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Novel adsorbents, magnetite nanoparticles modified with pectin shell and silica/pectin double shell, were
fabricated and tested for single dye and dye mixture adsorption from water samples. Cationic dyes
methylene blue (MB) and crystal violet (CV) and anionic dyes methyl orange (MO) and Eriochrome black
T (EBT) were employed to assess dye removal efficiency. The influence of pH, amount of adsorbent,
initial dye concentration and contact time was investigated. Results indicated that the optimum pH for
removing cationic dyes was 8.0 and 2.0 for anionic dyes. The kinetic studies showed rapid sorption
dynamics following a second-order kinetic model. Dye adsorption equilibrium data were fitted well to
the Sips isotherm for cationic and anionic dyes. The maximum monolayer capacity, (Gmax) for MB, CV,
EBT and MO was calculated from Sips as 197.18, 180.29, 65.35 and 26.75 mg g™ ! respectively for
magnetite/silica/pectin NPs and 168.72, 140.49, 72.35 and 27.22 mg g* respectively for magnetite/
pectin nanoparticles. For dye mixture adsorption, a new HPLC assay was proposed for quantitation of
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magnetite/pectin NPs showed preferred adsorption to anionic dyes while the magnetite/silica/pectin NPs

DOI: 10.1035/c5ra23452b had more affinity to cationic dyes. Thus, our proposed NPs can be used as cheap and efficient

Published on 28 January 2016. Downloaded on 10/26/2025 12:58:52 AM.

www.rsc.org/advances

1. Introduction

Dyes are one of the most hazardous materials in industrial
effluents." Common dyes include acidic, basic, reactive,
disperse, and direct dyes which usually have an aromatic
structure and azo groups.” Such structures and their degrada-
tion products can cause severe health problems in humans,
since they exhibit high toxicity and potential mutagenic and
carcinogenic effects.>* The colors in wastewater can also
decrease the transparency of water, consume oxygen and elevate
biochemical oxygen demand destroying aquatic life.>® There-
fore, the removal of dyes from industrial effluents has attracted
growing attention in the past decades. Several techniques such
as biological treatment, chemical oxidation, membrane sepa-
ration coagulation/flocculation, adsorption and ion exchange
have been developed.' Among these methods, adsorption is
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adsorbents for removal of cationic and anionic dyes from aqueous solutions.

considered to be simple and highly efficient. A wide range of
materials have been reported for dye removal, including,
zeolite, clay, activated carbon, polymer, eggshell particles, etc.™”

Nonetheless, there are disadvantages associated with such
materials. For instance, zeolites adsorption capacity is poor and
provides low dye removal efficiency.® Activated carbon has some
disadvantages since it only transfers the dyes from the liquid
phase to the solid phase.® Thus, development of new materials
with good adsorption capacity, large surface area and small
diffusion resistance characteristics is still crucial."*

Nanotechnology, as a novel method, offers a class of prom-
ising adsorbents that are ultra-fine with large surface area and
possess magnetic properties to facilitate efficient separation
within a short time by applying an external magnetic field.®
Magnetic nanoparticles have received considerable attention
due to the simple procedure involved in synthesis with low
capital cost compared to commercially available adsorbents.*
The magnetic separation is more efficient than other separation
methods like filtration or centrifugation and provides online
separation of nanoparticles which facilitates the water purifi-
cation process.* Moreover, the magnetic separation has the
advantage of recovering the dye and reusing the nanoparticles
for multiple cycles of adsorption.
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Table 1 Chemical structures of the model dyes in the present study?*~28
Physical characters
Solubility
Dye ITUPAC name Structure Myt logP  pk, (mg L™
CH3
. . A . . \©\N
Methyl orange (Mo)  50dium; 4-{[4(dimethylamino)phenyl] [ 32733 — 3.4 0.2 x 10°
diazenyl]benzenesulfonate : N
|\
0
ONa
i VA
O2N. II ‘I
. . R A OH
Eriochrome F(Iflilhgilengsr?;fokﬁllf %2:6]37%(:3)(}/ ) N 46137 — 6.2,11.55 20 x 10°
black T (EBT) Lyaroxy-2-naphthy ’ Sy : o L
sodium salt
l OH
N
A
[7-(Dimethylamino)phenothiazin-3-ylidene] o 3
Methylene blue (MB) dimethylazanium; chloride \T 7 \T/ 319.85 5.85 3.8 43.6 x 10
Chs o oy
u,c\u/c»(‘
Crystal violet (CV) Tris(4-(dimethylamino)phenyljmethylium 40721 146 531,864 4 x 10°

chloride

The stability of iron oxide nanoparticles, in terms of non-
aggregated colloidal dispersion and non-leaching of iron,
remains a challenge which could be overcome by surface
coating with appropriate coating materials."*** Besides, these
coatings can provide functional groups for interaction with
various types of compounds. For instance, nano magnetites
modified by polyacrylic acid," gum arabic'® and poly glutamic
acid® have been used to remove pollutants.

Pectin present within all higher plant cell walls is a structural
polysaccharide with partially esterified polygalacturonic acid
(PGA)." Pectin is considered a valuable byproduct that can be
obtained from fruit wastes.'® Generally, “fruit wastes” is
a problem to the processing industries and pollution moni-
toring agencies. The recovery of by-products like pectin from
fruit wastes can improve the overall economics of processing
units. Thus, the problem of environmental pollution also can be
reduced.” Pectin can be extracted from different fruit wastes as
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nutmeg rind, passion fruit rind, pomelo peel, banana peel and
citrus peel.*® Pectin is also useful as a thickening agent for
various food products such as sauces, dairy products, flavored
syrups and finds numerous applications in pharmaceutical and
cosmetic preparations.*** Besides, pectin, with its numerous
functional groups such as carboxyl-carboxylate and hydroxyls,
can remove dyes and metal ions.® Hybrid nanomaterials of
pectin and magnetite nanoparticles have been reported.>® These
nanomaterials combine the biosorbent ability of pectin and
magnetic properties of magnetite to remove the pollutants. For
example, the adsorption behavior of pectin-iron oxide magnetic
adsorbent has been investigated for the removal of methylene
blue and Cu metal from aqueous solution.®

In the present work the fruit wastes by-product pectin was
used as the main agent for adsorption of cationic and anionic
dyes. Crystal violet (CV), methylene blue (MB) were used as
examples of cationic dyes while Eriochrome black T (EBT) and
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methyl orange (MO) as models for anionic dyes (physicochem-
ical properties and 2D structures are summarized in Table 1).
We modified the surface of synthesized magnetite nano-
particles (MNPs) by pectin via two methods: (1) one step in situ
synthesis of magnetite-pectin nanoparticles (MP NPs) via co-
precipitation technique** and (2) a two-step fabrication
process including modification with a silica shell (magnetite/
silica nanoparticles, MS NPs) then adsorption of a pectin shell
over the silica shell (magnetite/silica/pectin nanoparticles, MSP
NPs). The novel nano-bioadsorbents; MP NPs and MSP NPs,
were characterized by transmission electron microscopy (TEM),
X-ray diffraction (XRD), Fourier transform infrared (FTIR)
spectroscopy, vibration sample magnetometer (VSM) and zeta
potential. Such novel nano-adsorbents were compared for their
adsorption behavior to reach a high removal efficiency of
cationic and anionic dyes from aqueous solutions. The effect of
various parameters such as contact time, solution pH, adsor-
bent mass and initial dye concentration on the adsorption of
the model dyes onto the novel bio-adsorbents was systemati-
cally studied. Adsorption isotherm, kinetic and mechanism
were also evaluated and the obtained results were compared.
Simultaneous removal of cationic and anionic dyes from
aqueous solutions has also been investigated.

2. Experimental

2.1. Instrumentation

A UV-VIS spectrophotometer model AE-S90-MD form A & E Lab
(UK) with 1 cm matched quartz cells was used for determination
of dyes concentration. HPLC system model 1100 (Agilent
Technologies, USA) with variable wavelength detector and an
auto sampler was used for determination of dye mixtures.

2.2. Reagents and materials

Ferric chloride (FeCls), ferrous sulphate (FeSO,-7H,0), pectin
from the rind of citrus or apple (galacturonic acid = 74.0%) and
tetraethoxysilane (TEOS) were purchased from Fisher Scientific
(USA). Methyl orange (CI 13025, CAS 30065-G25, purity 85%)
and Eriochrome black T (CI 14645, CAS 260320 G25, purity 85%)
were supplied from S D Fine-Chem Ltd. (India). Mehtylene blue
(CI 52015, CAS 61-73-4, purity 85%) was supplied from Muby
chemicals (India) and crystal violet (CI 42535, CAS 548-62-9,
purity 85%) was supplied from Lobachemie (India). HPLC grade
acetonitrile and methanol were purchased from Fisher scien-
tific (UK). Ammonium acetate was purchased from Sigma
Aldrich (Germany). All other chemicals and reagents used were
of analytical grade or higher. Ultra-pure water was obtained
using a MilliQ UF-Plus system (Millipore, Eschborn, Germany)
with a resistivity of at least 18.2 MQ cm at 25 °C and TOC value
below 5 ppb.

2.3. Analysis techniques

2.3.1. Spectrophotometric method. Standard solutions of
each dye (10 mg L™ ") were prepared in water (CV, MB, and MO)
or in 0.1 N NaOH in the case of EBT. Solutions were scanned in
the range of 400-700 nm and the wavelength of maximum
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absorption for each dye was determined. Accurate volumes of
each of CV, MB, EBT, and MO stock solution were transferred
into 25 mL volumetric flasks and diluted to volume with the
corresponding solvent. Calibration curve for each compound
was obtained by plotting absorbance at the A, of each dye
against concentration. Various assay validation parameters
were then calculated according to ICH guidelines.”™*

2.3.2. Chromatographic method

Optimization and system suitability. HPLC chromatographic
separation was achieved using a Thermo electron corporation
Betasil C8 column (250 x 4.6 mm, 5 pm). Gradient elution
using a mobile phase: (A) acetonitrile and (B) ammonium
acetate buffer, pH 6.8 was achieved as follows: 0.0-5.5 min (40%
A to 60% B, 1 mL min~ "), 5.5-6.0 min (65% A to 35% B, 2
mL min '), 6.0-7.0 min (85% A to 15% B, 2 mL min '), 7.0-9.0
min (79% A to 21% B, 2 mL min '), 9.0-11.0 min (60% A to 40%
B, 2 mL min ') and 11.0-13.0 min (40% A to 60%, 1 mL min ).
Analyses were performed at ambient temperature, detection
was carried out at 520 nm and the injection volume was 20 pL.

Calibration and validation. Accurately measured aliquots of
working standard solutions equivalent to (50-250 mg L") of
each dye were separately transferred into a set of 25 mL volu-
metric flasks and then completed to volume with (1 : 1 meth-
anol : ammonium acetate buffer; pH 6.8). Analysis was carried
out as described and the calibration curve for each compound
was obtained by plotting area under the peak against concen-
tration. Assay validation was carried out as per ICH
guidelines.>**

2.4. Preparation of modified magnetite nanoparticles

2.4.1. Synthesis of core-shell MP NPs via in situ co-
precipitation. The synthesis of core-shell MP NPs was per-
formed with the modification of the previous literatures.”*** The
modified method involves the preparation of pectin solutions of
different concentrations (0.3, 0.5, 0.7 and 1.0% w/v) by dis-
solving the corresponding masses in 250 mL distilled water, in
a rounded bottom flask. The prepared solutions were then left
under continuous stirring for 24 h at room temperature. A
50 mL solution of a 2 : 1 molar ratio of ferric and ferrous ions
was added drop wise into the pectin solution under vigorous
mechanical stirring. The volume of solution was maintained at
300 mL and stirred for an additional 20 min. The ammonia
solution (33 wt%) was then added drop wise till the solution
became completely black indicating the formation of magne-
tite. The mixture was stirred for another 30 min and the black
precipitate was collected, washed with distilled water, dried in
the oven at 90 °C, and grinded with mortar.

2.4.2. Preparation of double shell MSP NPs

Preparation of MNPs via co-precipitation. The chemical
co-precipitation method was employed to synthesize the MNPs.
FeSO,-7H,0 and FeCl; (molar ratio, 1:2) were dissolved in
20 mL distilled water and stirred for 20 min. NaOH solution
(30 g%) was added drop wise under vigorous stirring until
a dark colored precipitate was formed. The solution was then
stirred for another 20 min under heating at 70 °C until the dark
precipitate turned black. The particles were cooled to room
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temperature, magnetically decanted and washed several times
with water.

Preparation of core-shell MS NPs. Following Stober
process,*?>* a suspension of the synthesized magnetic nano-
particles (=1.00 g) was diluted by a mixture of ethanol (80 mL)
and water (18.5 mL). After addition of ammonia solution
(0.5 mL, 33 wt%), TEOS (1 mL) was added to the reaction
solution and mechanically stirred at 25 °C for 16 h. Silica was
formed on the surface of magnetite nanoparticles through
hydrolysis and condensation of TEOS. The formed MS NPs were
then washed three times with deionized water and ethanol
using external magnetic decantation.

Preparation of double shell MSP NPs. Pectin solutions of
different concentrations (0.3, 0.5, 0.7 and 1% w/v) were
prepared by dissolving 0.3 g, 0.5 g, 0.7 g and 1.0 g of pectin in
75 mL distilled water. The prepared solutions were then left
under continuous stirring for 24 h at room temperature. Pectin
solution was then added drop wise to a 25 mL suspension of the
synthesized silica coated magnetic nanoparticles (=1.00 g) and
left stirring for 24 h. The mixture was collected by a permanent
magnet, washed with distilled water and dried in the oven at
60 °C for 5 h.

2.5. Single dye adsorption experiments

2.5.1. Experimental design. Preliminary studies were
carried out to determine the contact time required to reach
equilibrium. Aliquots of 2 g L™" of either MP NPs (0.5 w/v%
pectin) or MSP NPs (0.5 w/v% pectin) were added into 50 mL of
the dyes solutions of initial concentration (100 mg L") at
neutral pH and shaken at 25 °C with a speed of 240 rpm. After
defined time intervals, samples were removed and the absor-
bance of dyes left in the supernatant solutions after magnetic
separation were determined by using UV-VIS spectrophotom-
etry as described above.

The influence of pH on model dye removal was investigated
using 100 mg L' of dyes solutions over pH range of 2.0-8.0.
The pH was adjusted by adding aqueous solutions of 0.1
mol L™! HClI or 0.1 mol ™" NaOH. To each of the pH-adjusted
dye solution, 2 g L ™" of the adsorbents were added and shaken
for 120 min at 25 °C.

To study the effect of adsorbents concentration 0.5, 1.0, 2.0,
3.0, 4.0 and 5.0 g L " of both adsorbents were added to 50 mL
dye solutions (100 mg L™ ') with contact time of 120 min. The pH
was adjusted at pH 2.0 for anionic dyes and pH 8.0 for cationic
dyes. Adsorption capacities were then determined for each
adsorbent concentration to determine the optimal concentra-
tion of adsorbent that cause complete dye removal.

2.5.2. Calculation of adsorption isotherms. Equilibrium
study was conducted by shaking various initial model dye
concentrations ranging between 10 and 200 mg L™" separately
with 0.5 g L' of both types of adsorbents (MP NPs and MSP
NPs) for 120 min at pH 2.0 for anionic dyes and pH 8.0 for
cationic dyes. After equilibrium, the amount of dye adsorbed
(ge, mg g7') was estimated and plotted against equilibrium
concentration (C., mg L™'). For plotting equilibrium curves,
equilibrium concentration (C.) was used instead of bulk
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concentration (C,) as isotherm models involve C. and ¢, as the
X- and Y-axes coordinates, respectively.

2.5.3. Calculation of kinetics of adsorption. Kinetic study
was performed by shaking dye solutions at 10, 50, 100, 150 and
200 mg L~ " separately with 0.5 g ™" of both types of adsorbents
(MP NPs and MSP NPs) for different time intervals (10-
120 min). After each time interval, the concentration of dye in
solution was determined and the amount of dye adsorbed at
each time interval (g, mg g~ ') was plotted against time (¢, min)
for kinetic modeling.

2.6. Desorption experiment

Recovery of model dyes (MB and EBT) from dye-loaded MP NPs
and dye-loaded MSP NPs was performed by initially conducting
adsorption experiments with a mixture of 100 mg L™" dyes
solutions and 2 g L™" of both adsorbents for 120 min. After
equilibrium, the dye-loaded NPs were magnetically separated
and the supernatant was measured for dye concentration to
estimate the amount of dye adsorbed on adsorbent NPs. The
dye-loaded NPs were then shaken separately with 50 mL of 5%
(v/v) methanol and acetic acid (96%) for 1 h in case of cationic
dye (MB) and 50 mL methanol and 50 mL of 5% (v/v) methanol
and NaOH in case anionic dye (EBT). The adsorbent was
collected by a magnet and reused for adsorption again. The
supernatant solutions were analyzed by UV-VIS spectropho-
tometry to determine the amount of released dye. The cycles of
adsorption-desorption processes were successively conducted
three times.

2.7. Dye mixture adsorption experiments

Adsorption experiments were carried out in a batch mode by
taking 50 mL of the model dyes (MO, EBT, MB and CV) solution
mixture containing 165 mg L' of each dye in 250 mL Erlen-
meyer flask. The influence of pH on model dyes removal was
investigated over a pH range (2-8) to investigate the efficiency of
MP NPs and MSP NPs for selective adsorption of cationic (MB
and CV) and anionic (MO and EBT) dyes. The pH was adjusted
by adding aqueous solutions of 0.1 mol ™' HCl or 0.1 mol L™*
NaOH to the model dyes working solutions. Then to each of the
pH-adjusted dyes mixture solutions, 2 g L~ " of MP and MSP NPs
were added separately and shaken at 25 °C with a speed of
240 rpm. After 2 h samples were removed and the concentration
of dyes left in the supernatant solutions after magnetic sepa-
ration were determined using the HPLC proposed assay. A
quantitative determination of dye concentration was achieved
by using the linear regression equations, obtained from the
calibration curve prepared with a range of dye concentration
(50-250 mg L™ ).

2.8. Data analyses and modeling

The amount of dye adsorbed at time ¢, g, and at equilibrium, g,
was calculated using the mass balance equation g, = (C, — C/)
(V m ™), where C, and C, (mg L") are the initial and final dye
concentrations, respectively, V (L) is the volume of the dye
solution and m (g) is the mass of adsorbent. When ¢ is equal to
the equilibrium time, that is C; = Ce, q; = ¢., then g. can be

This journal is © The Royal Society of Chemistry 2016
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calculated using the same equation as given above. The amount
of dyes removed at various solution pH was expressed in
percentage (R, %) and calculated using the equation

R = 100(Cy — C)ICo

2.9. Statistical analysis

Since error functions are required to assess the kinetic and
isotherm models describing the experimental results in a best
possible way, the R* and chi-square tests are performed to find
out the suitability of various kinetic and isotherm models in the
present study.*

N

2 (qexp - qcal)z
A e I

i qcal

where, ge exp and e ca1 (Mg g~ ') are experimental and calculated
dye concentration at equilibrium, respectively and ge cal
(mg g ') is average value of ge ca-

3. Results and discussion
3.1. Analysis techniques

3.1.1. Spectrophotometric assay. The wavelength of
maximum absorption (A,.x) was determined for each dye (MB
663 nm, CV 585 nm, MO 465 nm and EBT 531 nm). The method
was validated according to ICH Q2B guidelines for validation of
analytical procedures as regards in linearity, accuracy, precision
(within and between days), limit of detection (LOD), and limit of
quantification (LOQ).>*** The validation results are summa-
rized in Table 2. In all cases, Beer's law plots were linear with
very small intercepts and good correlation coefficients (from
0.9998 to 0.9999). Results indicated the suitability of the assay
for accurate determination of the studied dyes. The overlap of
the absorption spectra of the four dyes limited the usefulness of
this assay for determination of the concentration of the studied
dyes when in mixture.

3.1.2. Chromatographic assay. In this experiment, RP-
HPLC with gradient elution based on ammonium acetate
buffer pH 6.8-acetonitrile was found optimum for the
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determination of the four dyes in their mixtures. The effect of
pH of the mobile phase was studied at acidic pH range; pH 3.5
and 4.5 and poor resolution and peak shape was observed. Flow
rate was adjusted at 1 mL min~" to obtain good resolution for
MO, EBT and MB then increased to 2 mL min~" to achieve
minimum retention times for CV. The VIS detector was operated
at 520 nm where appropriate detection sensitivity was achieved.

The retention times were 4.4, 5.1, 5.6 and (7.9, 8.6 and 9.2)
min for MO, EBT, MB and CV respectively; as shown in Fig. S1
[a-d].T Good resolution and absence of interference between
the dyes being analyzed are shown in Fig. 1.

Peak purity test showed that the peaks having retention
times at (7.9, 8.6 and 9.2) min all belong to crystal violet and
most probably to its demethylated forms. According to the study
of Confortin et al. demethylation causes a blue shift in the
absorption spectra and a decrease in retention time.*® Thus it is
expected that the peaks at 7.9, 8.6 and 9.2 min are for crystal
violet, mono-demethylated crystal violet and di-demethylated
crystal violet respectively. In addition, the chromatograms of
the dyes in the sample solutions were found identical to the
chromatograms received by the standard solutions at the
wavelength applied.

System suitability parameters were calculated according to
The United States Pharmacopoeia and National Formula and
The WHO International Pharmacopoeia,®** and separation
efficiency was demonstrated (Table 3). Method validation was
carried out according to ICH guidelines.”*"*' Regression equa-
tion and validation parameters are summarized in Table 4.

3.2. Characterization of the prepared nanoparticles

3.2.1. TEM. The NPs sizes, pectin and silica coating nature
and dispersion of magnetite particle within pectin matrix were
examined using Tecani G20, FEI transmission electron micro-
scope (USA). Fig. 2[a] shows the TEM image for pure MNPs
which seem to be aggregated due to its dipole-dipole interac-
tion. After coating with silica, the MS NPs had good dispersion
due to the repulsion of magnetite particles as shown in Fig. 2[b].
The pure MNPs appear to be almost spherical in shape (ranging
from 10 to 20 nm in diameter) and had an overall mean

Table 2 Spectrophotometric method validation for the determination of laboratory prepared standards of model dyes

Item MO EBT MB Ccv
Wavelength of detection 465 nm 531 nm 663 nm 585 nm
Range of linearity 1.5-30 pg mL ™" 3-30 pg mL " 0.75-12 pg mL ™" 1.5-21 pg mL ™"

Regression equation A =0.0723C — 0.0172

A = 0.0279C + 0.0024

A = 0.1754C + 0.0575 A = 0.1053C + 0.0122

Regression coefficient () 0.9999 0.9999 0.9999 0.9998

LOD (ug mL™) 0.22 0.55 0.12 0.21

LOQ (ug mL™Y) 0.65 1.67 0.36 0.63

SD of slope-Sy, 0.0004 0.0002 0.0008 0.0008

SD of intercept-S, 0.008 0.003 0.005 0.01
Accuracy mean + SD 99.76 £ 0.56 99.59 + 0.87 100.71 £ 0.79 100.14 £+ 0.94
Repeatability (% RSD, n = 6) 0.51 1.28 0.44 0.77
Precision

Intraday % RSD (n = 3) 0.17-0.23 0.09-0.1 0.07-1.03 0.03-0.59
Interday % RSD (n = 3) 0.14-1.01 0.64-1.44 0.59-1.02 0.43-1.2

This journal is © The Royal Society of Chemistry 2016
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diameter of 15 + 4 nm. After silica coating onto the MNPs,
particles had an overall mean diameter of 20 £+ 4 nm indicating
the formation of silica shell of around 2 nm thickness over the
MNPs. Fig. 2[c] illustrates the binding of the 0.5 w/v% pectin
onto MS NPs, the particles had an overall mean diameter of
25 + 5 nm. This indicates that the surface of particles somehow
changed after coating with pectin due to formation of double
shell layer over MNPs with a total shell thickness of 5 nm.
However, the pectin matrix seems to have trapped more than
one magnetic core in MSP NPs (1 w/v%) as shown in Fig. 2[d].
Such observation suggests that increasing the concentration of
pectin above 0.5 w/v% may cause re-aggregation of particles
within the pectin matrix.

TEM analysis of the MP NPs demonstrates that the presence
of pectin during the formation of MNPs increases the size of
magnetite nanoparticles. However, to a great extent pectin
prevented particle aggregation due to the dispersion of
magnetite within pectin matrix. Fig. 2[e] shows the MP (0.5
w/v%) nanoparticles with a diameter range of 200-500 nm. On
the other hand, Fig. 2[f] illustrates the MP NPs (1 w/v%) ranging
from 50 to 100 nm in diameter. Such difference in size of the
coated samples indicates that the coating material has an effect
on the size of particles which comes in agreement with what was
mentioned in previous studies.*® Having a close look at Fig. 2[e]
and [f], the light atoms of carbon, hydrogen and oxygen, which
constitute the polysaccharide structure of pectin, correspond to
brightest areas. The heavy Fe atom allows a better contrast and
corresponds to darkest areas which are scattered as dots within
the pectin matrix. In addition, these TEM images show some
level of aggregation and non-uniform coating of the MNPs.
Nevertheless, there is some improvement in the dispersion of
iron oxide particles in pectin matrix than the pure magnetite
nanoparticles. Thus it can be concluded that both types of
nanoparticles enhanced the dispersion of the MNPs yet the

MO
EBT

754

§ A

Absorbance (mAU)
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control of particles size in case of MSP NPs was better than that
of MP NPs.

3.2.2. XRD. XRD measurements were performed in
a Rigaku model Geigerflex apparatus using Cuka radiation from
10 to 70° (26) at a scan rate of 4° min " and silicon as an external
standard. The MNPs, synthesized by co-precipitation of Fe**
and Fe*" ions, were confirmed from XRD measurements with
diffraction peaks at (22 0),(311),(400),(422),(511), and
(4 4 0) by comparison with Joint Committee on Powder
Diffraction Standards (JCPDS card, file No. 00-019-0629), which
are indexed to the cubic spinel phase of magnetite. As shown in
Fig. 3, S2 and S3,7 XRD peaks corresponding to these planes
were also recorded for MP NPs and MSP NPs. Thus, these results
indicate that the modification of magnetite nanoparticles by
pectin and silica have not changed the crystal structure of
nanoparticles. Nevertheless, in the XRD pattern of MP NPs (1
w/v%) (Fig. S27), extra peaks were observed which suggests the
presence of another form of iron oxide (preferably goethite
(JCPDS card, file No. 04-015-8202)) as a result of using pectin in
increased concentrations. The silica coating was also confirmed
by the presence of diffraction peaks at (0 1 1) which is charac-
teristic for silicon oxide (JCPDS card, file No. 01-075-3165).

The intensity of the peaks corresponding to the surface
functional groups was found to be reduced upon using pectin
and silica. This reduction for MSP NPs is more than that of MP
NPs due to the double shell property of the former. The crystal
sizes of the hybrid NPs were also determined from the XRD
pattern by using Scherrer's equation;®

R
" Bcosf

where D is the average crystalline diameter, k is Scherrer
constant (0.89), A the X-ray wavelength (0.15405 nm), 8 the peak
width of half-maximum, and 6 is the Bragg diffraction angle.

(—CV—

Y T
n 2 4

-1

10 12

Time (min)

Fig. 1 HPLC chromatogram of model dyes: methyl orange (MO), Eriochrome black T (EBT), methylene blue (MB) and crystal violet (CV).
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Table 3 System suitability tests for HPLC method for the simultaneous determination of model dyes (MO, EBT, MB and CV) in their ternary

mixture
Obtained value
Parameters MO EBT MB CvV Reference value®”**
Retention time () 4.43 5.08 5.64 7.90
Symmetry factor (Ag) 1 1.1 1.5 1.5 T=2
Theoretical plates number (N) 9151 22 062 5650 46 640 N = 2000
Capacity factor (k) 1 1.3 1.6 2.6 1-10 acceptable
Resolution (Ry) 2.38 1.51 5.97 — Ry = 1.5
Selectivity factor () 1.29 1.20 1.66 — a>1

The average crystal sizes were found to decrease with increase in
silica and pectin concentrations. It can also be observed that the
average crystal size of the MP NPs (8 nm for MP (0.5 w/v%) and
5 nm for MP (1 w/v%)) is slightly larger than the MSP NPs;
5.5 nm for MP (0.5 w/v%) and 4.6 nm for MP (1 w/v%). This can
be attributed to the presence of silica shell which prevented the
aggregation of particles causing additional decrease in crystal
size as supported by the difference in crystal size of MS NPs
(6 nm) and pure MNPs (10 nm). Such results come in agreement
with those found in the TEM images.

3.2.3. FTIR. Infrared spectra were collected to investigate if
pectin and silica were bound to magnetite nanoparticles.
Samples were compacted with KBr (approximately 1%) and
analyzed in transmission mode in a Perkin Elmer Spectrum GX
spectrophotometer. In the FTIR spectrum of the pure pectin
sample (Fig. 4[a]), the peaks at 3445 cm ' and 2932 cm™*
represent secondary hydroxyl groups and carboxylic hydroxyl
groups, respectively. Also, the peak at 1751 cm™ " is a charac-
teristic peak of pectin (representing the carbonyl of the esteri-
fied pendant group). The intense peak at 1014 cm ™" arises from
the glycosidic bonds linking two galacturonic sugar units.*
Comparing Fig. 4[b] for pure MNPs to Fig. 4[d] for MP NPs (0.5,
w/v% pectin) and Fig. S47 for MP NPs (0.3, 0.7 and 1 w/v%
pectin) many additional peaks were observed after pectin
binding to MNPs, whereas few peaks appeared in MNPs without
pectin coating, thus elucidating the successful binding of pectin
on MNPs. The appearance of broad peaks at 3374-3431 cm ™"

was attributed to the O-H stretching vibrations*® and the peaks
at 564-611 cm ' in both MNPs and MP NPs were resulted from
the stretching vibration of Fe-O-Fe in magnetite.*' For MP NPs
alone, the peak at 1732-1739 cm™ ' was assigned to the C-O
stretches in free carboxylic acid.*> The peaks 1401-1403 cm ™' is
caused by asymmetric and symmetric stretching vibrations of
carboxylic acids in ionic form (COO-),** and the peak at 1093-
1100 cm ™" indicated the stretching vibration of C-OH of alco-
holic groups and carboxylic acids. The bands at 1016-
1022 cm ™" are due to the vibrations associated with the skeletal
rings of the sugar monomers of pectin.*” Thus, such findings
confirm that pectin strongly binds both iron(ir) and iron(u) ions
through a COO™ linkage.**

The characteristic vibration bands of SiO, as listed in liter-
ature are mainly: ,4(Si-O-Si) at 1200 cm™* and 1075 cm ™%,
v,5(Si-OH) at 970 cm ™ *; v(Si-0-Si) at 795 cm ™ *; »(Si-0-Si) from
cyclic tetramers at 540 cm ™' and 6(Si-O-Si) at 460 cm™ .*
Noticeably, in Fig. 4[c] representing MS NPs, the absorption of
SiO, was confirmed by the shift of the v,4(Si-OH) peak at
1037 cm ™! and Si-O-Si bond shift at 889 cm ™" indicating that
iron ions might be bonded to silicate skeleton through O-Si-O-
Fe-O-Si-O linkage.****** (Si-OH) and Si-O-Si peaks also
appeared in the MSP NPs in the range 1044-1055 cm ™" and 867~
889 cm ' respectively. Such findings illustrate the specific
interactions between MNPs and silica which can be covalent,
through Si-O-Fe bond formation; electrostatic, between nega-
tively charged Si-O terminal ligands and positively charged

Table 4 HPLC Method validation for the determination of laboratory prepared standards of model dyes

Item MO EBT MB CvV
Retention time 7.90 5.64 5.08 4.43
Wavelength of detection 520 nm 520 nm 520 nm 520 nm

Range of linearity
Regression equation

50-250 pg mL "
A =14.239C + 8.3887

50-250 pg mL "
A = 18.502C + 8.6695

Regression coefficient () 0.9997 0.9997

LOD (ug mL™) 2.47 1.70

LOQ (ug mL ™) 7.47 5.14

SD of slope-Sy, 0.114 0.163

SD of intercept-S, 18.960 27.545
Accuracy mean + SD 99.62 + 1.03 100.72 + 1.16
Repeatability (% RSD, n = 6) 0.75 0.51
Precision

Intraday % RSD (n = 3) 0.07-0.16 0.22-1.43
Interday % RSD (n = 3) 1.08-1.53 0.4-1.98

This journal is © The Royal Society of Chemistry 2016

50-250 pg mL ™"

A =11.702C + 23.923
0.9995

2.80

8.47

0.129

21.517

101.04 + 0.69

1.2

0.99-1.34
0.82-1.34

50-250 pg mL ™"

A = 39.749C + 65.485
1

3.22

9.76

0.106

17.636

101.12 + 0.89

1.38

0.3-1.02
0.65-1.55
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groups on the particle surface; or hydrogen-bond interactions
between hydration layers of silanol groups and the particle
surface.®

Furthermore, there was a disappearance of the peaks 1014
and 1095 cm ™" from the MSP NPs spectra (Fig. 4[e] for 0.5 w/v%
pectin, and Fig. S5t for 0.3, 0.7 and 1 w/v% pectin) which
correspond to the vibrations associated with the skeletal rings of
the sugar monomers of pectin and C-OH of alcoholic groups
respectively.®* Such finding can be attributed to the overlapping
of OH groups of sugar monomers with the Si-O band of the silica
stabilization.’>** The appearance of peaks at 1737-1739 cm '
and 1402-1408 cm ™" assigned to the stretching vibrations of C-O
and carboxylic acids in ionic form (COO™) respectively, indicates
the successful binding of pectin onto the MS NPs.*>*

3.2.4. Magnetic properties. The magnetic properties were
measured using Princeton EG and G Applied Research VSM,
Model 155. The magnetic behavior of the MP NPs 0.5 w/v%
(Fig. 5[c] and S6+ for 0.3, 0.7 and 1 w/v% pectin) and MSP NPs

——— 50 nm [— T

Fig.2 TEM image of; [a] MNPs, [b] MS NPs, [c] MSP NPs (0.5 w/v%), [d]
MSP NPs (1 w/v%), [el MP NPs (0.5 w/v%), [fl MP NPs (1 w/v%).
Magnetite Nanoparticles: MNPs; Magnetite/Silica Nanoparticles: MS
NPs; Magnetite/Pectin Nanoparticles: MP NPs and Magnetite/Silica/
Pectin Nanoparticles: MSP NPs.
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0.5 w/v% pectin (Fig. 5[d] and S77 for 0.3, 0.7 and 1 w/v% pectin)
was studied by recording magnetization (M) against applied
magnetic field (G) at room temperature using VSM. The M-G
curve of the coated NPs exhibited negligible coercivity and
remanence magnetization and was similar to that of the as-
synthesized Fe;O, nanoparticles. This phenomenon was typi-
cally due to superparamagnetism, attributed to magnetite
nanoparticles.*® The saturation magnetization (M;) was found
to be 38.7 emu g~ for magnetite and reached 24.4 emu g * for
MSP NPs (1 w/v%) and 5.03 emu g~ for MP (1 w/v%) NPs.

Notably, the saturation magnetization measured in most of
our coated NPs was acceptable for potential magnetic separa-
tion because M of 16.3 emu g ' was sufficient for magnetic
separation with a conventional permanent magnet.*” Compared
with MNPs, the saturation magnetization decreased in both
types of coated NPs which could be due to the formation of
magnetic dead layer by non-magnetic material (pectin) at the
domain boundary wall of Fe;O, NPs.*® Nevertheless, MSP NPs
(0.3 w/v% and 0.5 w/v%) showed a greater decrease in saturation
magnetization than MP NPs (0.3 w/v% and 0.5 w/v%). Such
decrease could be related to the formation of an additional non-
magnetic layer of silica in MSP NPs.

It is also worth mentioning that the saturation magnetiza-
tion of coated samples decreased with increasing pectin
concentration. Such result can be attributed to the decrease in
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Fig.3 XRD pattern of; [al MNPs, [b] MS NPs, [c] MP (0.5 w/v%) NPs, and
[d] MSP (0.5 w/v%) NPs. Magnetite Nanoparticles: MNPs; Magnetite/
Silica Nanoparticles: MS NPs; Magnetite/Pectin Nanoparticles: MP NPs
and Magnetite/Silica/Pectin Nanoparticles: MSP NPs.

This journal is © The Royal Society of Chemistry 2016


https://doi.org/10.1039/c5ra23452b

Published on 28 January 2016. Downloaded on 10/26/2025 12:58:52 AM.

Paper
h P = N\ ’,/ :If “\\'/o\
. y \
B . -
— \J\,/j\/\
- o X\/’—’/’—W/_//; - § \\
o : 3 == \\
e b
S ;./\
b
C
2 g
- &
- e v
s AN
P / \,
}\\///4 ﬂ/\ﬂw‘l\}'ﬁ’\/) )
& R
3445 & & 3 E3
— T T T T T - T T T T T 71
4000 3500 3000 2500 2000 1500 1000 500

Wavenumber [cm-1]

Fig. 4 FTIR data for; [a] pure pectin, [b] MNPs, [c] MS NPs, [d] MP
(0.5 w/v%) NPs pectin, and [e] MSP (0.5 w/v%) NPs. Magnetite Nano-
particles: MNPs; Magnetite/Silica Nanoparticles: MS NPs; Magnetite/
Pectin Nanoparticles: MP NPs and Magnetite/Silica/Pectin Nano-
particles: MSP NPs.

the amount of MNPs for the same volume of measured samples
and thus affect their total magnetic moment. However, despite
the increase in pectin concentration the MSP was able to
maintain a favorable range of M values than the MP NPs. A
significant decrease in the M; of MP NPs (0.7 w/v% and 1 w/v%)
reaching 12 and 5 emu g~ * respectively was observed and could
be due to the formation of goethite phase in the NPs which has
decreased M, than that of magnetite.*®

3.2.5. Zeta potential. It is well known that the surface
charge is one of the dominant factors in deciding the overall
adsorption capacity of any adsorbent.**° Surface charge of
samples was studied using a Zetasizer Nano ZS, from Malvern
Instruments (UK) at neutral pH. Magnetite being an amphoteric
solid, can develop positive and negative charges respectively,
due to protonation as (FeOH + H* — FeOH>") and deprotona-
tion (FeOH + H' — FeO~ + H') of FeOH sites generated on
surface of magnetite when dispersed in water.”* Hence it is
important to determine the point of zero charge (pHzpc) of the
modified MNPs so that nature of charge on their surface can be
predicted at a given pH. As shown in Fig. 6 the surface charge of
magnetite prepared in the absence of the coating agent was
negative (—15.1 mV) which implies the presence of hydroxyl
ions at the surface of the Fe;0, particles. MP NPs of 0.5 and 1
w/v% also had negative values (—18 and —19.1 mV) respectively
which come in agreement with the FT-IR analysis revealing the
COO-Fe linkage. The difference in potential values of 0.5 w/v%
and 1 w/v% MP NPs samples can be attributed to the variation

This journal is © The Royal Society of Chemistry 2016
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in pectin concentration. Thus, the polymer coat concentration
can have an effect on surface properties of these hybrid particles
which comes in accord with literature.>” The higher negative
potential value for the 1 w/v% pectin sample indicates more
complete coating of iron surface cations through O-Fe
linkage.** Similar results were observed with MSP NPs as the
1 w/v% pectin shell showed higher potential value (—26.2 mV)
than the 0.5 w/v% shell (—22.1 mV). Noticeably, the variation in
the zeta potential values affects the stability of the nano-
suspensions. As a rule of thumb, suspensions with zeta poten-
tial above 30 mV (absolute value) are physically stable.
Suspensions with a potential above 60 mV show excellent
stability. Suspensions below 20 mV are of limited stability,
below 5 mV they undergo pronounced aggregation.*® Thus our
MSP NPs show better stability in suspensions at neutral pH
than MP NPs.

The pHzpc of MP NPs and MSP NPs is found to be 2.2 and 2.5
respectively as illustrated in Fig. 6[b], which compares well with
those reported previously for magnetite NPs coated with
pectin.®** Thus, the surface both types of adsorbents will be
either positively or negatively charged at pH < 2.5 or pH > 2.5,
respectively, which entails the advantage of removal of anionic
or cationic dyes from water via adsorption at different pH levels.

3.3. Single dye adsorption experiments

3.3.1. Effect of contact time. The effect of contact time on
the adsorption of model dyes; CV as an example of cationic dyes
and EBT as an example of anionic dyes was studied to deter-
mine the time taken by 2 g L™' MSP and MP NPs to remove the
studied dyes (100 mg L") from solutions at natural pH. The
adsorption capacity results of MSP NPs and MP NPs are shown
in Fig. 7[a] and [b] respectively. Within the first 60 min there was
a significant increase in the adsorption capacity of NPs. Further
increase in the contact time was accompanied by slow increase

40 a
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Fig. 5 Hysteresis loop of NPs of; [a] MNPs, [b] MS NPs, [c] MP NPs
(0.5 w/v%) pectin, and [d] MSP NPs (0.5 w/v%) pectin. Magnetite
Nanoparticles: MNPs; Magnetite/Silica Nanoparticles: MS NPs;
Magnetite/Pectin Nanoparticles: MP NPs and Magnetite/Silica/Pectin
Nanoparticles: MSP NPs.
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Fig. 6 Zeta potential of the nanoparticles; [a] at neutral pH and [b] at different pH.

in the adsorption capacity of NPs. The MSP NPs showed an
adsorption capacity of 33.6 mg g~ " for CV and 12 mg g~ ' for
EBT, on the other hand the MP NPs had an adsorption capacity
of 30.7 mg g~ for CV and 16.2 mg g~ for EBT after 120 min.
The experiment time was extended to 150 min and it was
observed that the adsorption of dyes on the NPs reached equi-
librium after 120 min. This may indicate that the adsorption
starts very fast on the external surface followed by a slower
adsorption on the internal surface of the nano-composites.
Agitation time of 120 min was selected for further works.
3.3.2. Effect of pH. The effect of pH in the range 2-8 on the
removal of the model dyes (MB, CV, EBT and MO) was investi-
gated with initial dye concentration of 100 mg L™" each and 2
gL~ adsorbents mass. As Fig. 8[a] and [b] show, for the cationic
dyes (MB and CV) the adsorption was remarkably decreased in
pH 2.0. Low pH values (pH < 3.0) were unfavorable for dye
adsorption by MP NPs and MSP NPs because of the presence of
an excess of H' ions that compete with dye cations for the
adsorption sites (COO~ and OH) groups. The capacity of dye
adsorption for MB and CV increases with increasing the solu-
tion pH from 2 to 8, reaching its maximum at 8. The increase in
the amount of adsorbed dye when increasing the pH value
suggests that the electrostatic interactions between the -COO-

'y
o
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and OH present in pectin and the positively charged cationic
dyes contribute to the adsorption process.**

For the anionic dyes (MO and EBT), as observed in Fig. 8[a]
and [b], the adsorption is high in acidic medium and decreases
with the increase in solution pH. This can be attributed to the
fact that as the pH is lowered, the hydroxyl and carboxylic
groups of pectin are protonated and the overall surface charge
on the NPs will become positive. Such result will promote
reaction with EBT and MO as anionic dyes through electrostatic
forces of attraction.

3.3.3. Effect of adsorbent mass. The effect of the adsorbent
mass usually determines the solid adsorbent's capacity for
a given initial concentration of adsorbate in a solution. Fig. 9[a]
and [b] show the effect of the MSP and MP NPs mass on the
adsorption of the model dyes from the aqueous solutions
respectively. It is clear from the figures that the % of model dyes
removed increased gradually as the nanoparticles mass
increased. The removal of cationic dyes; MB and CV reached 82
and 75% respectively when 2 g L™" of MSP NPs was employed.
On the other hand, the MP NPs showed removal efficiency of
55% and 73% for MB and CV respectively. The anionic dyes %
removal declared that 2 g L' of MSP NPs has removal efficiency
of 44% for EBT dye and 8% for MO dye, while removal % of 47%
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Fig. 7 Effect of contact time on the adsorption capacity (g, of EBT and CV onto; [a] MSP NPs and [b] MP NPs. Adsorbent: 2 g L™, dyes 100
mg L% temperature: 25 °C, pH: natural pH of dye, time: 150 min. Magnetite/Pectin Nanoparticles: MP NPs and Magnetite/Silica/Pectin

Nanoparticles: MSP NPs.
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Fig. 8 Effect of pH on the adsorption capacity (ge) of model dyes onto; [a] MSP NPs and [b] MP NPs. Adsorbent: 2 g L™, dyes 100 mg L%,
temperature: 25 °C, time: 120 min. Magnetite/Pectin Nanoparticles: MP NPs and Magnetite/Silica/Pectin Nanoparticles: MSP NPs.

and 12.5% for EBT and MO respectively were achieved by MP
NPs. The enhancement that was observed in the % removed of
model dyes was principally due to the increase in the active sites
on the nanoparticles available for adsorption of dyes molecules.
Further increase in the dosage of both types of nanoparticles
from 3 to 5 ¢ L' was accompanied by further increase in the %
dyes removed to over 90% except for MO. However, the removal
of dyes was not linearly increased presumably and this can be
attributed to the aggregation of NPs upon increasing their mass
from 3 to 5 ¢ L™! which in turn reduced the active sites for
adsorption.”®

3.3.4. Mechanism of the adsorption. The surfaces of MP
and MSP NPs are generally covered with hydroxyl and carboxylic
groups that vary in forms at different pH. The surface charge is
neutral at pHzpc (the pH of zero point charge, pHzpc, of MP
nanoparticles is around 2.5). Below the pHzpc, the adsorbent
surface is positively charged, and anion adsorption occurs. Such
phenomenon was observed with the anionic dyes — EBT and
MO. As the pH of the solution increased, a proportional
decrease in adsorption took place due to the successive depro-
tonation of hydroxyl and carboxyl groups on the adsorbent and
electrostatic repulsion between negatively charged sites on the
adsorbent and dye anions. There was also competition between
OH™ (at high pH) and dyes anions for positively charged
adsorption sites.*® Also, the molecular size and the number of
anions groups (SO;>7) on the dye molecule are important

120
a
100
<
X
< 80
g 60
——CV
40
g —=—MB
X 5 ——EBT
. ——— ——MO
0
0 1 2 3 4 5 6

adsorbent mass (g/L)

factors in their different adsorptive behavior.”” For instance,
EBT showed greater adsorption than MO due to the larger
molecular size of EBT in addition to the presence of two
sulphonate groups in EBT while there is only one in MO giving
EBT a more electronegative surface than MO thus more favor-
able adsorption on the surface of positively charged NPs.

On the other hand, an increase in cationic dyes - CV and MB
- adsorption took place at pHs above the pHzpc of both types of
NPs due to the electrostatic attraction between negatively
charged sites on the adsorbents and dyes cations. The ionic
nature of the two basic dyes (methylene blue and crystal violet)
could have played a role in retaining the dye species on the
surface of the adsorbents. The molecular structure of methylene
blue has ionic charge, with decentralised or delocalised positive
charge on its organic structure. Similar arguments could be
applied to the structure of crystal violet.>”

A superior adsorption of cationic dyes on MSP NPs was
observed than that on MP NPs while it was the opposite for
anionic dyes adsorption. This can be attributed to the presence
of an additional silica shell in MSP NPs which offers more
negative charge on the surface than MP NPs at elevated pHs.
Such condition favors the electrostatic attraction between the
negatively charged silanol groups (Si-O) on NPs surface and the
positively charged cationic dyes monomers to form a strong
hydrogen bond and increasing their adsorption capacity.*® In
addition, MB showed higher adsorption capacity than that of
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Fig.9 Effect of adsorbent mass on the removal efficiency of model dyes onto: [a] MSP NPs and [b] MP NPs. Dyes 100 mg L™, temperature: 25 °C,
pH: 2.0 for anionic dyes and 8.0 for cationic dyes, time: 120 min. Magnetite/Pectin Nanoparticles: MP NPs and Magnetite/Silica/Pectin Nano-

particles: MSP NPs.
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CV on MSP NPs and this might be due to the affinity of MB to
the silica shell of MP NPs than that of CV. On the other hand,
since the MP NPs offers a lesser negatively charged surface than
MSP NPs in acidic pH, it favors the adsorption of anionic dyes
than that of MSP NPs.

3.3.5. Adsorption isotherms. The equilibrium adsorption
isotherm model, which is the number of mg adsorbed per gram
of adsorbent (g.) vs. the equilibrium concentration of adsor-
bate, is fundamental in describing the interactive behavior
between adsorbate and adsorbent.’® Equilibrium isotherm
studies were carried out with different initial concentrations of
model dyes (10-200 mg L~ ') at 25 °C and pH 2.0 for anionic dyes
and pH 8.0 for cationic dyes. Four models were used to analyze
the equilibrium adsorption data: Langmuir,” Freunlich,®
Redlich-Peterson® and Sips.®” Langmuir's model does not take
into account the variation in adsorption energy, but it is the
simplest description of the adsorption process. It is based on
the physical hypothesis that the maximum adsorption capacity
consists of a monolayer adsorption, that there are no interac-
tions between adsorbed molecules, and that the adsorption
energy is distributed homogeneously over the entire coverage
surface.>**® The general form of the Langmuir isotherm was
determined as shown in eqn (1).

_ QO bCe
qe = m (1)

where C. is the equilibrium concentration of the dye in the
solution (mg mL ™), ¢. is the amount of dye adsorbed per unit
mass of adsorbent (mg g’l), at equilibrium concentration, C,,
b the Langmuir equilibrium constant (mL mg™ ") and related to
energy of adsorption. Q, signifies the maximum adsorption
capacity (mg g~ '), which depends on the number of adsorption
sites.

After linearization of the Langmuir isotherm, eqn (2), we
obtain:

C. 1 C.

w50, o @

The values of Q, and b are calculated from the slope and
intercept of the plot of C./q. vs. C. for MSP NPs and MP NPs
(Fig. S87).

The Freundlich isotherm model is an empirical equation
that describes the surface heterogeneity of the sorbent. It
considers multilayer adsorption with a heterogeneous energetic
distribution of active sites, accompanied by interactions
between adsorbed molecules.® The Freundlich empirical model
is represented by:

qe = Kfcelln [3)

where C. is the equilibrium concentration (mg mL™"), g. is the
amount adsorbed at equilibrium (mg g™%), and K; (mg'~*"
mL"" ¢~*) and 1/n are Freundlich constants depending on the
temperature and the given adsorbent-adsorbate couple. n is
related to the adsorption energy distribution, and K¢ indicates
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the adsorption capacity. The linearized form of the Freundlich
adsorption isotherm equation® is

Ing. =In Ky + (l) In C, (4
n

The values of K; (mL g~ ') and 1/n are calculated from the
intercept and slope of the plot of In g, vs. In C, for MSP NPs and
MP NPs (Fig. S91).

The Redlich-Peterson isotherm unites the Langmuir and
Freundlich isotherms, it describes adsorption on heteroge-
neous surfaces, as it contains the heterogeneity factor §. This
equation has three parameters, Kgp is the constant of Redlich-
Peterson isotherm (mL g '), agp is the Redlich-Peterson
constant (mL mg™ '), and § is the Redlich-Peterson exponent
(0 < B < 1). It can be reduced to the Langmuir equation as
6 approaches 1.°%* The general equation can be described as
follows®"*

KRPCe
—_— 5
1 + OCRPC6 ( )
or
Q,mon QRp Ce
p= EE e 6
4 1 + OlRpCﬁ ( )
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where C. is the equilibrium concentration (mg mL™ "), g. is the
amount adsorbed at equilibrium (mg g™') and Q' mon is the
Redlich-Peterson maximum adsorption capacity (mg g~ ). Kgp
is the product of Q' o and agp.

According to Wu et al.,** a linear form of eqn (6) can be
transformed as

qe 1 I s )

= + ——C
Ce Q mon XRP Q mon

The Redlich-Peterson isotherm curves of the model dyes are
presented in Fig. S107 using the plot of g./C. vs. C.” for MSP NPs
and MP NPs.

Sips developed a new model as an improvement to the
Freundlich and Langmuir equations.®® This model is based on
the Freundlich equation assumption, where the amount of
adsorbed dye increases with the increase of initial concentra-
tion, but Sips equation presumes that the adsorption capacity
has a finite limit when the concentration is sufficiently high.*”
The Sips® equation can be represented as follows;

QmKs Cel/n

A 8
q 1+1<5C51/" ()

Table 6 Maximum adsorption capacities (Qg in mg g~%) and kinetic models for the model dyes by some other adsorbents reported in literature

Capacity factor (Q, (mg g™ ")

Sorbent Cv MB EBT MO Kinetic models Ref.
Fe;0,@APS@AA-co-CA MNPs 208 142.9 — — Pseudo 2nd order 71
Magnetic-modified multi-walled carbon 227 48.1 — — — 72
nanotubes

Magnetic nanocomposite 81 — — — — 73
MWCNTSs/Mn, gZn, ,Fe,0, composite 5 — — — Pseudo 2nd order 74
N-Benzyl-O-carboxymethylchitosan 248 223.58 — — Pseudo 2nd order 54
magnetic NPs

Magnetite nanoparticles loaded tea waste 113.69 119 — — Pseudo 2nd order 75
(MNLTW)

Graphene nanosheet (GNS)/magnetite — 43.82 — — Pseudo 2nd order 76
(Fe;0,) composite

Poly(c-glutamic acid) (PGA-MNPs) — 78.67 — — Pseudo 2nd order 5
Montmorillonite clay modified with iron — 71.2 — — Pseudo 2nd order 77
oxide (MtMIO)

Fe;0, NPs coated with pectin and — 221.7 — — Pseudo 2nd order 6
crosslinked with adipic acid (FN-PAA)

Eucalyptus bark — — 52.37 — Pseudo 1st order 78
Scolymus hispanicus L. — 237.18 120.42 — Pseudo 2nd order 79
NiFe,0, nanoparticles — — 47 — Pseudo 2nd order 80
Nteje clay 16.26 Pseudo 2nd order 81
Activated carbon modified by silver — — — 0.69 Pseudo 2nd order 82
nanoparticles

Ash Moringa peregrina — — — 15.43 — 83
Dragon fruit (Hylocereusundatus) foliage — — — 17.67 Pseudo 2nd order 84
Chitosan intercalated montmorillonite — — — 70.42 Pseudo 2nd order 85
Silica gel waste (SGW), modified with — — — 45.45 Pseudo 2nd order 86
cationic surfactant

Polyaniline modified ZnO — — — 28.94 Pseudo 1st order 87
Magnetite/pectin NPs 100 125 103.41 47.36 Pseudo 2nd order Present work
Magnetite/silica/pectin NPs 125 178.57 80.15 27.74 Pseudo 2nd order Present work
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where Qp, is the maximum adsorption capacity calculated by
Sips (mg g~ "), K is the Sips constant (mL mg~ ") and 7 is the Sips
model exponent.

The Sips isotherm curves of the model dyes are presented in
Fig. S111 using the plot of g, vs. C.*"” for MSP NPs and MP NPs.

The parameters of Langmuir, Freundlich, Redlich-Peterson
and Sips equations are listed in Table 5 for MSP and MP NPs.
For both of MSP and MP NPs, the values of correlation coeffi-
cient, R*, and Chi square (x*) for the fit of experimental
isotherm data to equation are the best for Sips model. Such
results indicate that the adsorption process of model dyes is
going on after a combined model Freundlich and Langmuir:
diffused adsorption on low dye concentration, and a mono-
molecular adsorption with a saturation value at high adsorbate
concentrations.®***** Additionally, the values of 1/n for Sips
isotherm are 0 < 1/n < 1, indicating that the dyes adsorption
process is favorable.

The Q., values were calculated form the Sips isotherm for
cationic dyes at optimum pH (~8) for MP and MSP NPs and
were estimated to be (CV = 140.49 mgg ', MB =168.72mgg ')
and (CV = 180.29 mg g !, MB = 197.18 mg g '), respectively.
For the anionic dyes, the Q,, values calculated at optimum pH
(~2) for MP and MSP NPs were estimated to be (EBT = 72.35
mgg ', MO =27.215mg g ') and (EBT = 65.35 mgg ', MO =
2 6.754 mg g '), respectively. This data indicates that our
proposed adsorbents (MSP NPs and MP NPs) can be considered
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promising materials for the removal of cationic and anionic
dyes from aqueous solution.

Generally, isotherms relating solid-phase to fluid-phase
concentration for adsorption of a single component directly
influence the behavior of the isotherm curves.” The elucidation
relating the isotherm curves and the equilibrium behavior is
given by a dimensionless “separation factor” or “equilibrium
parameter”, (R;) which is presented by eqn (9):

Ry = (1 + bCy) 9)

where C, (mg mL ") is the initial solute concentration and b is
the equilibrium constant obtained from the Langmuir curve. Ry,
values within the range 0 < Ry, < 1 indicate favorable adsorp-
tion.” Accordingly, by substituting the b values for the present
adsorption systems, the Ry, values obtained with initial dyes
concentration of 200 mg L™ ranged between (0.11 and 0.69)
and thus indicate favorable adsorption of the model dyes onto
the NPs.

3.3.6. Evaluation of performance. The maximum adsorp-
tion capacities (Qn,) and the kinetic model of MP and MSP
nanoparticles together with other magnetic, residue and bio-
based adsorbents reported in the literature for CV, MB, EBT
and MO adsorption at ambient temperature are listed in Table
6. The Qy, for our MP NPs and MSP NPs are higher than that for
general adsorbents used for the model dyes. However,

Table 7 Pseudo-first order, and pseudo-second-order kinetic models parameters for the adsorption of model dyes by MSP NPs

Pseudo 1st order

Pseudo 2nd order

Intraparticle diffusion

ge(exp)  ge(cal K ge(cal) K,

(mgg™) (mgg") (") R X’ (mgg™) (mgg'h") R X’ Kia c R X’
CvV
10 mg L 9.94 5.93 2.612 0.9308 0.252 10.56 0.760 0.9976 0.207 0.376 6.174 0.8918 0.138
50 mg Lt 36.51 10.15 1.912 0.9311 0.039 37.45 0.419 0.9997 0.118 0.878 27.563 0.8865 0.205
100 mg L' 64.94 14.87 2.501 0.949 0.129 66.23 0.380 0.9998 0.175 1.047 54.551 0.8459 0.222
150 mg L' 7861 15.74 1.275 0.9701 0.058 80 0.195 0.9992 1.374 1.563 61.505 0.9705 0.067
200 mg L' 90.29 31.12 2.873 0.9669 0.081 93.46 0.164 0.9998 0.243 2.389 67.356  0.843 0.857
MB
10 mg L 12.84 2.89 3.195 0.9756 0.026 13.09 2.335 0.9998 0.049 0.194 10.988 0.7994 0.051
50 mg L 66.07 12.24 1.137 0.9607 0.202 66.67 0.25 0.9992 0.533 1.338 51.386 0.9089 0.207
100 mg L' 107.58 23.65 1.928 0.9615 0.107 109.89 0.166 0.9998 1.111 1.889 88.125 0.9435 0.145
150 mg Lt 132.61 27.44 1.688 0.7998 0.498 135.14 0.137 0.9993 2.895 1.982 110.85 0.9722 0.061
200 mg L' 151.16 40.5 2.004 0.9277 0.356 153.85 0.106 0.9996 1.18 3.469 116.06 0.8559  0.999
EBT
10 mg Lt 9.23 10.23 2.553 0.8951 2.073 10.41 0.368 0.9977 0.123 0.571 3.423 0.9572  0.146
50 mg L 29.22 18.06 2.444  0.9728 0.148 31.25 0.233 0.9997 0.062 11.336 16.048 0.8601 0.843
100 mg L 38.64 19.25 2.225 0.9648 0.479 40.98 0.198 0.9993 0.146 1.674 22.213 0.8005 1.534
150 mg L' 59.64 23.05 1.951 0.9715 1.627 62.5 0.151 0.9995 0.431 2.39 36.025 0.7583  2.605
200 mg L' 76.09 26.47 1.56 0.9557 0.093 78.74 0.124 0.9989 1.112 2.393 50.712 0.9596 0.254
MO
10 mg L 2.19 2.95 2.313 0.9221 1.58 2.77 0.695 0.9994 0.002 0.188 0.276 0.9653 0.064
50 mg L 9.26 5.28 1.796 0.9499 0.078 9.91 0.583 0.9979 0.226 0.422 4.831 0.9777 0.038
100 mg L' 13.54 5.95 1.953 0.9632 0.075 14.39 0.525 0.9992 0.104 0.589 7.659 0.8898 0.247
150 mg L' 2246 10.46 2.011 0.9618 0.101 23.58 0.367 0.9992 0.255 0.804 14.213 0.9445 0.138
200 mg L' 2578 10.39 2.047 0.9905 0.249 27.03 0.351 0.9999 0.014 0.997 15.932 0.824 0.679
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Table 8 Pseudo-first order, and pseudo-second-order kinetic models parameters for the adsorption of model dyes by MP NPs

Pseudo 1st order

Pseudo 2nd order

Intraparticle diffusion

ge (exp)  ge(cal) K ge (cal) K, Kiq

(mgg™) (mgg™) () R X (mgg™) (mgg'hT) R X (mgg'min™*) c@) R X
v
10 mg L 10.46 5.81 1.865 0.9747 0.039 11.22 0.526 0.9994 0.036 0.514 5.22 0.9107 0.221
50 mg L! 37.59 7.32 1.349 0.9365 0.091 38.17 0.458 0.9995 0.202 0.782 29.279 0.983 2.058
100 mg L' 62.49 2.64 2.854 0.9495 0.008 62.89 0.396 1 0.016 0.239 60.221 0.7656 0.019
150 mg L' 7245 10.83 2.538 0.787 0.535 73.53 0.369 0.9993 0.454 1.058 62.1 0.6501 0.597
200 mg L' 78.04 12.59 3.318 0.8498 1.886 80 0.313 0.9996 0.482 1.754 61.859 0.6415 1.605
MB
10 mg L! 14.01 13.09 3.399 0.9503 1.127 14.93 0.561 0.9997 0.044 0.585 8.315 0.8837 0.252
50 mg L 41.12 14.47 1.322 0.9641 0.125 42.55 0.19 0.9971 1.824 1.311 26.59 0.9879 0.039
100 mg L' 66.36 24.11 1.651 0.9475 0.425 68.97 0.162 0.9992 0.948 1.915 46.471 0.9551 0.201
150 mg L' 72.54 27.15 2.065 0.9388 0.172 75.19 0.147 0.9995 0.457 2.179 50.442 0.89 0.639
200 mg L' 81.15 19.25 1.065 0.8945 0.303 81.97 0.135 0.9968 4.532 1.657 61.337 0.9579 0.108
EBT
10 mg L 9.98 5.51 1.686 0.9786 0.044 10.72 0.503 0.9982 0.112 0.495 4.828 0.94 0.143
50 mg L 35.74 13.72 1.703 0.9001 0.509 37.17 0.278 0.9976 1.377 1.01 24.753 0.9798 0.046
100 mg L' 5211 15.25 1.698 0.9195 0.206 53.48 0.233 0.999 1.439 1.195 39.312 0.9821 0.037
150 mg L' 70.93 20.75 1.996 0.9641 0.367 72.99 0.209 0.9994 1.311 1.515 55.178 0.9682 0.076
200 mg L' 9229 16.32 1.394 0.8998 0.579 93.46 0.191 0.9997 0.351 2.01 71.637 0.835 0.639
MO
10 mg Lt 3.28 1.39 1.529 0.9895 0.016 3.46 1.985 0.999 0.032 0.14 1.814 0.928 0.04
50 mg L 13.68 8.04 2.251 0.9556 0.187 14.64 0.491 0.999 0.229 0.562 7.979 0.9553 0.084
100 mg L' 2132 8.52 2.284 0.9745 0.086 22.32 0.478 0.9997 0.102 0.761 13.875 0.8347 0.413
150 mg L' 34.63 17.97 1.941 0.9506 0.149 36.63 0.196 0.999 0.466 1.43 19.917 0.9417 0.302
200 mg L' 45.62 21.88 2.027 0.9167 0.269 47.85 0.182 0.9991 0.544 1.625 28.875 0.9462 0.265

adsorption capacities are low compared to some adsorbents
including magnetic modified MWCNTs and N-benzyl-O-car-
boxymethylchitosan magnetic NPs for CV, Fe;O, NPs coated
with pectin and crosslinked with adipic acid (FN-PAA) for MB,
Scolymus hispanicus L. bacteria for EBT and chitosan interca-
lated montmorillonite for MO. Such results do not diminish the
feasibility of employing MP NPs and MSP NPs as adsorbents for
dye removal from aqueous solutions, since they were advanta-
geous in presenting good adsorption capacity in comparison to
other newly proposed adsorbents for all types of dyes (anionic
and cationic dyes). Moreover, MP NPs and MSP NPs are superior

16
14 4 . .
=¥ | i
. 10 - e
(=7] - - —+—CV
I
6 ——EBT
'
c-m 4 —=—MB
2 MO
0
285 290 295 300 305 310
T (K)

to other adsorbents in terms of simplicity of the preparation
method and separation procedures, causing little environ-
mental pollution and having a reusable characteristic.

3.3.7. Adsorption kinetics. The adsorption kinetic models
were applied to interpret the experimental data to determine
the controlling mechanism of dye adsorption from aqueous
solution. Here, pseudo-first-order and pseudo-second-order
model were used to test dynamical experimental data.*® The
pseudo-first order kinetic model of Lagergren® is given by:

Kit
1 o e 10
og(q1 — ¢:) = 1og qie 2.303 (10)
18
16 b |
&Y
e _— -
E 3 — -
~ 6 x .
[}
o g :
0
285 290 295 300 305 a1
T (K)

Fig. 10 Effect of temperature on the adsorption capacity (q.) of model dyes onto; [a]l MSP NPs and [b] MP NPs. Adsorbent: 5 g L™%, dyes 10
mg L%, pH: 2.0 for anionic dyes and 8.0 for cationic dyes, time: 120 min. Magnetite/Pectin Nanoparticles: MP NPs and Magnetite/Silica/Pectin

Nanoparticles: MSP NPs.
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where g, is the amount of dye adsorbed per unit of adsorbent
(mg g™ ") at time ¢, K; is the pseudo-first order rate constant
(h™"). The adsorption rate constant (K;) were calculated from
the plot of log(q. — ¢q,) against t.

Ho and McKay® presented the pseudo-second order kinetic
as:

t 1 t

o 4 11
9 Kl g (11)

where K, is the pseudo-second order rate constant (g mg~ ' h™").
The g. and K, can be obtained by linear plot of ¢/q, versus t.
Fig. S12 and S13t are the plots of the pseudo-first order and
second order kinetics of model dyes adsorption on MSP
respectively. Fig. S15 and S167 are the plots of the pseudo-first
order and second order kinetics of model dyes adsorption on
MP NPs respectively. The calculated kinetic parameters are
given in Tables 7 and 8 for MSP NPs and MP NPs respectively.
In all model dyes, the correlation coefficient for the pseudo-
first-order model (Fig. S12 and S15%) is relatively low, the
calculated g. value (gi¢) obtained from this equation does not
give reasonable value (Tables 7 and 8), which is much lower
than experimental data (ge,exp). This result suggests that the
adsorption process does not follow the pseudo-first-order
kinetic model. On the contrary, the results present an ideal fit
to the second order kinetic for adsorbent with the extremely
high 7 = 0.999 (Fig. S13 and S161). A good agreement with this
adsorption model is confirmed by the similar values of

Table 9 Thermodynamic parameters for the adsorption of model
dyes on MSP NPs and MP NPs

AG° AF° AS°
T(K) Ko (kmol™) (kymol™") (Jmol 'K) R*

MSP NPs

CvV 288 1.4426 —0.9113  30.034 107.45 0.9961
298 2.2956 —1.9858
308 3.2542 —3.06

MB 288 3.0655 —2.621 48.788 178.751 0.9999
298 6.1435 —4.4796
308 11.5079 —6.2671

EBT 288 0.8904  0.2978  32.747 112.671 0.9989
298 1.3735 —0.8289
308 2.1654 —1.9556

MO 288 0.1655  6.0877  38.298 111.84 0.9700
298 0.2423  4.9693
308 0.4695  3.8509

MP NPs

Ccv 288 1.4405 —0.8412  31.429 112.048 0.9965
298 2.1434 —1.9617
308 3.8133  —3.0821

MB 288 1.9651 —1.6249  44.477 160.078 0.9999
298 3.6966 —3.2257
308 6.5635 —4.8265

EBT 288 0.9589  0.0611  37.824 131.12 0.9968
298 1.7118 —1.2501
308 2.6717 —2.5613

MO 288 0.2528  3.2692  29.771 92.019 0.998
298 0.3957  2.2349
308 0.5665  1.4288
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calculated g. for second order kinetic and the experimental
ones for adsorbents. The best fit to the pseudo-second order
kinetics indicates that the adsorption mechanism depends on
the adsorbate and adsorbent. Such results come in accordance
with other literature as listed in Table 6.

3.3.8. Intra-particle diffusion model. The experimental
data was further investigated by the diffusion (intra-particle)
model to explain the diffusion mechanism. The plots (g, vs.
t°®) represent multi-linearity, which indicates two or more steps
occurring in the adsorption process.* The relationship between
q:vs. t°° is plotted in Fig. $13 and S167 for MSP NPs and MP NPs
respectively. The intra-particle diffusion constant and the
boundary layer thickness were calculated using the linear
equation (Tables 7 and 8).

4 = Kiat™ + C (12)

where ¢, is the amount of dye adsorbed onto the adsorbent at
time ¢ (mg g '), C is the boundary layer thickness, and K;q is the
intra-particle diffusion rate constant (mg g~ ' min~%?).

If plot (g, vs. t*°) is straight line passing from origin, then
intra-particle diffusion becomes rate-limiting step. As can be
observed from Fig. S14 and S17,7 the plots are not linear over
the whole time range which means that the intraparticle
diffusion is not the rate determining step of the adsorption
mechanism of the model dyes onto MSP NPs and MP NPs.***
The values of intercept (Tables 7 and 8) give an idea about the
boundary layer thickness, i.e., the larger intercept the greater is
the boundary layer effect and this means that the adsorption is
more boundary layer controlled.®”**

EMP NPs @MSP NPs

adsorbtion efficiency (%)

gg | =3 mMP NPs zMSP NPs

adsorbtion efficiency (%)

1 2 3
Cycles

Fig. 11 Performance of magnetite/pectin NPs (MP NPs) and magne-
tite/silica/pectin NPs (MSP NPs) by three cycles of adsorption/
desorption for [a] methylene blue and [b] Eriochrome black T.

This journal is © The Royal Society of Chemistry 2016


https://doi.org/10.1039/c5ra23452b

Published on 28 January 2016. Downloaded on 10/26/2025 12:58:52 AM.

Paper

3.3.9. Thermodynamic studies. Evaluation of temperature
was carried out with the scope of testing the ability of MSP NPs
and MP NPs in dyes removal in different circumstances
according to a previous method.” Data were collected at three
temperatures: from 288 to 308 K. The variation of the model
dyes (CV, MB, EBT and MO) adsorbed on MSP NPs and MP NPs
as function of solution temperature is shown in Fig. 10. An
increase of the amount of dyes adsorbed was observed when the
temperature increases. From these results, thermodynamic
parameters including the change in free energy (AG®), enthalpy
(AH°) and entropy (AS°) were used to describe thermodynamic
behavior of the adsorption of the model dyes onto MSP NPs and
MP NPs. These parameters were calculated using the following
equations

AG° = —RTIn K (13)
g
K= 14
% (1)
AS®  AH®

K= 22 _ 1
n R RT (15)
AG = AH° — TAS® (16)

where K is the equilibrium constant, R is the universal gas
constant (8.314 ] mol ™' K™'), T is temperature (K), g. is the
amount of dye adsorbed on the adsorbents per liter of the
solution at equilibrium (mg L"), C. is the equilibrium
concentration of the dye in the solution (mg L™%).

The enthalpy (AH°) and entropy (AS°) of adsorption were
estimated from the slope and intercept of the plot of In K versus
1/T yields, respectively.

The AH° and AS° values are presented in Table 9. The values
are within the range of 1 to 83 k] mol ' and indicate the
favorability of physisorption.”® The positive values of AH®> show
the endothermic nature of adsorption and also indicate the
possibility of physical adsorption.”**” The negative values of
AG° (Table 9) show that adsorption is highly favorable for MB,
CV and EBT dyes while MO showed positive values of AG°. Such
result indicates that the MB, CV and EBT dyes adsorption was
spontaneous. The positive values of AS° (Table 9) show the
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increased disorder and randomness at the solid solution
interface during the adsorption of dyes on the adsorbents.®’

Enhancement of adsorption capacity of MSP NPs and MPs
NPs at higher temperatures may be attributed to the increase in
the mobility of the large dye ion with temperature. An
increasing number of molecules may also acquire sufficient
energy to undergo an interaction with active sites at the
surface.*?

3.4. Desorption and regeneration studies

The magnetite/pectin NPs and magnetite/silica pectin NPs have
good performance in recycling treatment with cationic dyes.
Our adsorbents did not significantly adsorb cationic dyes at pH
< 3.0 (Fig. 8), which suggests that the adsorbed cationic dyes
may be desorbed in solution with such pH values.®® In addition,
organic cationic dyes dissolved easily in organic solvents. Thus,
desorption of the cationic methylene blue dye was demon-
strated with 50 mL mixture of 5% (v/v) acetic acid and meth-
anol,”* for which about 90.0% of desorption efficiency was
achieved. The results of adsorption efficiency of the studied
adsorbents after three cycles are shown in Fig. 11[a]. The effi-
ciency of adsorption decreased to two thirds after the 1st cycle
and remained nearly constant throughout the 2nd and 3rd cycle
for both types of adsorbents.

Desorption-adsorption experiments have also been per-
formed to evaluate the possibility of regeneration and reuse of
the adsorbents for removal of anionic dyes (EBT was taken as an
example). As the results show in Fig. 11[b], adsorption effi-
ciencies were decreased by 25% from that achieved in the 1st
cycle and 20% from that of the 2nd cycle. Nearly same results
were obtained when using methanol alone and mixture of 5%
(v/v) NaOH and methanol for EBT regeneration which eluci-
dates that the reusability of the sorbents was better in removal
of cationic dyes than in the case of anionic dyes.

3.5. Dye mixture adsorption studies

The selectivity of MP NPs and MSP NPs towards cationic and
anionic dyes was investigated with initial dyes' concentration
fixed at 165 mg L~ " for each dye and 2 g L™ " adsorbents mass. In
former single dye adsorption studies, pH showed significant
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Fig.12 Effect of pH on the adsorption capacity (ge) of model dyes in their mixture solutions onto; [a] MSP NPs and [b] MP NPs. Adsorbent: 2 g L%,
dyes 165 mg L™, temperature: 25 °C, time: 120 min. Magnetite/Pectin Nanoparticles: MP NPs and Magnetite/Silica/Pectin Nanoparticles: MSP
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effect on the efficiency of adsorption of cationic and anionic
dyes onto MP and MSP NPs. Thus the effect of pH in the range
2-8 on the removal of the model dyes mixtures (MB, CV, EBT
and MO) was studied.

As Fig. 12[a] and [b] show, the results agree with those ob-
tained in the previous single dye adsorption experiments
measured spectrophotometrically. For the cationic dyes (MB
and CV) the adsorption was remarkably decreased in pH 2.0.
The capacity of dye adsorption for MB and CV increased with
increasing the solution pH from 2.0 to 8.0, reaching its
maximum at 8. For the anionic dyes (MO and EBT), as observed
in Fig. 12[a] and [b], the adsorption is high in acidic medium
and decreases with the increase in solution pH.

Moreover, higher adsorption capacities (g.) of cationic dyes
on MSP NPs (MB = 203.4 mg g~ ' and CV = 177.5 mg g~ ') were
observed than that on MP NPs (MB = 112.2 mg g ' and CV =
181.8 mg g ). This also comes in agreement with the results
obtained from the single dyes adsorption experiments. On the
other hand, since the MP NPs offers a lesser negatively charged
surface than MSP NPs in acidic pH, it favors the adsorption of
anionic dyes (g. of MO = 84.4 mg g~ " and g, of EBT = 108.3 mg
g~ 1) than that of MSP NPs (g. of MO = 46.5 mg g~ ' and g. of EBT
=51.5mgg ).

Simultaneous adsorption of the model dyes onto MSP NPs
and MP NPs was tested at natural pH of samples (pH = 6)
without pH adjustment as a trial for large scale wastewater
treatment application. MSP NPs and MP NPs showed more
adsorption towards cationic dyes (g. ranging between 86 and
201 mg g~ ) than the anionic ones (g. ranging between 21 and
35 mg g ). Such findings can be attributed to the negatively
charged surface of the NPs at elevated pHs that attracts the
positively charged dye molecules. Thus our proposed NPs can
be applied for wastewater treatment and the removal of cationic
dyes at natural pH of water samples.

4. Conclusion

In this study, we compared the physical and chemical proper-
ties of pectin coated magnetite nanoparticles prepared via two
different co-precipitation techniques using data obtained by
TEM, XRD, FTIR, VSM and zeta potential. Both coated NPs
showed alteration in shape and particle size as indicated by
TEM images which means we can have a control over the size of
particles via pectin coating. FTIR spectra elucidated the
successful pectin coating on magnetite and magnetite/silica
NPs surfaces via carboxylate linkage. The pure magnetite
phase formation was indicated by XRD data of MP NPs but upon
increasing pectin concentration up to 1 w/v% other phases
appeared. On the other hand, the double shell MSP NPs kept the
pure magnetite phase in all prepared samples which indicated
that the coating didn't affect the crystal structure of the nano-
particles. The VSM data of the MSP NPs also elucidated a minor
decrease in the M; of coated samples in comparison to the
uncoated ones which indicates that the silica/pectin coating
didn't cause much alteration in the NPs' magnetic properties.
Yet, a great decrease in the saturation magnetization of MP NPs
was observed with increasing pectin concentration. Moreover,
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MSP NPs had better dispersion properties than the MP NPs
where the latter formed some aggregates especially in the high
pectin concentration samples.

The adsorption potential of MP NPs and MSP NPs was
investigated for the removal of cationic and anionic dyes from
aqueous systems. The effects of contact time, initial dye
concentrations, pH and adsorbent mass on the adsorption
process and desorption were discussed. Analysis was done
using validated spectrophotometric and chromatographic
methods. Adsorption kinetics was fitted with the pseudo-
second-order model, and adsorption isotherms were
described by Langmuir, Freundlich, Redlich-Peterson and Sips
equation. The adsorption mechanism of the model dyes onto
the proposed adsorbents was based on electrostatic force of
attraction between cationic and anionic dyes and the adsor-
bents upon adjustment of pH. Regeneration of MP NPs and
MSP NPs by methanol was done in order to reuse them for
successive removal processes with high removal efficiency.

Simultaneous adsorption of the cationic and anionic dyes
onto MSP NPs and MP NPs from dye mixture solution was tested
as a trial for large scale wastewater treatment application.
Higher adsorption capacities of cationic dyes on MSP NPs were
observed while MP NPs favored the adsorption of anionic dyes.

In conclusion, MSP NPs and MP NPs are promising alter-
natives for cationic and anionic dyes removal from wastewater
because of their high adsorption capacities and separation
convenience. We believe that the approach presented herein
can provide a convenient way to bind other cationic and anionic
organic compound or heavy metal ions to our magnetic absor-
bents and to quickly separate them from wastewater.
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