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Cp*Rh(III)-catalyzed electrophilic amination of
arylboronic acids with azo compounds for
synthesis of arylhydrazides†

Yan-Fung Lau, Chun-Ming Chan, Zhongyuan Zhou and Wing-Yiu Yu*

A [Cp*Rh(III)]-catalyzed electrophilic amination of arylboronic acids with diethyl azodicarboxylate (DEAD)

was developed, and arylhydrazides were produced in excellent yields and selectivity. The analogous amin-

ation with the arylazocarboxylates afforded the corresponding N,N-diarylhydrazides. The electrophilic

amination of arylboronic acids with azocarboxylates proceeds readily under mild conditions with excellent

functional group tolerance. Up to 99% yields were obtained. Preliminary mechanistic studies revealed that

prior formation of an arylrhodium(III) intermediate for the azo coupling reaction can be ruled out.

Transition metal-catalyzed electrophilic (umpolung) amin-
ations are attractive approaches for arylamine synthesis under
mild conditions.1 Characterized by weak N–X (X = leaving
group) σ-bonds, haloamines and hydroxyamine derivatives
have been extensively investigated for electrophilic amination
with organolithium and -magnesium reagents.2 Dialkyl azodi-
carboxylates are conceptually different classes of electrophilic
amination reagents. Unlike the halo/hydroxyamine-type
reagents, the azodicarboxylates react with carbanionic nucleo-
philes via N–N π-bond cleavage. While dialkyl azodicarboxy-
lates are known to react with stoichiometric organometallic
reagents for C–N bond coupling reactions,3 examples involving
transition metal catalysis are sparse in the literature
(Scheme 1). About a decade ago, Carreira and coworkers
reported a Co- and Mn-catalyzed alkene hydrohydrazination
using di-tert-butyl azodicarboxylate and triphenylsilane as
reagents.3e–g Recently, Chatani and coworkers reported a Cu-
catalyzed hydroarylation of azodicarboxylates.3h Muniz and co-
workers reported a Pd-catalyzed coupling of arylboronic acids
with diethyl azodicarboxylate (DEAD). A palladadiaziridine
complex was structurally characterized and was shown to
mediate the C–N bond coupling reaction.3i,j

Owing to an interest in developing transition metal cata-
lyzed C–H bond aminations under mild conditions,4 we pre-
viously accomplished regioselective Pd-/Rh-catalyzed ortho-
selective arene C–H amination with tosyloxycarbamates and
N-chloroamines.4k–o The catalytic arene C–H amination should

proceed by coupling of reactive arylpalladium(II) and
-rhodium(III) complexes with the amination reagents. By virtue
of the weak N–N π-bond, we envisioned that dialkyl
azodicarboxylates would be effective coupling partners with aryl-
metal complexes for C–N bond formation. Here we describe
[Cp*Rh(III)]-catalyzed (Cp* = 1,2,3,4,5-pentamethyl-cyclopentadie-
nyl) cross coupling of arylboronic acids with azo compounds for
the synthesis of arylhydrazides.

When phenylboronic acid (1a; 0.3 mmol) was treated with
DEAD (0.2 mmol) and [Cp*Rh(OAc)2] (5 mol%) in THF at 80 °C
under an N2 atmosphere for 4 h, phenylhydrazide (2a) was
obtained in 85% yield (Table 1, entry 1). In this work, we
found that employing phenylboronic acid pinacol ester and
potassium phenyltrifluoroborate alone did not bring about
effective C–N coupling reactions (entries 2 and 3). The boron
reagents were fully recovered with substantial decomposition

Scheme 1 Recent examples of transition metal-catalyzed electrophilic
amination with azo reagents.
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of the DEAD. Interestingly, when potassium phenyltrifluorobo-
rate was employed together with B(OH)3 as additives and DMF
as the solvent, 2a was formed in 70% yield (entry 4).

Other rhodium catalysts such as [Cp*RhCl2]2 are less
effective catalysts (entry 5). According to the literature,
rhodium(I) diene complexes such as [Rh(COD)X]2 (X = Cl, OH)
are known to catalyze arylation of enones with arylboron
reagents.5 However, these Rh(I)–diene complexes were found
to be ineffective catalysts for the reaction of 1a with DEAD
(entries 6 and 7). In this work, the related [Cp*IrCl2]2 complex
exhibited negligible catalytic activities under our reaction con-
ditions (entry 8).

Other solvents such as tBuOH, MeCN, dioxane and DCE
gave inferior results compared to THF (entries 9–12). After
several trials, we found that DMF gave the best result with 2a
being formed in a nearly quantitative yield.6 Upon further
refinement of several experimental parameters, an optimized
reaction protocol was established: [Cp*Rh(OAc)2] (2 mol%), 1a
(0.3 mmol), DEAD (0.2 mmol) in DMF at 40 °C (entry 13). It is
noteworthy that the azo coupling reaction is sensitive to the
ester substituents on the azocarboxylates. For instance, the
amination of 1a with di-tert-butyl azodicarboxylate produced
the corresponding arylhydrazides in only 42% yield (entry 14).
The coupling with azobenzene was unsuccessful, and no C–N
coupled products were obtained.6

With DEAD as the model substrate, the scope of the aryl-
boronic acids was examined (Scheme 2). The reactions of aryl-
boronic acids containing electron-donating and -withdrawing
groups (e.g. OMe, Me and Br) afforded the corresponding hydra-
zides (2a–2d) in excellent yields. Other functionalized arylboro-

nic acids bearing TMS, CHO, C(O)Me, CO2Et, NHC(O)Me and
SO2Me were converted to 2e–2j in 83–98% yields. Fruitful
results were achieved for the analogous amidation of
6-methoxy-1-naphthyl, 3-chloro and 3,5-bis(trifluoromethyl)
phenylboronic acids with 2k–2m being formed in excellent
yields. Likewise, effective transformations of styrylboronic acid
and heteroaromatic boronic acids were also achieved to give
the corresponding products (2n–2q) in good to moderate
yields.

Diarylamines are prevalent scaffolds found in many natural
products, pharmaceuticals and functional materials.7 The Pd-
and Cu-catalyzed arylation of anilines with haloarenes are
widely employed for diarylamine synthesis.8 Yet, examples of
diarylamine synthesis via electrophilic amination are sparse.9

Lei and coworkers reported the synthesis of diarylamines by
Cu-catalyzed arylation of N-chloroanilides with arylboronic
acids.9e Recently, Chang and coworkers reported a reaction of
aryl azides with aryliridium(III) complexes for diarylamine
synthesis.9f–h In this work, we developed the catalytic
arylation of arylazocarboxylates for the synthesis of N,N-
diarylhydrazides.

The arylazocarboxylate was prepared by reacting arylhydra-
zine with ethyl chloroformate, followed by NBS oxidation.
When phenylazocarboxylate (3a) was treated with 4-methoxy-
phenylboronic acid (1b) and [Cp*Rh(OAc)2] (2 mol%) in DMF
at 40 °C under an N2 atmosphere, N,N-diarylhydrazides (4aa)
was isolated as a single regioisomer in 81% yield (Scheme 3).
The molecular structure of 4aa has been established by single-
crystal X-ray crystallography. Arylboronic acids containing elec-

Table 1 Reaction optimizationa

Entry
Aryl boron
reagent Catalyst Solvent

T
(°C)

Yieldb

(%)

1 PhB(OH)2 (1a) [Cp*Rh(OAc)2] THF 80 85
2 PhB(pin) [Cp*Rh(OAc)2] THF 80 n.d.c

3 KPhBF3 [Cp*Rh(OAc)2] THF 80 n.d.c

4d KPhBF3 [Cp*Rh(OAc)2] THF 80 70
5 1a [Cp*RhCl2]2 THF 80 10
6 1a [Rh(COD)Cl]2 THF 80 11
7 1a [Rh(COD)(OH)]2 THF 80 n.d.c

8 1a [Cp*IrCl2]2 THF 80 n.d.c

9 1a [Cp*Rh(OAc)2]
tBuOH 80 64

10 1a [Cp*Rh(OAc)2] MeCN 80 3
11 1a [Cp*Rh(OAc)2] Dioxane 80 50
12 1a [Cp*Rh(OAc)2] DCE 80 31
13e 1a [Cp*Rh(OAc)2] DMF 40 99
14 f 1a [Cp*Rh(OAc)2] THF 80 42

a Conditions: aryl boron reagent (0.3 mmol), DEAD (0.2 mmol), catalyst
(5 mol%), solvent (1 mL), 4 h in an N2 atmosphere. b Isolated yield.
c n.d. = not detected. d B(OH)3 (0.3 mmol) was added. e [Cp*Rh(OAc)2]
(2 mol%) was used. fDi-tert-butyl azodicarboxylate (0.2 mmol) was
used instead.

Scheme 2 Scope of the arylation of DEAD. Yields of isolated products
are given. General reaction conditions: 1 (0.3 mmol), DEAD (0.2 mmol),
[Cp*Rh(OAc)2] (2 mol%), DMF (1 mL), 40 °C for 4 h in an N2 atmosphere.
aThe reaction was performed at 80 °C.
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tron-donating and -withdrawing substituents were well toler-
ated (see results for 4ba–4da). Similarly, amidation of
6-methoxy-1-naphthyl, 3,4-(methylenedioxy) and 3,5-ditrifluoro-
phenylboronic acids furnished 4ea–4ga in excellent yields.

With 4-methoxyphenylboronic acid as the arylating reagent,
the reactions of some substituted arylazocarboxylates were
examined. Effective C–N coupling was observed in all cases,
and the diarylhydrazides (4ab–4ae) were formed in 78–93%
yields.

Arylrhodium(III) complexes are known to mediate catalytic
C–N bond coupling reactions.4m,10 To examine the involvement
of the arylrhodium(III) complexes, we prepared the well-
defined [Cp*Rh(Ph)(Br)(PPh3)] complex 5a (71% yield) by react-
ing [Cp*RhCl2(PPh3)] with PhMgBr.11 The analogous [Cp*Rh
(Ph)(Cl) (PPh3)] complex 5b (83% yield) was also prepared by
employing phenylboronic acid as the aryl source (Scheme 4).12

The molecular structures of 5a and 5b have been confirmed by
single-crystal X-ray crystallography.6

In this work, when [Cp*Rh(Ph)(Br)(PPh3)] (5a) (10 mol%)
was treated with AgSbF6 (10 mol%) and phenylazocarboxylate
(0.5 mmol) in DMF at 40 °C for 4 h, no N,N-diphenylhydrazide
was formed. Notably, [Cp*Rh(Ph)2(PPh3)] was isolated in 30%
yield, and 18% of the starting [Cp*Rh(Ph)(Br)(PPh3)] was recov-

ered (Scheme 5). Notwithstanding, [Cp*RhCl2(PPh3)] was
found to be an effective catalyst for the arylation reaction. For
example, reacting [Cp*RhCl2(PPh3)] (5 mol%) with 4-methoxy-
phenylboronic acid (1b) and phenylazocarboxylate (3a) in DMF
at 40 °C afforded 4aa in 99% yield. Based on the above find-
ings, direct coupling of arylrhodium(III) with the azo reagent
may not be a productive step for the arylation reaction.

Previously, Muniz and coworkers reported the Pd-catalyzed
arylation of DEAD by arylboronic acids, and palladadiaziridine
complexes have been characterized as the key intermediate.
However, the attempt to characterize well-defined rhodalladi-
aziridine complexes was unsuccessful. The preparation and
characterization of some reactive metalladiaziridine complexes
are currently in progress, and the results will be reported
separately.

Conclusions

In conclusion, we developed a [Cp*Rh(III)]-catalyzed electrophi-
lic amination of arylboronic acids by employing azo reagents.
Effective coupling of DEAD and the aryl azocarboxylates with
arylboronic acids afforded mono- and diarylhydrazides in good
yields under mild conditions.
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