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Introduction

Small organic molecules are essential for the treatment of
many diseases and constitute most medicines marketed today.
The development of high-throughput screening (HTS) has
enabled the extremely rapid biological evaluation of large
collections of small organic molecules. However, despite
advances in HTS technologies and general access to large
molecular libraries, the annual number of approved small-
molecule drugs has been declining for years." Growing evi-
dence now suggests that many existing compound collections
are inadequate in the search for new molecular entities
capable of interacting with complex biological targets.”> Tra-
ditional compound collections are typically composed of flat
molecules with a high degree of sp>-hybridization and only
few stereocenters.” These compound collections are commonly
synthesized using classical combinatorial chemistry methods,
powered by the development of effective sp>-sp> coupling reac-
tions, which have been widely exploited in the last decades.
The routine synthesis of complex sp*rich molecules with
control of stereochemistry remains elusive and poses a sub-
stantial challenge for library production.”® Here, we report a
strategy towards a screening library containing molecules with
a relatively high degree of sp® hybridization. In general, contri-
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presented. Key steps of the strategy include tandem Petasis and Diels—Alder reactions, and divergent
complexity-generating cyclization cascades from a key dialdehyde intermediate. The methodology is
validated through the synthesis of a representative compound set, which has been used in the production
of 1617 molecules for the European Lead Factory.

butions to the European Lead Factory from the public consor-
tium have a significantly higher fraction of sp® compared to
commercial compound collections.*

Results and discussion

In this work, we wish to present a strategy for the efficient for-
mation of two novel scaffolds, each containing four stereo-
genic centers, including a quaternary center, applicable to
molecular library production. The approach starts with a
Petasis 3-component reaction® of salicylic aldehyde, allyl
amine and 2-furyl boronic acid derivatives to form an amino-
phenol, which upon exposure to elevated temperatures under-
goes an intramolecular Diels-Alder reaction”® (Fig. 1). The
Diels-Alder product may then undergo oxidative cleavage to
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Fig. 1 Synthesis strategies for the generation of two distinct and
complex sp*-rich scaffolds (A and B), based on complexity-generating
reactions from readily available starting materials.
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form a key dialdehyde intermediate, which can be reduced
and used in a Mitsunobu® cascade reaction (library A), or par-
ticipate in a reductive cyclisation with amines (library B).

For library development, it was decided to use N-allylbenzyl-
amine as the amine component to enable late stage
functionalization of the resulting scaffolds through benzyl de-
protection and appendage modification of the resulting sec-
ondary amine. Two 2-hydroxy benzaldehydes were used in the
tandem Petasis/Diels-Alder sequence, which provided the
desired products 1a and 1b as single diastereoisomers in high
yield on a 90 gram scale (85% and 93%, respectively,
Scheme 1).

The Diels-Alder products 1a and 1b were oxidatively cleaved
using catalytic K,0s0, and NMO as oxidant,'® followed by
treatment with NalO,. The intermediate dialdehyde was then
either reduced to give the diols 2a and 2b in excellent yields
(88% and 82%, respectively over three steps), or used in a
reductive cyclisation with variable primary amines to give the
compounds 3a-3d in high yields (80-95%, over three steps).

With the two diols 2a and 2b in hand, conditions for the
Mitsunobu cascade sequence were investigated. By applying
di-tert-butyl azodicarboxylate (DBAD) and PPh; in CH,CI, at
10 °C, full conversion to the cyclized product was observed
after 15 min, and the product 4 was isolated in near quantitat-
ive yield (>95%) (Scheme 2). DBAD was used as the azo-reagent
to facilitate easy removal of the hydrazine by-products via acid
treatment, improving the application for large-scale pro-
duction of screening libraries.""

Having established an efficient protocol for the intra-
molecular Mitsunobu reaction, we wanted to investigate the
possibility of a tandem intramolecular-intermolecular Mitsu-
nobu cascade, which would enable simultaneous creation of
the core scaffold and functionalization of the remaining
alcohol. The reactions were conducted using either phthal-
imide or phenol along with three equivalents of DBAD and
PPh;. The reactions with phthalimide as external nucleophile
proceeded smoothly to give 6a and 6b in excellent yields (90%
and >95%, respectively over two steps) after the deprotection
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Scheme 1 Diastereoselective tandem Petasis 3-component/Diels—
Alder cascade for the synthesis of tricyclic scaffold (la—b); oxidative
cleavage followed by reduction or reductive cyclization to bicyclic
scaffold (2a—b) and tricyclic scaffold (3a—d).
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Scheme 2 Tandem Mitsunobu reactions for the synthesis of cyclic
ethers (5a—b), primary amines (6a—b), and pyrazoles (7a—b). # Reaction
performed in CHCl,.

with hydrazine. On the other hand, the use of phenol only
gave 10% of the desired product, along with 90% of a di-Boc
hydrazine side-product (from reaction with reduced DBAD).

The low selectivity of the aromatic alcohol addition was
solved by changing the solvent to THF and employing an
excess of the nucleophile (3 equiv.), which gave the desired
compounds 5a and 5b in excellent yields (>95% and 87%,
respectively) using either phenol or 3-hydroxy pyridine as
nucleophile (Scheme 2).

Having observed the efficient addition of di-Boc hydrazine
in the Mitsunobu reaction, we investigated if this could be
exploited as an entry to create more structural diversity in the
resulting library. When the reaction was conducted in CH,Cl,,
notably without the addition of an external nucleophile, full
conversion to the hydrazine product was observed. The crude
reaction mixture was subsequently treated with 1 M HCI in
EtOH and a 1,3-dicarbonyl electrophile, thus giving 1,2-diazole
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Br Mel MeOC,H,Br PhSO,CI, EtsN,
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Scheme 3 Alkylation of phenols 3b—3d and functionalization of
amines 6a and 6b with sulfonyl chloride, acid chloride, and an
isocyanate.
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Table 1 Benzyl deprotection followed by library production
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“All library compounds were purified by preparative HPLC to simulate large library production. Reagents and conditions. (a) 2.5-10 mol% Pd/C,
HCOONH,, MeOH or EtOH, reflux, 1-6 h. (b) RCHO, NaBH(OAc);, DMF, rt, 8-16 h. (c) RCOOH, TBTU, DIPEA, DMF, rt, 1-16 h. (d) RSO,CI,

DIPEA, DMF, 1-16 h. (¢) RNCO, DMF, 1-16 h.

substituted compounds 7a and 7b in good yields (73% and
65%, respectively over two steps).

The two scaffolds, containing either a free phenol (3b-3d)
or a primary amine (6a-6b) were subsequently functionalized.
The phenols 3b-3d were alkylated with various alkyl halides in
DMF using KOH as base to give ethers 8a-8c in high yields
(75-94%) (Scheme 3). The primary amines 6a and 6b were
functionalized using either a sulphonyl chloride, acid chloride
or isocyanate to give derivatives 9a-9c in high yields (73-85%)."*

By using the benzyl protected building blocks, a small library
was synthesized to validate the strategy for library production.
Rewardingly, the benzyl group was smoothly removed using
catalytic Pd/C with HCOONH, as the hydrogen source. The
resulting secondary amines were subsequently decorated with a
variety of appendage functionalities using either reductive
amination, amide couplings, sulfonylation or urea formation
(Table 1). This process readily provided 30 compounds from the
two scaffolds based on appendages using the 3-4 diversity
points. The compounds were purified using preparative HPLC
to simulate a large library production, and the compounds were
generally isolated in good yields (33-95%, over two steps).

The validated chemistry was subsequently used to produce
a total of 1617 screening compounds for the European Lead
Factory. Library A (826 compounds) and library B (791 com-
pounds) were both produced with a success rate of 90% in the

This journal is © The Royal Society of Chemistry 2016

final functionalization step. All compounds were purified by
mass-directed preparative HPLC and obtained in purities
exceeding 95%.

Conclusions

In conclusion, we have developed an efficient strategy for the
synthesis of two complex and sp*-rich scaffolds (Fsp® = 0.57),
with excellent potential for appendage diversification reactions
at three or four reactive sites. The benzyl protected building
blocks for library production were obtained in 3-4 synthetic
steps in high-yielding reactions amenable to large-scale syn-
thesis. The chemistry was validated, first through production
of thirty screening compounds (Table 1), and subsequently
through large-scale production of 1617 compounds for the
European Lead Factory.
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