0 0.020 4 41.20 51.20 35.86
11 8 8 16 6.0 0.025 5 44.33 48.38 33.20
12 8 8 8 4.0 0.015 3 63.44 23.16 51.23
13 12 12 12 5.0 0.020 4 43.89 51.06 36.89
14 12 12 4 5.0 0.020 4 27.83 63.25 27.59
15 12 12 20 5.0 0.020 4 44.97 41.26 32.85
16 12 12 12 5.0 0.020 4 43.20 50.95 37.86
17 12 12 12 5.0 0.020 4 44.56 51.45 35.12
18 8 16 8 6.0 0.025 5 78.36 71.26 65.39
19 16 8 8 4.0 0.025 3 51.70 76.52 45.36
20 12 12 12 5.0 0.020 6 69.25 75.63 48.88
21 12 20 12 5.0 0.020 4 13.88 52.36 12.50
22 12 4 12 5.0 0.020 4 53.85 8.12 39.46
23 12 12 12 5.0 0.020 4 44.90 52.10 38.62
24 16 8 16 4.0 0.025 5 66.34 71.12 48.36
25 16 16 8 6.0 0.015 5 45.76 49.63 44.69
26 20 12 12 5.0 0.020 4 38.28 37.80 34.26
27 8 8 8 6.0 0.025 3 38.81 42.36 20.36
28 12 12 12 7.0 0.020 4 59.88 51.20 36.52
29 8 16 8 4.0 0.015 5 60.38 58.52 47.44
30 4 12 12 5.0 0.020 4 79.68 68.12 63.56
31 16 16 16 6.0 0.015 3 29.63 31.25 19.52
32 16 8 8 6.0 0.015 3 46.12 32.75 37.11
33 16 16 16 4.0 0.025 3 62.20 65.96 46.39

The linear form of the pseudo-second order model™ is given

by eqn (4):

t 1 1

— =+ 4

4 kg ge “
where g, and ¢, are the amounts of dye adsorbed by lignite (mg
g~ ') at equilibrium and time ¢, respectively, and k, is the pseudo
second order rate constant (g mg~" min~ ). g. and k, can be
computed from the slope and intercept of the line from a plot of
t/q, versus t.

This journal is © The Royal Society of Chemistry 2016

Weber’s intraparticle diffusion model was employed to
elucidate the diffusion mechanism and to identify the steps
involved in the adsorption process:*

q = Kat"? + C (5)

where Kgj is the intraparticle diffusion rate constant (mg g~ *
h™"2), and c is a constant (mg g~ *) that gives an idea about the
thickness of the boundary layer. Weber’s model states that if the
passage of the regression line corresponding to g, versus ¢ is
through the origin, intraparticle diffusion is the only rate-

RSC Adv., 2016, 6, 19768-19779 | 19771
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Fig.2 (a) FESEM image of the a-FeO(OH) nanowires, (b) SEM image of
the Ni doped FeO(OH)-NWs—-AC and (c) XRD pattern of the prepared
a-FeO(OH) nanowires.

limiting step. Otherwise, two or more steps are involved in the
adsorption process.***

Another rate equation based on the adsorption capacity is
the Elovich equation, presented as follows:

q = %ln(aﬁ) + %ln t (6)

Plot of g, versus In(¢) should yield a linear relationship if the
Elovich model is applicable with a slope of (1/8) and an

19772 | RSC Adv., 2016, 6, 19768-19779
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intercept of (1/8)In(aB). The Elovich constants are obtained
from the slope and the intercept of the straight line.>

2.5. Adsorption isotherms

The adsorption capacity at different aqueous equilibrium

concentrations is a measure of how the solutes interact with the

adsorbent and assesses the distribution of solute between the

solid and liquid phase by measuring the distribution coefficient.>
The linear form of the Langmuir isotherm equation is:

C. 1 Ce

4. Ouki  On
where ¢, is the solid phase adsorbate concentration at equilibrium
(mg g~ "), Qn, is the maximum adsorption capacity corresponding
to complete monolayer coverage on the surface (mg g~ '), C. is the
concentration of adsorbate at equilibrium (mg L") and Ky is the
Langmuir constant (L mg ™). The constants can be evaluated from
the intercepts and slopes of linear plots of C./q. versus C..**

A linear form of the Freundlich expression can be obtained
by taking logarithms of eqn (8):

(7)

Ing. =1In K¢ + lln C, (8)
n

where ¢. is the solid phase adsorbate concentration at equilib-
rium (mg g~ "), C. is the equilibrium liquid phase concentration
(mg L"), Ky the Freundlich constant (L mg ') and 1/n is the
heterogeneity factor. Therefore, a plot of In g. versus In C.
enables calculation of K and 1/n.2®

The Temkin isotherm”” assumes that the heat of adsorption
of all molecules in the phase decreases linearly when the layer is
covered and that the adsorption has a maximum energy
distribution of uniform bond.”® The linearized mathematical
form of the isotherm is expressed as:

ge=BInKr+ Bln C, 9)

where B = (RT)/b is related to the heat of adsorption, T is the
absolute temperature in Kelvin and R is the universal gas
constant (8.314 J mol ™' K™ ). Values of B and Ky were calculated
from the plot of g. against In C..”®

The Dubinin and Radushkevich (D-R) model was chosen to
calculate the apparent free energy of adsorption.*® The linear
form of the D-R isotherm equation is described by eqn (10):

Ing.=1In Q — B¢ (10)

where ¢. is the amount of adsorbed dye on the biomass (mol
g7"), Qs is the maximum biosorption capacity (mol g™ ); B is the
activity coefficient (mol® J~2) corresponding to the mean energy
of adsorption and ¢ is the Polanyi potential, which is calculated
using eqn (11):

€

1
= RT In| 1+—= 11
€ n( + C > (11)
where R is the gas constant and 7 (K) is the absolute tempera-

ture. The mean free energy of adsorption (E) is calculated
according to the following relationship:*

This journal is © The Royal Society of Chemistry 2016


https://doi.org/10.1039/c5ra26036a

Published on 02 February 2016. Downloaded on 10/31/2025 7:28:31 AM.

View Article Online

Paper RSC Advances
90 100
(RSM) " (ANN)
30 a) - 90 b) .
- g“
80
70 2 - -
“ R & 70 K *
5 = 5 6 -~
A
2 50 o - w*
4 ' 2 % -
g b/ g°
3w R g !
g ndfl g 40 .
= - & &
30 K -
& 30 at
n *
20 ot -
| 20
. + CCD model, CG (R"2=0.9977) at + ANN model, CG (RA2=0.9996)
10 a = CCD model, RB (R"2=0.9998) 10 g = ANN model, RB (R*2=0.9998)
. + CCD model, BD (R"2=0.9984) 4 ANN model, BD (R*"2=0.9991)
0

0 10 20 30 40 50 60 70 80
Observed values

90

0 10 20 30 40 50 60 70 80 90 100
Observed values

Fig. 3 The scatter plots of RSM and ANN model predicted values versus actual values for the central composite design matrix.

T2 4 6 8 10 12 14 16 18 20 22
RB concentration (mg/L)
0.032

0.030
0.028
0.026
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010
0.008
2

O
~

Adsorbent dosage ()

4 6 8 10 12 14 16 18 20 22
DB concentration (mg/L)

Fig.4 Contour plots of combined effects of pH—RB concentration (a)
and adsorbent dosage—DB concentration (b) on the % removal of RB
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1
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E=

(12)

The adsorption process is chemically controlled when the E
value falls in the range from 8 to 16 k] mol " and it progresses
through a physical mechanism when E is <8 kJ mol .

This journal is © The Royal Society of Chemistry 2016

2.6. Preparation of Ni doped FeO(OH)-NWs-AC

The reaction solution for loading Ni doped ferric oxyhydroxide
FeO(OH) nanowires (Ni:FeO(OH)-NWs) on activated carbon (AC)
was prepared as follows: 0.0190 mmoL NiSO,-6H,0, 0.018
mmol FeSO,-7H,0 and 0.021 mmol NH,Fe (SO,), were dis-
solved in 20 mL deionized water with 6 mL H,SO,. Then,
deionized water was added to the solution to make a total
volume of 150 mL at pH = 2.35. In the next step, 20.0 g AC was
added to the prepared solution in an Erlenmeyer flask. Then
240 mL of 2.0 mol L' sodium hydroxide was added to the
mixture drop-by-drop along with vigorous stirring at room
temperature. The obtained solution was stirred at room
temperature for 17 h and then the Ni doped FeO(OH)-NWs-AC
was filtered and washed several times by distilled water and pre-
dried at 40 °C for 1 h and then dried at 70 °C for 7.5 h and finally
the prepared Ni doped FeO(OH)-NWs-AC was kept at 35 °C for
15 h and then used as an absorbent for adsorptions
experiments.

2.7. Process variables and design of experiments

STATISTICA 10.0 software was applied to generate the matrix
and analyze the response surface models. A central composite
design (CCD) with 5-levels and 6-factors was selected for this
study because it can evaluate quadratic interactions between
pairs of factors while minimizing the number of required
experiments.*” The influence and interactions of six factors
were examined in this study: CG, RB and DB concentration, pH,
adsorbent mass and sonication time (Table 1) while their
ranges and values were described according to previous
studies.*® 33 experiments with different factor values were
performed. The three responses (R% CG, RB and DB) were
measured for each experiment and the synthetic scores were
evaluated based on an established mathematic model. The
empirical relationships between the three input factors were
evaluated from these results. The coded design patterns
represent the scaled factor values (lowest (—a), low (—1),
central (0), high (+1) and highest (+«)) used in each run for CG,
RB and DB concentration, pH, adsorbent mass and sonication
time.

RSC Adv., 2016, 6, 19768-19779 | 19773
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Table 2 Appraisal of ANN and RSM models

Statistical parameters

R MSE AAD% MAE
Models CG RB BD CG RB BD CG RB BD CG RB BD
ANN 0.9996 0.9998 0.9991 0.00324 0.00325 0.00874 0.01304 0.15830 0.73408 0.00130 0.00208 0.00779
RSM (CCD) 0.9977 0.9998 0.9984 0.79560 0.23804 0.50359 0.2216 0.06832 0.00901 0.85440 0.25000 0.31560

Table 3 Isotherm constant parameters and correlation coefficients
calculated for the adsorption of dyes onto 0.010 g Ni doped FeO(OH)-
NWs—AC in the single component system

Isotherm Parameters CG RB DB
Langmuir Qm (mgg™) 187.42 210.17 235.65
Ky (Lmg ™) 2.33 4.66 4.55
R? 0.989 0.997 0.999
Freundlich 1/n 0.5312  0.6625  0.7893
Ks (L mg™) 6.960 8.540 9.360
R? 0.936 0.981 0.978
Temkin B 17.89 25.69 29.36
Kr(Lmg™")  22.65 39.95 45.86
R? 0.936 0.971 0.956
Dubinin-Radushkevich Qs (mgg™")  69.85 98.36  100.22
B8 x 1077 1.00 0.312 0.324
E(&mol ™)  2.236 4.002 3.928
R? 0.959 0.949 0.931

The quality-of-fit of the polynomial model was expressed by
the coefficient of determination (R*) and statistical significance
was checked by an F-test. The residual error, pure error and
lack-of-fit were calculated from the repeated measurements."
The desirability was selected as maximum adsorption of dyes at
optimum pH, mass of adsorbent, sonication time and initial
concentration of dyes. To visualize the relationship between

2.8. Artificial neural networks

Artificial neural networks (ANN) are inspired by the extreme
ability of the human brain and nervous systems to learn and
classify data.** ANNSs consist of an input and an output layer and
one or more hidden layers, while the input and hidden layers
have neurons that receive input values. Neurons transfer input
values to the next layer and the strength of these connections
are determined by their weights.* In the present study, different
back-propagation (BP) algorithms were checked to select the
best BP algorithm with a minimum mean squared error (MSE)
and best correlation coefficient (R*). The Levenberg-Marquardt
back propagation algorithm (LMA) was applied for training of
the network as the best algorithm. Also, a three-layer feed
forward ANN with a linear transfer function (purelin) at the
output layer and a tangent sigmoid transfer function (tansig) at
a hidden layer was developed to predict and simulate the
adsorption of dyes. For the three dyes, all experimental data (33)
were divided randomly into three groups (70%, 15% and 15% of
data were applied for training, cross validation and testing of
the accuracy of the model and prediction). The training
parameters were 6 input nodes, 25 hidden layer neurons, 3
output nodes and error goal: 0.00001. In this study, all inputs
and output are normalized within a uniform range of [0, 1]
according to the equation below:**3¢

responses and experimental levels for each of the factors, the Xnorm = {m] (13)
fitted polynomial equation was expressed as surface plots. Amax = Ymin
Table 4 Comparison of the removal of dyes by different methods and adsorbents
Sorption capacity Contact time

Adsorbent Adsorbate (mgg™) (min) Ref.
Bottom ash CG 18.08 120 45
De-oiled soya CG 8.33 120 45
Row cork CG 57.30 50 29
CuS-NPs-AC CG 89.30 6 46
Kaolinite RB 46.08 80 47
Iron-pillared bentonite RB 98.62 40 48
Scrap tires RB 280.10 500 49
Tannic acid functionalized graphene RB 201.00 150 25
NiO nanoparticles in the presence of Hacacen ligand RB 111.00 120 30
Zr-containing metal-organic framework formed by RB 200.40 180 50
terephthalate
Ni doped FeO(OH)-NWs-AC CG 187.42 2.0 This work

RB 210.17

DB 235.65

19774 | RSC Aadv., 2016, 6, 19768-19779

This journal is © The Royal Society of Chemistry 2016


https://doi.org/10.1039/c5ra26036a

Published on 02 February 2016. Downloaded on 10/31/2025 7:28:31 AM.

Paper

where x is a variable, x4« is the maximum value and X,;, the
minimum value.

3. Results and discussion

3.1. Characterization of the adsorbent

The morphology and the size of the obtained Ni:FeO(OH)
nanowires by FE-SEM (Fig. 2a) reveal its nanowire shape with
approximate diameter of 50 nm and length of about 500 nm.
The SEM image (Fig. 2b) of the prepared Ni:FeO(OH) nano-
wires—-AC also confirms the presence of its porous structure that
effectively increases the surface sites for adsorption.

The structural analysis of the prepared Ni:FeO(OH) nano-
wires by X-ray diffraction (XRD) (Fig. 2¢) confirms XRD peaks at
260 =21.3,34.7,36.7,53.1,59.0 and 61.5° attributed to the lattice
planes of (110), (021), (111), (221), (100) and (002), respectively,
of the goethite structure of orthorhombic «-FeO(OH)-NWs in
good agreement with the reference JCPDS card no. 29-0713. The
observed strong XRD peaks (Fig. 2c) indicate the well-
crystallized structure of the prepared o-FeO(OH)-NWs while
the absence of any characteristic peaks corresponding to
impurities, such as Fe, Fe,03;, Fe(OH),, Fe(OH); and/or other
compounds, reveals and proves its high purity. The nanocrystal
size of the prepared a-FeO(OH) particles was estimated to be
about 20 nm based on the Debye-Scherrer formula on the basis
of the full width at half-maximum (FWHM) of the (111) peak.*”

3.2. Derivative spectrophotometry for simultaneous
quantification of CG, RB and DB in ternary systems

The zero-order spectra of dyes exhibit maxima at 461, 543 and
637 nm (Fig. 1a), while the spectrum of their mixture is more
complicated with maxima over the range of 400-600 nm.
Therefore, direct UV-Vis absorption does not seem suitable for
their individual determination in their mixed system. This
challenge could be overcome by using the derivative spectro-
photometric method based on the theory and applications re-
ported in our pervious works.'>**% The first-order derivative
absorption spectra of CG, RB and DB in individual and ternary
solutions containing 6 mg L™ of each dye (Fig. 1b) reveal that
CG, RB and DB could be determined at 411.7, 464.3 and 660 nm,
respectively, where the first-order derivative spectrum of the
other dyes is zero. The calibration equations for the three dyes
were constructed by plotting the absolute values of the first-
order derivative signal (dA/dA) at 411.7, 464.3 and 660 nm for
CG, RB and DB, respectively, against different concentrations of
the three dyes (see Fig. 1c). The concentration of each dye could
be calculated from their respective calibration graphs under the
studied conditions. The amount of each dye was analyzed via
the corresponding calibration curve (R*CG = 0.9895, R°RB =
0.0.9904 and R’DB = 0.9854) at the above-mentioned
wavelengths.

3.3. Experimental design and quadratic model

The 3-factor CCD matrix and experimental results obtained for
the adsorption of the dyes in ternary systems are presented in
Table 1. Based on the experimental design (Table 1), the
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response surface model relating the adsorption efficiency with
independent variables was constructed to fit the experimental
data. The linear model in terms of coded variables approxi-
mated the efficiency of the adsorption process (for R% CG, RB
and DB, respectively) as follows:

Yoo = 248 — 19.5X; — 0.73X> + 19.4X; — 49.4X, + 113 200X —
83.2Xs — 0.18X1 X5 + 0.3X; X5 + 1.8X X4 + 0.3X, X6 — 0.6X>X5 —
0.4X,X4 + 303.7X,X5 + 2.0X, X5 — 72.0X3Xs — 2.5X3 X5 —
2430 X, X5 + 4.0X, X + 448X Xs + 0.2X,2 — 0.17X,> — 0.14X5° +
6.0X,% — 462 300X5> + 7.1X4” (14)

Yrp = —485+ 16.7X| + 25.9X, — 5.2X; + 122.0X, + 140 600X5 —
58.8Xs — 0.3X, X, + 0.2X, X5 — 4.5X, X, + 343.0X, X5 — 0.8 X, X5 —
0.8X,X5 + 0.16X,X, + 112X,X5 — 1.4X,Xg + 0.2X3X4 —
158X3Xs + 3.2X3Xg — 2823X, X5 + 2.4X X, — 1362X5X, +
0.032X,% — 0.3X,7 + 0.021X5% — 2.12X,> + 7.43X,> (15)

Ypp = 164.3 — 158X, — 0.9X, + 14.9X; — 13.4X, + 6207Xs —
64.9Xs — 02X, X> + 02X, X5 + 1.6X, X, + 118X, X5 — 03X, X —
0.63X,X3 + 0.4X, Xy + 228X, X5 + 1.5X, X — 0.2X3 X4 + 47 X3 X5 —
1.7X3Xs — 1868 X4Xs + 4.9X, X, + 244X X + 02X, — 0.2X,° —
0.1X5% + 0.8X,% — 271 500X5> + 4.8X> (16)

where X3, X,, X3, X,, X5 and X, are the terms of the coded levels
for CG, RB and DB concentration, pH, adsorbent mass and
sonication time, respectively.

ANOVA was carried out to justify the adequacy of the models.
The ANOVA results of the second-order response surface model
fitting are given in Table S11 for R% CG, RB and DB. The quality
of the constructed model was evaluated based on the coefficient
of determination (R?), coefficient of variation (CV%), standard
deviation (SD) and also the adequate precision (AP) values. Data
given in Table S1f demonstrate that all the models were
significant at the 5% confidence level, with their P-values being
less than 0.05. The closer the R value to unity and the smaller
the standard deviation, strongly support a more accurate
response being predicted by the model (see Table S27). The
values of the coefficient of determination (R*> = 0.9977, 0.9998
and 0.9984) obtained in the present study for CG, RB and DB
removal were higher than 0.80. A good quality of fitting exper-
imental data to a model is indicated by a coefficient of deter-
mination of at least 0.80. Fig. 3a shows the correlation of
predicted and experimental dye adsorption efficiency. Observed
values correspond to experimental data, and predicted values
were calculated from the regression equation. It can be seen
that there was a consistency between the experimental data and
the predicted results. A high R* value close to 1 demonstrates
good agreement between the calculated and observed results
within the range of experiments, and shows the presence of
desirable and reasonable agreement with adjusted R”. It was
shown that the above models were adequate to predict the CG,
RB and DB within the studied range of variables.** The adequate
precision (AP) ratio of the models varies as 34.83, 137.4 and
44.22 for CG, RB and DB, which is an adequate signal for the
model. AP values higher than 4 are desirable and confirm that
predicted models are navigated by the space defined by the
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CCD.* The coefficient of variance (CV%) is the ratio of the
standard error of the estimate to the mean response value (as
a percentage) and identifies the reproducibility of the model. A
CV% value less than 10% confirms high reproducibility of
experimental data.** According to Table S2,1 the CV% values
obtained for all responses studied are relatively small with none
of them exceeding 4.0%.

3.4. 2D contour plot analysis

The contour graph (Fig. 4a) displays the variation in removal
efficiency based on the increase of initial pH and RB concen-
tration. At low pH values with high proton values, competition
between H' and RB to occupy the reactive sites hinders dye
adsorption. On the other hand, simultaneous protonation of
dye and adsorbent strongly reduces the attractive force and
enhances the repulsive force between them. The adsorbent
functional groups like COOH and OH correspond to AC and O
and OH correspond to FeO(OH) is protonated. In this study, the
removal efficacy increased at higher pH values. This can likely
be attributed to the competition between H" and RB dye being
adsorbed on the Ni-FeO(OH)-NWs-AC. At lower pH values, the
H' dye is able to exclude a significant number of adsorption
sites at Ni-FeO(OH)-NWs-AC from the RB adsorption process.

The removal efficiency increased with the increase of the
adsorbent mass as well as with the increase of the initial DB
concentration (Fig. 4b). Increasing the adsorbent dose provided
greater surface area and availability of more dye binding sites;
hence the rate of dye sorption increased even when the initial
dye concentration remained constant. Increasing the initial
concentration of the dye increases the probability of contact
between dye molecules and Ni-FeO(OH)-NWs-AC particles.
However, removal efficiency was observed to decrease slightly
when the initial dye concentration and adsorbent mass were
increased above some critical values (Fig. 4b). This could be due
to the saturation of available binding sites on the adsorbent due
to the increased dye concentration. Also, the greater adsorbent
dose could create some kind of screening effect hindering the
attachment of dye onto binding sites on the dense layer of
adsorbent particles.

3.5. Optimization of the dye adsorption

Optimization was carried out to investigate the interaction
between the adsorption variables and also to determine the
optimum adsorption conditions for optimal removal of CG, RB
and DB from aqueous solution using the STATISTICA 10.0
software. According to the software optimization step, the
desired goal for each operational condition (CG, RB and DB
concentration, pH, adsorbent mass and sonication time) was
chosen ‘within the range’. The responses (R% CG, RB and DB)
were defined as maxima to achieve the highest performance.
The value of desirability obtained (1.0) shows that the estimated
function may represent the experimental model and desired
conditions. The predicted and experimental results of CG, RB
and DB obtained at optimum conditions (Fig. S1t) were ob-
tained using the following conditions: 10 mg L ™" of CG and RB,
8 mg L™ of DB, pH of 4.0, 0.023 g adsorbent mass and 2 min
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sonication time, to give experimentally removal of 94.56% CG,
99.60% RB and 74.21% DB. It was observed that the experi-
mental values obtained were in good agreement with the values
predicted by the models with relatively small errors (between
0.40% and 0.77% for dye removal). This means that the model
can be used to predict the removal efficiencies of dyes under the
experimental conditions used.

3.6. Neural network training

The required input-output data for network training were ob-
tained from adsorption experiments and were planned through
CCD. The deviations used for selecting the best ANN architec-
ture are the mean square errors (MSE) and absolute fraction of
variance (R?) which can be defined as follows:***
1 & 2
MSE = N Z (|ypred,i - yexp,i|) (17)

i=1

R2 —1- i ((ypred.i _yexp.i) ) (18)

(ypredﬁi - ym)2

where, N is the number of points, ypreq,; is the predicted value
obtained from the neural network model, yeyp,; is the actual
value, and y,, is the average of the actual values.

The Levenberg-Marquardt (LMA) algorithm is a standard
technique used to solve nonlinear least squares problems. This
is one of the most popular methods used in neural network
applications because of its relatively high speed, and because it
is highly recommended as a first choice supervised algorithm,
although it does require more memory than other algorithms.
The theory behind and further details of LMA and ANN can be
found in the literature.*

Hence, the Levenberg-Marquardt back propagation algo-
rithm (LMA) was applied for the network training as the best
algorithm. The optimization of a network is a very important
step in network training that is based on optimization of the
number of neurons in the hidden layer. For this purpose,
different numbers of neurons, in the range of 1-25, were tested
in the hidden layer and it was found that hidden layers with 4
for DB, 5 for RB and 6 for CG were the best, permitting
achievement of good operation parameters with minimum
values of MSE and maximum values of R* (0.0055 and 0.9997 for
CG, 0.0033 and 0.9999 for RB and 0.0046 and 0.9996 for DB,
respectively) (Table S3t). As a result, in this study a three layered
feed forward back propagation neural network (6:(4-6):3) was
used for modeling of the adsorption process.

3.7. Comparison of RSM with ANN

The estimation capabilities of the proposed ANN and RSM
techniques for adsorption efficiency of CG, RB and DB were
evaluated by means of comparing the responses computed from
both methods to the observed data. For this purpose, the
techniques were used to predict the responses at 33 experi-
mental points (CCD). The performance of the constructed ANN
and RSM models were also statistically measured by the coef-
ficient of determination (R*) (eqn (18)), root mean squared error
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(RMSE), mean absolute error (MAE) and absolute average
deviation (AAD) as follows:**

n 2
RMSE = \/Z[l (yl,pred y:,exp) (19)
n
MAE = Z[:l |yi.pred - yi‘exp| (20]
n
1 Yipred — Viex
AADY = | - Al L x 100 21
(}’l ,21:< yi,pred ( ]

where 7 is the number of experimental data, y; preq and y; exp are
the predicted and experimental responses, respectively. R>
measures the percentage of total variation in the response
variable that is explained by least-squares regression. R> must
be closed to 1.0, whereas AAD, which is a direct method for
describing deviations between predicted and experimental
data, must be as small as possible.

Table 2 presents the statistical comparison (i.e. R”>, RMSE,
AAD and MAE) of RSM and ANN models. Generally, both RSM
and ANN models provided good quality predictions in this study
and can be considered to perform well in data fitting and
offered stable responses. However, the ANN model showed
a clear superiority over RSM. This finding is similar to the usual
notion that ANN has the best performance compared with
RSM‘36,44

The goodness-of-fit between the experimental and the pre-
dicted responses given by the ANN and RSM models is shown in
Fig. 3. The distributions of residuals (the difference between
predicted and actual values) for both approaches are shown in
Fig. S2t. The fluctuations of the residuals are relatively small
and regular for ANN compared to RSM. The RSM model shows
greater deviation than the ANN model.

However, there is no vagueness in the RSM model compared
with the ANN approach, because the RSM model presents all of
the relationships between linear, interaction and quadratic
effects. Furthermore, the RSM plays an important role in
decreasing the number of experiments, cost and time. In
addition, RSM optimized the conditions and developed a full
quadratic model for the optimum conditions.

3.8. Adsorption kinetics

The results obtained from five kinetic models, including
pseudo-first and second order, intraparticle diffusion and Elo-
vich models, at various contact times (0.5-8 min) are given in
Table S4.f As can be seen, the pseudo-second order model
generated the best fit (R* > 0.995 for all dyes) of the sorption
kinetic data for the three dye-Ni-FeO(OH)-NWs-AC adsorption
systems. The theoretical geay values agree well with the
experimental ge(exp) values for all data. This implies that the
second order model is in good agreement with experimental
data and can be used to favorably explain the dye adsorption on
Ni-FeO(OH)-NWs-AC. As shown in Table S4,1 the k, values
calculated for RB are higher than the &, values for CG and DB,
suggesting a lower affinity for adsorbent exchange sites.
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Using the intraparticle diffusion model, plots of g, (mg g™ ")
vs. t*% were drawn. The applicability of the intraparticle diffu-
sion model requires that the plot passes through the origin, but
here the plots for the three dyes do not pass through the origin
and so intraparticle diffusion is not the rate controlling step
here.

3.9. Equilibrium isotherms

Various isotherm models have been described in order to obtain
knowledge about the distribution of adsorbate molecules
between the liquid phase and the solid phase before reaching
the equilibrium state. The model that best fits the isotherm data
is therefore the most suitable model to describe the isotherm
behaviour. The Langmuir, Freundlich, Temkin and D-R models
were applied to fit the equilibrium data of the dyes onto Ni-
FeO(OH)-NWs-AC. According to the presented correlation
coefficients in Table 3, the equilibrium data fitted both the
Freundlich and Langmuir expressions. However, the high
correlation coefficient for the Langmuir isotherm (0.989-0.999)
confirmed the applicability of the monolayer sorption model for
the dye/Ni-FeO(OH)-NWs-AC systems. In Table 4the values of
maximum adsorption capacity (Qmax) and contact time are
compared to the values reported for different adsorbents. As can
be seen, the present study is superior to previously reported
literature in terms of higher adsorption capacity and shorter
required time, using a small amount of adsorbent.

4. Conclusion

In this study, ANN and RSM have been successfully used to
study the modeling, optimization and interaction of the vari-
ables for maximum removal percent of ternary dyes using
experimental data based upon CCD. RSM was used to deter-
mine the major factors influencing CG, RB and DB adsorption
efficiency and the interactions between these factors (CG, RB
and DB concentration, pH, adsorbent dosage, and sonication
time), and to optimize the operating variables as well. Regres-
sion analysis showed a good fit of the experimental data to the
second-order polynomial model with coefficient of determina-
tion values of 0.9977, 0.9998 and 0.9984 for CG, RB and DB,
respectively. Under the experimental conditions: 10 mg L™" of
CG and RB, 8 mg L' DB, pH 4.0, adsorbent mass 0.023 gand 2
min sonication time, the highest dye adsorption efficiencies
were achieved as 94.56%, 99.60% and 74.21% for CG, RB and
DB. The removal performance of Ni-FeO(OH)-NWs-AC in the
treatment of ternary dye solutions was successfully predicted by
applying a three layer neural network with 25 neurons in the
hidden layer, and using a back propagation algorithm (LMA).
An analysis of the relationship between the predicted results of
the designed ANN model and the experimental data was also
conducted. The results obtained from the neural model showed
that the values of the determination coefficient (R*) were found
to be 0.9996 for CG, 0.9998 for RB and 0.9991 for DB. The root
mean square error (RMSE), absolute average deviation (AAD),
and mean absolute error (MAE) were used together to compare
the performance of the RSM and ANN models. The ANN model
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was found to have higher predictive capability than the RSM
model. Based on the findings, the present work indicates that
the ANN model is much more accurate in modeling the removal
of CG, RB, and DB dyes in comparison to RSM.

The results gained from this study were well described by the
Langmuir isotherm model. The kinetic data indicated that the
adsorption process was controlled by a pseudo-second-order
equation.
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