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Synthesis of 1,1-diboronate esters by cobalt-
catalyzed sequential hydroboration of terminal
alkynes†

Ziqing Zuo and Zheng Huang*

A cobalt complex of iminopyridine-oxazoline catalyzes sequential hydroboration of alkyl and aryl alkynes

with pinacolborane to form 1,1-diboronate esters. The reactions proceed under mild conditions with high

yields, high regioselectivity, and wide functional group tolerance. The synthetic utility of 1,1-di(boronates)

is demonstrated by chemoselective monoarylation and stepwise diarylation through palladium-catalyzed

Suzuki–Miyaura coupling reactions.

1,1-Organodiboronate esters are valuable synthetic intermedi-
ates for preparation of multifunctionalized molecules.1 Such
1,1-diboryl compounds can be used as coupling reagents for
C–C bond formations through Suzuki–Miyaura reactions.2

Advantages of 1,1-diboronate esters over other 1,1-organo-
dimetallic nucleophiles include their unique stability, operational
simplicity, and non-toxicity.3,4 In addition, the boronate
moiety can be readily converted into alcohol, amine, and other

functional groups. Conventional, non-catalytic methods for
synthesis of 1,1-diboronate esters involve reactions of lithiated
reagents with bis(pinacolato)diboron,5 or hydroboration of
terminal alkynes with a mixture of trichloride and trialkyl-
silane, followed by treatment with a suitable diol reagent.6

However, these methods suffer from poor functional-group
compatibility, formation of waste inorganic salts, and multiple
synthetic sequences. Recently, transition-metal-catalyzed
methods have gained attention. For example, copper-catalyzed
diborylation of 1,1-dibromoethane with bis(pinacolato)
diboron formed 1,1-diborylethane in moderate yield.7,8 Hall2c

and Yun9 reported copper-catalyzed enantioselective hydro-
boration of alkenylboron compounds with a 1,8-naphthalene-
diaminatoboryl substituent, furnishing 1,1-diboronate esters
with high optical purity. Hartwig reported iridium-catalyzed
diborylation of benzylic C–H bonds directed by a hydrosilyl
group to form 1,1-benzyldiboronate esters.10 Platinum-cata-
lyzed11 or metal-free12 carbene insertions into B–B bonds of
diboron compounds have also been developed for preparation
of 1,1-diboronate esters.

Due to high atom economy, easy access of starting
materials, and mild reaction conditions, the catalytic sequen-
tial hydroboration of terminal alkynes is a synthetically useful
approach to 1,1-diboronates. However, the sequential, regio-
selective hydroborations of the alkenylboronate intermediates
are rare, and most reactions generate a regioisomeric
mixture.13,14 In 2009, Shibata reported a rhodium-catalyzed
sequential hydroboration of alkynes with pinacolborane
(HBpin) to afford 1,1-diboronates with high regioselectivity,
but in low to moderate yields; monoborylalkanes are formed
in noticeable yields (12–24%) as the side-products via
reduction of the alkenylboronate intermediates (Scheme 1a).15

More recently, Yun reported a copper(I)-catalyzed selective
sequential hydroboration of alkyl alkynes with HBpin to form
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1,1-diboronate esters, but reactions of aryl alkynes yield mono-
boryl and diboryl mixtures (Scheme 1b).16

Driven by our interest in developing base–metal catalyst
systems for alkene hydrofunctionalizations,17 recently we and
Lu independently reported iminopyridine-oxazoline (IPO)
cobalt17e,18 and iron17g,19 complexes for asymmetric hydrobora-
tion/hydrosilylation of 1,1-disubstituted alkenes and ketones.
Herein, we report that an IPO cobalt complex catalyzes regio-
selective sequential hydroboration of alkyl and aryl alkynes
(Scheme 1c). Most reactions occur under mild conditions with
high isolated yields. The method exhibits a broad substrate
scope and wide functional group tolerance.

We commenced our studies by examining the reaction of
1-hexyne (1a) with HBpin (Table 1). When using 3 mol% of
(IPO)FeBr2 (4a) as the catalyst precursor and 6 mol% of
NaBHEt3 as the catalyst activator, the reaction of 1a with
2 equiv. of HBpin in THF at room temperature after 12 h gave
23% of the desired dual hydroboration product 2a, 28% of
trans-monoborylalkene (3α), and 42% of monoborylalkane (3β)
(entry 1). However, using the cobalt analogue (IPO)CoCl2 4b as
the precatalyst led to the formation of 2a with very high selecti-
vity and yield (96%) (entry 2). A control experiment with the
catalyst activator, but without the precatalyst only gave 4% of
3α (entry 3). To evaluate the role of the ligand, reactions using
the related cobalt complexes with bis(imino)pyridine (4c) and
bis(oxazoline)pyridine (4d) ligands have been carried out. The
former gave the desired product in low yield (11%), along with
39% of 3α and 43% of 3β (entry 5), whereas the latter gave
89% of 2a and 5% of 3β (entry 6). The addition of the catalyst
activator is essential for the catalysis (entry 4), but it is not
limited to NaBHEt3. The reaction using MeLi as the activator
afforded the dual hydroboration product in a yield close to
that using NaBHEt3. The reactions proceeded smoothly in
other solvents, such as toluene, n-pentane, and diethyl ether,

albeit with relatively low yield compared to that in THF
(entries 7–10).

We next studied the scope and limitation of the protocol
with (IPO)CoCl2 4b as the catalyst precursor, NaBHEt3 as the
activator, and THF as the solvent (Table 2). Terminal aliphatic
alkynes all reacted with HBpin to form the diboryl products
selectively. Simple alkynes with linear and branched alkyl
groups were converted to the corresponding 1,1-diboronate
esters in high yields (2a–2d). A wide range of functional
groups, such as chloride (2e), silicon ether (2f ), benzyl ether
(2g), amide (2h), ester (2i), and internal olefin (2k), can be
tolerated. Phenyl-protected propargyl amine gave the desired
product (2l) in moderate yield.

Reactions of terminal aryl alkynes also occurred efficiently.
Substrates containing both electron-donating and -withdraw-
ing substituents, such as alkyl (2n and 2o), methoxy (2p),
fluoride (2q), and dimethylamino (2r) groups, afforded the
1,1-diboryl products in high isolated yields. Naphthyl- (2s),
thienyl- (2t), and ferrocenyl-substituted acetylenes (2u) are suit-
able substrates for sequential hydroboration with exclusive
terminal selectivity.

In situ monitoring of the cobalt-catalyzed reaction of 1-hexyne
(1a) with 2 equiv. of HBpin provided insight into the catalytic
process. As shown in Fig. 1, the reaction at the early stage gave
2a in low yield, but a substantial amount of 3α (e.g., 15 min,
67% of 3α, 8% of 2a). The intermediate 3α was gradually
converted to 2a over the course of the reaction. The transform-

Scheme 1 Transition-metal-catalyzed sequential hydroboration of
terminal alkynes.

Table 1 Cobalt-catalyzed sequential hydroboration of 1-hexyne 1a
with HBpina

Entry Precatalyst Activator Solvent

Yieldb (%)

2 3α 3β

1 4a NaBHEt3 THF 23 28 42
2 4b NaBHEt3 THF 96 (92) <1 3
3 None NaBHEt3 THF 0 4 0
4 4b — THF 0 3 0
5 4c NaBHEt3 THF 11 39 43
6 4d NaBHEt3 THF 89 <1 5
7 4b MeLi THF 95 (90) <1 4
8 4b MeLi Toluene 83 <1 3
9 4b MeLi n-Pentane 87 <1 4
10 4b MeLi Et2O 87 <1 5

a Reaction conditions: 1a (0.5 mmol), HBpin (1.0 mmol), 4 (3 mol%),
and additive (6 mol%) in THF (2 mL) at RT. bGC yields using
mesitylene as an internal standard (isolated yields in parentheses).
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ation was nearly complete in 3 h, furnishing 2a in 91% yield.
Except for 2a, 3α, and a trace amount of 3β (<3%), no other
products were detected by GC during the whole process. The
results indicate that the reaction occurs via formation of trans-
monoborylalkene (3α) as the intermediate, which undergoes
subsequent hydroboration to give the 1,1-diboryl product.

The synthetic utility of 1,1-diboronate esters was demon-
strated by their applications to palladium-catalyzed Suzuki–
Miyaura coupling reactions. Seminal work by Shibata showed
that the adjacent boron atom in 1,1-diborylalkanes has a
beneficial effect on the transmetallation step for coupling reac-
tions.2a,8,10 Using Pd[P(tBu)3]2 as the catalyst and KOH as the
base, we found that 1,1-diboryl compound 2j coupled selec-
tively with various aryl bromides at room temperature, giving
the monoarylation products in high yields (Table 3). O- and
S-containing benzoheterocyclic (5e–5g) and heterocyclic (5h)
bromides are also favorable substrates under the reaction con-
ditions. Noteworthily, while the reaction with a p-F-substituted
aryl bromide gave the benzyl boronate 5b in 86% isolated
yield, under otherwise identical conditions, the coupling with
a p-CF3-substituted aryl bromide afforded 80% of the proto-
deborylation product 6a. Furthermore, with 4-bromo-2-methyl-
pyridine as the substrate, a similar transformation involving
the combination of cross coupling and protodeborylation
occurred to form 6b in 89% yield.20

In addition, using a protocol developed by Crudden, the
isolated secondary benzylic boronate esters could undergo

Table 2 Cobalt-catalyzed sequential hydroboration of various terminal
alkynes with HBpina

a Reaction conditions: 1 (0.5 mmol), HBpin (1.0 mmol), 4b (3 mol%),
and NaBHEt3 (6 mol%) in THF (2 mL) at rt. Isolated yields. bWith
3.0 mmol HBpin.

Fig. 1 Profile of sequential hydroboration of 1-hexyne (1a) with 2 equiv.
of HBpin catalyzed by 3 mol% 4b and 6 mol% NaBHEt3 in THF at room
temperature.

Table 3 Coupling of 1,1-diboronate 2j with aryl bromidesa and the sub-
sequent coupling with aryl iodidesb

a Reaction conditions: 2j (0.22 mmol), ArBr (0.2 mmol), Pd[P(tBu)3]2
(5 mol%), and KOH aq. (40 µL, 10 M in H2O) in dioxane (1 mL) at RT.
Isolated yields. bReaction conditions: 5a (0.2 mmol), ArI (0.24 mmol),
Pd2(dba)3 (5 mol%), PPh3 (0.2 mmol), and Ag2O (0.3 mmol) in dioxane
(1 mL) at 90 °C. Isolated yields. c Carried out on 0.5 mmol scale.
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subsequent cross couplings.21 For example, the reactions of 5a
with aryl iodides catalyzed by Pd2(dba)2/PPh3 in the presence
of Ag2O afforded the diarylation products (7a–c) in useful
yields. Thus, the sequence of dual hydroboration and two-step
cross coupling reactions provides a synthetically efficient
approach to diarylmethane derivatives from simple alkynes.

In summary, we have developed a cobalt catalyst system for
selective synthesis of 1,1-diboronates from terminal alkyl and
aryl alkynes. Featuring the use of low-cost base–metal catalyst,
100% atom economy, mild reaction conditions, high conver-
sion, wide substrate scope, and broad functional group com-
patibility, the cobalt-catalyzed alkyne sequential hydroboration
could be an attractive route to 1,1-organodiboronate esters. We
have also demonstrated that the dual hydroboration products
are useful synthetic intermediates for chemoselective Suzuki–
Miyaura coupling reactions.
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