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In this article, we report the synthesis of new ferrocene incorporating dyes and their evaluation as sensitizers

for dye-sensitized solar cells. We have shown that the sequential addition of alkyne units as 7t-spacers plays
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an important role in modulating their solution optical and redox properties. Likewise, the most extensively

conjugated dye (Fc-D3) provided the highest power conversion efficiency () compared to the other less-
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Introduction

The advantages that dye-sensitized solar cells (DSSCs)" have over
silicon-based photovoltaic devices, such as their ability to oper-
ate under low light conditions and their lower cost, has ensured
that devices of this type continue to receive significant attention.
Ruthenium-based dyes dominated the early progress in this
field, however, metal-free organic dyes have become increasingly
attractive due to their higher molar extinction coefficients,
convenient synthesis, purification and structural modification.?
More recently, porphyrin-based dyes have revitalised research
into metal-incorporating dyes and to date have produced head-
lining power conversion efficiencies of around 13%.*

The ability of ferrocene (Fc) to undergo reversible one-electron
chemical and electrochemical oxidation at low potential has
allowed this unit to become a ubiquitous building block in a range
of disparate applications including medicine and materials
science.® Although Fc has proved to be an effective redox electro-
lyte for DSSCs,® its incorporation as a donor unit in photosensi-
tizers has received surprisingly little attention. For example,
Chauhan et al. have reported DSSCs fabricated from Fe-based dyes
which indicated that both the dye anchoring group and the elec-
trolyte play an important role in determining the power conver-
sion efficiency (n).” More recently, Sirbu et al reported DSSCs
fabricated using a trisubstituted ferrocene-based porphyrin
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conjugated dyes in the series. We have also demonstrated that the choice of electrolyte is important in
determining n for this series of dyes.

derivative with a cobalt(u/ur) electrolyte, however, DSSC perfor-
mance was rather modest (n = 0.0081%).® In this study, we
describe the synthesis and characterisation of new Fc-based dyes
featuring benzothiadiazole and cyanoacrylic acid residues® as
acceptor units and alkyne residues as 7-linker units.'® We report
the significance of increasing the number of alkyne linker units
has on the optical and redox properties of the dyes and the key
parameters of their resulting DSSCs. We have also shown that the
choice of electrolyte is important in terms of controlling 7.

Results and discussion
Synthesis

The three dyes were prepared according to the synthetic
pathway shown in Scheme 1. Ferrocene boronic acid 1 was
coupled with 4,7-dibromobenzothiadiazole 2,"* via Suzuki cross-
coupling reaction, affording 3 in 46% yield. Compound 3 was
further reacted with 4-formylphenylboronic acid, affording
compound 4 in 84% yield. Compound 6 was obtained, in
a 89% yield, via a Sonogashira cross-coupling reaction of ethy-
nylferrocene 5 and 2." This compound was then reacted with
4-formylphenylboronic acid and 4-ethynylbenzaldehyde, via
Suzuki and Sonogashira coupling reactions, to give compound 7
and 8, in 85% and 45% yield, respectively. The three aldehydes
4, 7 and 8 were reacted with cyanoacetic acid to afford the
corresponding cyanoacrylates Fe-D1 (77% yield), Fe-D2 (98%
yield) and Fe-D3 (44% yield).

Characterization

The UV-vis spectra of the three compounds recorded in DMF are
provided in Fig. 1. The absorption band around 300 nm is likely
due to n-m* transition of the benzothiadiazole (BTD) unit or

This journal is © The Royal Society of Chemistry 2016
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Scheme 1 Synthesis of ferrocene dyes Fc-D1-Fc-D3. Reagents and conditions: (a) Pd(dppf)Cly, K,COs, dioxane, H,O, reflux, 14 h; (b) 4-for-
mylphenylboronic acid, Pd(PPhz),, K>COs, THF, H,O, reflux, 48 h; (c) PACly(PPhs)4, Cul, EtsN, THF, 60 °C, 6 h; (d) 4-ethynylbenzaldehyde,
PdCl,(PPhs)4, Cul, EtsN, THF, r.t., 6 h; (e) cyanoacetic acid, piperidine, acetic acid, MgSQO,, toluene, 100 °C, 6 h.

m-v* transition of the conjugated aromatic moieties,"® whilst absorption band around 550 nm for Fec-D1 is attributed to
the absorption around 400 nm corresponds to an intra- a d-m* charge transfer (CT). However, d—-m* CT bands are
molecular charge-transfer (ICT) between the donor and sensitive to adjacent acceptor strength, and are not as
acceptor groups. It is clear that the increase in the conjugation pronounced in the spectra of the alkyne containing dyes Fc-D2
length results in the red shift of the two absorption maxima and Fe-D3. Compared with the spectra in DMF solution, the ICT
with higher molar extinction coefficients. The distinct absorption band of these dyes on TiO, films exhibits significant
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Fig. 1 Absorption spectra of Fc-D1-Fc-D3 in DMF (left), and deposited on TiO, film (right).
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Table 1 Summary of optical and electrochemical properties of the dyes. E,, = optical gap; Equng = IP — EA
Dye Amax, DM (&, 10° M~ cm ™) Eope (V) IP (eV) EA (eV) Efuna (€V)
Fe-D1 312(48.7), 387(29.1), 550(6.7) 1.62 —5.11 —3.28 1.83
Fe-D2 314(49.2), 399(28.5), 483(7.0) 1.70 —5.18 —3.44 1.74
Fe-D3 323(65.6), 407(42.1), 487(6.6) 1.61 —5.13 —3.48 1.75
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Fig. 2 SWV plots for three dyes recorded in DMF (1 x 1073 M).

spectral broadening and red-shift because of the interaction of
the anchoring groups with the surface of TiO, and J-aggregation
of photosensitizer molecules. Unlike the spectra in DMF solu-
tion, the absorption related to the metal-acceptor charge
transfer is observable in all dyes on TiO, films. From the cut-off
wavelengths of the spectra in DMF solution, the estimated
values of the optical gaps (E,p) are listed in Table 1.

The electrochemical behaviour of the three dyes in DMF
solution was explored by cyclic voltammetry (CV) and square
wave voltammetry (SWV) (Fig. 2). The redox-active ferrocenyl
group exhibits a single oxidation wave whereas a one electron
reduction wave attributed to the BTD acceptor unit is observed.
Addition of alkyne m-linker units on going from Fe-D1 to Fe-D3,
results in the reduction potentials being shifted to more posi-
tive values indicating that the benzothiadiazole unit is easier to
reduce. The estimated electron affinities (EAs) and ionization
potentials (IPs) are presented in Table 1. As shown in Fig. 3, all
the IPs are slightly lower in energy than the I"/I;~ redox couple,
ensuring that the generation of all the dyes is energetically
favourable. On the other hand, the positions of the EAs are
found to be almost 1 eV above the TiO, conduction band.

9134 | RSC Adv., 2016, 6, 9132-9138

Fig. 3 Energy level diagram showing the IPs and EAs of each dye, and
their position relative to the TiO, conduction band and I7/Is~ redox
potential.

Theoretical calculations

To gain insight on the electronic structure and optical proper-
ties of the ferrocene-based dyes, density functional theory (DFT)
and time dependent DFT calculations were performed. Fig. 4
shows ground state optimized geometries and electronic
density distributions of the HOMO and LUMO of the dyes,
which clearly show the role of the acetylene linker on main-
taining planarity and facilitating ICT separation. In particular,
on going form FC-D1 to FC-D3 the sequential addition of the
acetylene linker moiety makes the dihedral angles between the
ferrocenyl and benzothiadiazole moieties and between the
benzothiazole and phenyl ring moieties significantly decrease
from 18.87° to 0.92° and from 33.23° to 2.12°, respectively. This
indicates that acetylene linkers eliminate the steric hindrance
between the hydrogen atoms of these rings. The ferrocenyl
groups in all dyes adopt an eclipsed D5, conformation rather
than the staggered conformation.'>'® The electron densities of
the HOMOs for all dyes are mainly localized on the ferrocenyl
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Fig. 4 Ground state optimized geometry of the dyes, and electron
density distribution representations: (a) Fc-D1, (b) Fc-D2, and (c) Fc-
D3.
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moiety and are extended along to the benzothiadiazole moiety
to the phenyl ring. The LUMOs for all dyes are localised on the
benzothiadiazole and cyanoacrylate residues. In all dyes,
significant overlap of the frontier orbitals occurs suggesting
that efficient ICT likely occurs from the donor to the terminal
acceptor group which anchors to the TiO, surface.

Photovoltaic measurements

Fig. 5 shows J-V characteristics of DSSCs sensitized with the
three dyes. The photovoltaic parameters are summarized in
Table 2. The addition of the two acetylene bridging units in Fe-
D3 resulted in better photovoltaic performance with the iodide/
triiodide redox couple than Fe-D1: V. from 0.407 V to 0.434 V,
Jse from 0.730 mA cm ™ to 1.070 mA cm ™2 and 7 from 0.180% to
0.279%. The n value of Fc-D3 compared to Fe-D1 is more than
doubled which may be ascribed to the improvement of light
harvesting efficiency or the electron injection efficiency of Fe-
D3. Fig. 5 also shows both external quantum efficiency (EQE)
and internal quantum efficiency (IQE) spectra of the DSSCs.
The EQE and IQE spectra of DSSCs featuring Fec-D3 extend to
the longer wavelength region and exhibit higher values in
the shorter wavelength region when compared to those using
Fc-D1. Interestingly, our hybrid electrolyte containing both
iodide/triiodide (I"/I3~) and organic redox couples allowed for
better DSSC performance. The organic redox couple consists of
the thiolate form (McMT ) and disulfide dimer (BMT) derived
from 2-mercapto-5-methyl-1,3,4-thiadiazole (McMT). Although
the redox potential of McMT /BMT (0.155 V vs. NHE) is more
negative than that of I /I;~ (0.4 V vs. NHE)," the addition of the
organic redox couple resulted in the increase in V,.. We think
that variations in the recombination kinetics or shifts in the
TiO, conduction band position could lead to the higher V. For
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example, different cations (i.e. Li" and tetra-n-butylammonium
(TBA") in the hybrid electrolyte) can give different potentials for
the conduction band edge (E.,) of the TiO, nanoporous film. An
increase of a cation radius or a less-adsorptive cation shifts E.;,
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Fig. 6 EIS plots of the DSSC devices using Fc-D3.
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Fig. 5 J-V curve of the DSSC devices (left), EQE plots (middle), and IQE plots (right).

Table 2 Summary of the photovoltaic parameters of the DSSC devices

700

1QE(%)
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e F-D3 (AN-50)
e—F-D2 (AN-50)
Fc-D1 (AN-50)

F
300

&4
o

—T T
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Wavelength (nm)

Voe (V) Jse (MA cm™?) FF (%) 7 (%)
Fc-D1 (AN-50) 0.407 + 0.004 0.730 + 0.049 58.4 + 2.1 0.180 + 0.009
Fe-D1 (Hybrid) 0.405 + 0.021 0.610 + 0.046 61.2 + 1.2 0.160 + 0.019
Fc-D2 (AN-50) 0.337 + 0.014 0.590 =+ 0.056 57.9 + 2.0 0.115 + 0.018
Fc-D2 (Hybrid) 0.380 + 0.010 0.770 £ 0.050 60.3 + 1.9 0.190 + 0.004
Fc-D3 (AN-50) 0.434 + 0.005 1.070 + 0.052 57.5+ 1.3 0.279 + 0.023
Fe-D3 (Hybrid) 0.494 + 0.008 1.190 + 0.057 54.1 + 2.3 0.325 + 0.005

This journal is © The Royal Society of Chemistry 2016

RSC Adv., 2016, 6, 9132-9138 | 9135


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ra21565j

Open Access Article. Published on 22 January 2016. Downloaded on 1/21/2026 7:01:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

negatively and thus the increase of Ereqox —
increase of the photovoltage.*®*

As electrochemical impedance spectroscopy (EIS) can offer
very valuable insight into interfacial charge-transfer processes,
we have used this technique to explore DSSCs sensitized with
Fe-D3. The semicircle in the intermediate frequency region in
Fig. 6a represents the electron transfer process at the TiO,/dye/
electrolyte interface and its radius is related to the charge
recombination rate, i.e. a larger radius indicates a slower charge
recombination. The semicircle in the low frequency region in
Fig. 6a is associated with the Warburg diffusion of the redox
couple in the electrolyte. The electron lifetime corresponding to
the TiO,/dye/electrolyte interface, can be estimated from the
peak frequency (fyeai) in Fig. 6b according to . = 1/27tfcax. The
calculated values of Fe-D3 (AN-50) and Fe-D3 (Hybrid) are
0.36 ms and 0.71 ms, respectively. The addition of the organic
redox couple suppresses the back charge recombination at the
TiO,/dye/electrolyte and thus this resulted in the increase in Jy.

E., leads to the

Experimental
Materials and methods

All reactions were undertaken under a nitrogen atmosphere.
Solvents were purified using a PureSolv solvent purifier system.
Reagents were purchased from Sigma-Aldrich, and were used
without further purification. NMR spectra were obtained with
either a Bruker AVIII 400 MHz or a Bruker AVIII 500 MHz
spectrometer and all reported chemical shifts are relative to
TMS. UV-vis spectra were recorded on a Perkin-Elmer Lamda 25
instrument. Optically determined band gaps (E,,) were esti-
mated using the absorption edge of the longest wavelength
absorption (A) using E,pc (€V) = (1240/4 (nm)). Cyclic voltam-
metry measurements were undertaken using a CH Instruments
440A electrochemical analyzer using a platinum working elec-
trode, a platinum wire counter electrode and a silver wire
pseudo-reference electrode. Ferrocene was used as an internal
standard and all redox couples are reported versus the
ferrocene/ferrocenium (Fc/Fc') redox couple, adjusted to 0.0 V.
The solutions were prepared using dry dimethylformamide
(DMF) containing electrochemical grade tetrabutylammonium
hexafluorophosphate (0.1 M) as the supporting electrolyte. The
solutions were purged with nitrogen gas for 3 min prior to
recording the electrochemical data.

Theoretical calculations

Density functional theory (DFT) calculations were performed
using Gaussian 09 to gain insight electronic properties of the
dye molecules.”® Global minimum states were confirmed by
absence from imaginary frequencies under ground-state
geometry optimization followed by vibrational frequency
calculations. All calculations were conducted with Becke's
three-parameter hybrid and Lee-Yang-Parr's gradient corrected
correlation (B3LYP) functional and 6-311G(d,p) basis set for H,
C, N, O, S and LanlI2DZ functional for Fe, under vacuum.

9136 | RSC Adv., 2016, 6, 9132-9138
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Fabrication of DSSCs and photovoltaic measurements

The TiO, photoanodes were screen-printed onto transparent
fluorine-doped SnO, (FTO)-coated conducting glass (TEC 8,
Pilkington, 2.2 mm-thick, sheet resistance = 8 Q sq.”*).>* The
resulting layer was placed in a muffle furnace and gradually
heated to 300 °C over a 30 min period, then heated at 300 °C for
1 hour, and then heated to 575 °C for 1 hour, and then cooled to
room temperature. The screen printing and calcination
processes were repeated until a thickness of approximately 20
um was obtained. The active area of the electrodes was 0.25 cm?.
The prepared photoanodes were immersed in a 0.04 M solution
of TiCl, at 75 °C for 1 hour, rinsed with deionized water, and
then sintered at 500 °C for 30 min. They were exposed to O,
plasma for 10 min and then immersed for 24 hours in one of
three dye-containing ethanol solutions (0.5 mM). The Pt counter
electrodes were prepared on the FTO-coated glass with
magnetron sputtering and two holes were drilled in the glass.
Both the dye-sensitized TiO, electrode and Pt counter electrode
were sealed with a 60 pm-thick layer of Surlyn (Solaronix,
Switzerland). An iodide based redox electrolyte (Iodolyte AN-50,
Solaronix) was injected into the rear side of the counter elec-
trode. A hybrid electrolyte, a mixture of the I /I;~ and McMT ™/
BMT couples was also used. The photovoltaic characteristics of
the DSSCs under AM 1.5 illumination (equivalent to one sun, 1
kW m ™ ?) were investigated with a solar cell current-voltage (I-V)
measurement system (K3000 LAB, McScience, Korea). The
photocurrent density (Js.), open-circuit voltage (V,.), fill factor
(FF), and power-conversion-efficiency (n) were simultaneously
measured. EQE and IQE were recorded as a function of excita-
tion wavelength (1) by a spectral incident photon-to-current
efficiency (IPCE) measurement system (K3100, McScience,
Korea).

Synthetic procedures

Compound 3. Ferroceneboronic acid 1 (500 mg, 2.17 mmol)
and 2 (960 mg, 3.26 mmol) were dissolved in dry dioxane (15
mL). A 2 M K,CO; aqueous solution (10.9 mL, 21.7 mmol) was
added, and the mixture was degassed for 30 minutes with N,.
Then Pd(dppf)Cl, (791 mg, 0.11 mmol) was added and the
resulting mixture was left to stir at reflux. After 14 h, the mixture
was allowed to cool to room temperature, and was then
quenched with water (50 mL) and extracted with DCM (3 x 50
mL). The combined organic extracts were dried over MgSO,,
filtered and concentrated under vacuum. The crude compound
was purified by column chromatography (SiO,, petroleum
ether : toluene (1 : 1)), affording the title compound as a purple
solid (393 mg, 46%). mp 165-166 °C. 6;; (400 MHz, CDCl,, TMS),
7.73 (1H,d,J 7.7), 7.55 (1H, d, J 7.7), 5.24 (2H, t, ] 1.9), 4.51 (2H,
t, J 1.9), 4.03 (5H, s). 6c (100 MHz, CDCl,, TMS), 154.2, 153.1,
134.1, 132.4, 125.2, 110.5, 80.4, 70.3, 70.0, 68.8. HRMS (ESI, m/
z): [M + H]" found, 397.9155; calc. for (C;6H;iBrFeN,S),
397.9170.

Compound 4. Compound 3 (390 mg, 0.98 mmol) and 4-for-
mylphenylboronic acid (177 mg, 1.18 mmol) were dissolved in
THF (15 mL). A 2 M K,COj3; aqueous solution (4.9 mL, 9.8 mmol)
was added, and the solution was degassed for 30 minutes with

This journal is © The Royal Society of Chemistry 2016
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N,. Then, Pd(PPh;), (57 mg, 0.05 mmol) was added and the
solution was left to stir at reflux. After 48 h, the mixture was
allowed to cool to room temperature, and was then quenched
with water (50 mL) and extracted with DCM (3 x 50 mL). The
combined organic extracts were dried over MgSOy, filtered and
concentrated under vacuum. The crude compound was purified
by column chromatography (SiO,, toluene), affording the title
compound as a purple solid (355 mg, 84%). mp > 300 °C. i (400
MHz, CDCl;, TMS), 10.11 (1H, s), 8.17 (2H, d, J 8.2), 8.05 (2H, d,J
8.2),7.80(1H, d,J7.5), 7.70 (1H, d,] 7.5), 5.34 (2H, t, ] 1.9), 4.55
(2H, t, J 1.9), 4.07 (5H, s). 6c (100 MHz, CDCl,;, TMS) 192.1,
154.1, 153.9, 143.9, 135.7, 134.8, 130.1, 129.7, 129.5, 129.1,
125.0, 80.8, 70.3, 70.1, 69.0. HRMS (EI, m/2): [M]" found,
424.0331; calc. for (C,3H;6FeN,0S), 424.0333.

Dye Fc-D1. Compound 4 (332 mg, 0.78 mmol), cyanoacetic
acid (80 mg, 0.94 mmol) and MgSO, (40 mg, 0.16 mmol) were
dissolved/suspended in toluene (50 mL). Piperidine (8 pL, 0.08
mmol) and acetic acid (27 pL, 0.47 mmol) were added, and the
mixture was then left to stir at 100 °C. After 6 h, the reaction was
stopped and the solvent was removed under vacuum. The crude
compound was purified by column chromatography (SiO,,
DCM : methanol (9:1)), affording the title compound as
a green solid (270 mg, 71%). mp > 300 °C. éy (500 MHz, d¢-
DMSO, TMS), 8.18 (2H, d, J 8.4), 8.05 (3H, d, J 8.4), 8.01 (1H, d, J
7.5),7.90 (1H, d, J 7.5), 5.41 (2H, t, ] 1.9), 4.57 (2H, t, ] 1.9), 4.06
(5H, s). HRMS (ESI, m/z): [M — H] found, 490.0315; calc. for
(C,6H,cFeN;0,S), 490.0318.

Compound 62, Ethynylferrocene 5 (157 mg, 0.75 mmol), and
2 (200 mg, 0.68 mmol) were dissolved in a mixture of THF (10
mL) and Et;N (10 mL). The solution was degassed for 30
minutes, with N,, then Pd(PPh;),Cl, (24 mg, 0.03 mmol) and
Cul (7 mg, 0.03 mmol) were added. The mixture was left to stir
at 60 °C. After 6 h, the mixture was allowed to cool to room
temperature and was then quenched with an aqueous solution
of HCl (5%, 50 mL). The organic layer was extracted with DCM
(3 x 50 mL), washed with water, dried over MgSO,, filtered and
concentrated under vacuum. The crude compound was purified
by column chromatography (SiO,, petroleum ether : DCM
(9 : 1)), affording the title compound as an orange solid (250
mg, 89%). mp 170-171 °C. &y (500 MHz, CDCl;, TMS), 7.6 (1H,
d,j8.3),7.2 (1H, d, J 8.3), 4.5 (2H, s), 4.2 (7H, b). éc (125 MHz,
CDCl;, TMS) 154.2, 153.1, 132.1, 132.0, 117.4, 113.5, 97.0, 81.1,
71.9, 70.2, 69.4, 63.9.

Compound 7. Compound 6 (200 mg, 0.47 mmol) and 4-for-
mylphenylboronic acid (85 mg, 0.56 mmol) were dissolved in
THF (20 mL). A 2 M K,COj; solution (2.4 mL, 4.7 mmol) was
added, and the solution was degassed for 30 minutes with N,.
Then Pd(PPh;), (27 mg, 0.03 mmol) was added and the solution
was then left to stir at reflux. After 6 h, the mixture was allowed
to cool to room temperature, and was then quenched with water
(50 mL) and extracted with DCM (3 x 50 mL). The combined
organic extracts were dried over MgSO,, filtered and concen-
trated under vacuum. The crude compound was purified by
column chromatography (SiO,, petroleum ether : DCM (1 : 1)),
affording the title compound as a brown solid (180 mg, 86%).
mp > 300 °C. 6y (400 MHz, CDCl;, TMS), 10.11 (1H, s), 8.15 (2H,
d,J:» 8.5), 8.05 (2H, d,  8.5), 7.87 (1H, d, ] 7.4), 7.77 (1H, d, ] 7.4),
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4.67 (2H, t, ] 1.9), 4.34 (2H, t, J 1.9), 4.32 (5H, s). 6 (100 MHz,
CDCl;, TMS) 153.8, 116.9, 116.9, 98.4, 95.7, 95.0, 94.1, 92.1, 91.4,
81.5,77.9, 51.7, 44.4, 34.5, 32.8, 32.1, 26.5. HRMS (EI, m/z): [M]"
found, 448.0331; calc. for (C,5H;sFeN,0S), 448.0333.

Dye Fc-D2. Compound 7 (130 mg, 0.29 mmol), cyanoacetic
acid (30 mg, 0.35 mmol) and MgSO, (14 mg, 0.06 mmol) were
dissolved/suspended in toluene (20 mL). Piperidine (3 pL, 0.03
mmol) and acetic acid (10 pL, 0.17 mmol) were added, and the
mixture was then left to stir at 100 °C. After 6 h, the reaction was
stopped and the solvent was removed under vacuum. The crude
compound was purified by column chromatography (SiO,,
DCM : methanol (9 : 1)), affording the title compound as a dark
brown solid (144 mg, 96%). mp > 300 °C. oy (500 MHz, d¢-
DMSO, TMS), 8.17 (2H, d, J 8.5), 8.05 (2H, d, J 8.5), 8.02 (1H, s),
7.98 (2H, s), 4.70 (2H, t, ] 1.9), 4.44 (2H, t, J 1.9), 4.35 (5H, s).
HRMS (ESI, m/z): [M — H]™ found, 514.0295; calc. for (C,gH;¢
FeN;0,S), 514.0318.

Compound 8. Compound 6 (280 mg, 0.66 mmol), and 4-
ethynylbenzaldehyde (95 mg, 0.73 mmol) were dissolved in
a mixture of THF (10 mL) and Et;N (10 mL). The solution was
degassed for 30 minutes, with N,, then Pd(PPh;),Cl, (24 mg,
0.03 mmol) and Cul (7 mg, 0.03 mmol) were added. The mixture
was left to stir at room temperature. After 6 h, the mixture was
quenched with a saturated aqueous solution of NH,Cl (50 mL).
The organic layer was extracted with DCM (3 x 50 mL), washed
with water, dried over MgSO,, filtered and concentrated under
vacuum. The crude compound was purified by column chro-
matography (SiO,, toluene : diethyl ether (9 : 1)), affording the
title compound as an orange solid (140 mg, 45%). mp > 300 °C.
6y (500 MHz, CDCl;, TMS), 10.05 (1H, s), 7.92 (2H, d, J 8.4), 7.82
(2H, d, J 8.4), 7.80 (1H, d, ] 7.4), 7.75 (1H, d, ] 7.4), 4.66 (2H, t, ]
1.9), 4.35 (2H, t, J 1.9), 4.31 (5H, s). é¢ (125 MHz, CDCl;, TMS)
191.5, 154.5, 136.1, 133.3, 132.6, 131.7, 129.8, 129.0, 119.1,
115.5, 98.8, 95.9, 89.4, 82.1, 72.2, 70.4, 69.8, 64.1. HRMS (EI, m/
z): [M]" found, 472.0328; calc. for (C,,H;cFeN,OS), 472.0333.

Dye Fc-D3. Compound 8 (140 mg, 0.30 mmol), cyanoacetic
acid (30 mg, 0.35 mmol) and MgSO, (14 mg, 0.06 mmol) were
dissolved/suspended in toluene (20 mL). Piperidine (3 pL, 0.03
mmol) and acetic acid (10 pL, 0.17 mmol) were added, and the
mixture was then left to stir at 100 °C. After 6 h, the reaction was
stopped and the solvent was removed under vacuum. The crude
compound was purified by column chromatography (SiO,,
DCM : methanol (9: 1)), affording the title compound as an
orange solid (190 mg, 44%). mp > 300 °C. dy (400 MHz, d¢-
DMSO, TMS), 8.07 (1H, bs), 8.02 (2H, d, J 8.2), 7.98 (1H, d, ] 7.4),
7.90 (1H, d,J 7.4), 7.78 (2H, d, ] 8.2), 4.70 (2H, t, ] 1.9), 4.45 (2H,
t, J 1.9), 4.34 (5H, s). HRMS (ESI, m/z): [M — H]~ found,
538.0326; calc. for (C30H;6FeN30,S), 538.0318.

[nBu,N]'McMT . 2-Mercapto-5-methyl-1,3,4-thiadiazole (McMT)
(1.32 g) was neutralized with a 1 M solution of tetra-n-butylammo-
nium (TBA") hydroxide in 10 mL methanol. The reaction was heated
under reflux for 3 hours under a N, atmosphere. Then, the solvent
was evaporated and the resulting thiolate salt was dried under
vacuum at 40 °C for 12 hours and placed at room temperature for
12 hours.

1,2-Bis(5-methyl-1,3,4-thiathiazole-2-yl)sulfide (BMT). McMT
(1.32 g) was deprotonated with potassium carbonate (0.69 g) in
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20 mL methanol. The mixture underwent ultrasonic treatment
for 2 hours and then iodine (1.25 g) was added to the solution
and the reaction was sonicated for a further 10 minutes until
the iodine disappeared completely. The solvent was removed
under vacuum and the residue was dissolved in excess CH,Cl,.
The solution was washed with water (3 x 30 mL), and finally the
organic phase was collected and dried over anhydrous Na,SOy,,
filtered and the solvent evaporated to yield BMT as a white solid
which was dried under vacuum at 40 °C for 12 hours.

Conclusions

In conclusion, a series of new Fe-functionalised dyes have been
synthesised and characterised. We have shown that the
sequential addition of alkyne units on going from Fe-D1 to Fe-
D3 has a significant effect on both the light absorption char-
acteristics and LUMO of the dyes. In addition, DSSCs fabricated
using dye Fec-D3 display the highest n values of the series,
providing a maximum value of 0.325% when a hybrid electrolyte
was used. Currently, we are exploring other n-type metal oxide
semiconductors in order to avoid direct electron injection from
the HOMO of the Fc dyes to the conduction band (CB) of the
metal oxide and back electron transfer from the CB to the
HOMO. However, an important problem facing the develop-
ment of ferrocene-based dyes is the well-documented instability
of oxidized state of Fc (ferrocenium) to molecular oxygen,>
which will need to be addressed if efficient and stable DSSCs are
to be fabricated in the future.

Acknowledgements

GC and MC thank the EPSRC for funding (EP/E036244/1, EP/
J500434/1). MC JH acknowledges a Small and Medium Busi-
ness Administration (SMBA) grant (No. S212933) and the
International Cooperative R&D program through Korea Insti-
tute for Advancement of Technology (KIAT) funded by the
Ministry of Trade, Industry and Energy (MOTIE) of Korea.
Ministry of Trade, Industry and Energy (MOTIE) of Korea. Open
access data: http://dx.doi.org/10.5525/gla.researchdata.250

Notes and references

1 B. O'Regan and M. Gratzel, Nature, 1991, 353, 737-740.

2 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson,
Chem. Rev., 2010, 110, 6595-6663.

3 For representative reviews see: (a) A. Mishra, M. K. R. Fischer
and P. Biuerle, Angew. Chem., Int. Ed., 2009, 48, 2474-2499;
(b) Y. Ooyama and Y. Harima, ChemPhysChem, 2012, 13,
4032-4080; (¢) R. K. Kanaparthi, J. Kandhadi and
L. Giribabu, Tetrahedron, 2012, 68, 8383-8393; (d)
B.-G. Kim, K. Chung and J. Kim, Chem.-Eur. J., 2013, 19,
5220-5230.

9138 | RSC Adv., 2016, 6, 9132-9138

View Article Online

Paper

4 T. Higashino and H. Imahori, Dalton Trans., 2015, 44, 448-463.

5 Ferrocenes: Ligands, Materials and Biomolecules, ed. P.
Stepnicka, John Wiley and Sons Ltd., 2008.

6 (a) T. Daeneke, T.-H. Kwon, A. B. Holmes, N. W. Duffy,
U. J. Bach and L. Spiccia, Nat. Chem., 2011, 3, 211-215; (b)
T. Daeneke, A. ]J. Mozer, T.-H. Kwon, W. Dulffy,
A. B. Holmes, N. U. Bach and L. Spiccia, Energy Environ.
Sci., 2012, 5, 790-799; (c) S. Sonmezoglu, C. Akyiirek and
S. Akin, J. Phys. D: Appl. Phys., 2012, 45, 425101.

7 R. Chauhan, M. Trivedi, L. Bahadur and A. Kumar, Chem.-
Asian J., 2011, 6, 1525-1532.

8 D. Sirbu, C. Turta, A. C. Benniston, F. Abou-Chahine,
H. Lemmetyinen, N. V. Tkachenko, C. Wood and
E. Gibson, RSC Adv., 2014, 4, 22733-22742.

9 M. Liang and ]J. Chen, Chem. Soc. Rev., 2013, 42, 3453-
3488.

10 (a) C. Teng, X. Yang, C. Yang, H. Tian, S. Li, X. Wang,
A. Hagfeldt and L. Sun, J. Phys. Chem. C, 2010, 114, 11305-
11313; (b) J.-L. Song, P. Amaladass, S.-H. Wen,
K. K. Pasunooti, A. Li, Y.-L. Yu, X. Wang, W.-Q. Deng and
X.-W. Liu, New J. Chem., 2011, 35, 127-136.

11 K. Pilgram, M. Zupman and R. Skiles, J. Heterocycl. Chem.,
1970, 7, 629-633.

12 R. Misra, P. Gautam, T. Jadhav and S. M. Mobin, J. Org.
Chem., 2013, 78, 4940-4948.

13 O. F. Mohammed and A. A. O. Sarhan, Chem. Phys., 2010,
372, 17-21.

14 J.-L. Bredas, Mater. Horiz., 2014, 1, 17-19.

15 Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, ]J. Luo,
W. Kaminsky, J. B. Benedict, P. J. Reid, A. K.-Y. Jen,
L. T. Dalton and B. H. Robinson, J. Am. Chem. Soc., 2005,
127, 2758-5766.

16 S.-I. Kato, M. Kivala, W. B. Schweizer, C. Boudon,
J.-P. Gisselbrecht and F. Diederich, Chem.-Eur. J., 2009, 15,
8687-8691.

17 H. Tian, X. Jiang, Z. Yu, L. Kloo, A. Hagfeldt and L. Sun,
Angew. Chem., Int. Ed., 2010, 49, 7328-7331.

18 Y. Liu, A. Hagfeldt, X.-R. Xiao and S.-E. Lindquist, Sol. Energy
Mater. Sol. Cells, 1998, 55, 267-281.

19 S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and
S. Yanagida, J. Phy. Chem. B, 2005, 109, 3480-3487.

20 M. J. Frisch, et al., Gaussian 09, Gaussian, Inc., Wallingford
CT, 2009.

21 M. Al-Eid, S. Lim, K.-W. Park, B. Fitzpatrick, C.-H. Han,
K. Kwak, J. Hong and G. Cooke, Dyes Pigm., 2014, 104,
197-203.

22 For examples see: (a) M. Sato, T. Yamada and A. Nishimura,
Chem. Lett., 1980, 925-926; (b) G. Zotti, G. Schiavon,
S. Zecchin and D. Favretto, J. Electroanal. Chem., 1998, 456,
217-221; (¢) J. P. Hurvois and C. Moinet, J. Organomet.
Chem., 2005, 690, 1829-1839.

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ra21565j

	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...

	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...

	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...
	An investigation of the role increasing tnqh_x3c0-conjugation has on the efficiency of dye-sensitized solar cells fabricated from ferrocene-based...


