Excess-electron-induced C–C bond formation in transformation of carbon dioxide
Abstract
This study presents a new fixation method of CO2 through excess-electron-induced C–C bond formation using quantum chemical method. Because of active CO2−˙ with a distinct radical character at the carbon center, two divalent anion complexes [O2C–C6H6–CO2]2− (cis-II and trans-II) are obtained via C–C bond formation between the carbon atom of C6H6 and the carbon atom of CO2 in the process of CO2−˙ radical attacking on benzene molecule. Furthermore, the transformations of cis-II and trans-II are predicted. We found that the more favorable transformation is for cis-II. It can produce terephthalic and one H2 molecule via two H-atom elimination with the energy barrier of 35.70 kcal mol−1. Furthermore, we found that the formed hydrogen bond complex CO2–HCN did not reduce the energy barrier; however, it could reduce the energy of the transition state with respect to that of the reactant, due to it dispersing the charge of benzene ring.
Please wait while we load your content...