Issue 9, 2022

The tin(ii) precursor is an active site to determine the crystal framework in CsSnI3 perovskite

Abstract

Understanding the creation of the crystal framework and finding its origin in the perovskite structure is one of the most important tasks in the perovskite research field. The fundamental observation of the formation of a perovskite crystal from a liquid phase to a solid-state promotes the realization of an ideal perovskite structure. In this work, we investigated how to determine the crystal structure of cesium tin triiodide (CsSnI3) perovskite from the precursor solution to the crystallization film. Based on the opto-physical spectroscopy data and chemical interaction results, we found that tin(II) cations are the main active sites to determine the crystal framework of CsSnI3 perovskite. The Sn2+ precursor has strong coordination bonding with the sulfinyl group of dimethyl sulfoxide (DMSO) solvent in the liquid phase, which is kept in the solid phase and determines the CsSnI3 crystal structure. To achieve a more grain-ordered crystal structure by the coordination interaction, we introduced a new molecule, an ammonium trifluoromethanesulfonate (ATMS) anion, with a sulfonate group. Through the strong chemical interaction between the Sn2+ cation and ATMS anion, the Sn2+ precursor-based crystal phase was controlled. This facilitated unprecedented two-step synthesis of the CsSnI3 perovskite crystal and solar cell application, which revealed better device stability than conventional methods reported to date.

Graphical abstract: The tin(ii) precursor is an active site to determine the crystal framework in CsSnI3 perovskite

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2021
Accepted
23 Jan 2022
First published
25 Jan 2022

J. Mater. Chem. A, 2022,10, 4782-4790

The tin(II) precursor is an active site to determine the crystal framework in CsSnI3 perovskite

Y. J. Kim and D. Kang, J. Mater. Chem. A, 2022, 10, 4782 DOI: 10.1039/D1TA07121A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements