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With the ever-increasing instances of resistance to frontline TB drugs there is the need to develop novel
strategies to fight the worldwide TB epidemic. Boosting the effect of the existing second-line antibiotic
ethionamide by inhibiting the mycobacterial transcriptional repressor protein EthR is an attractive thera-
peutic strategy. Herein we report the use of a fragment based drug discovery approach for the structure-
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guided systematic merging of two fragment molecules, each binding twice to the hydrophobic cavity of
EthR from M. tuberculosis. These together fill the entire binding pocket of EthR. We elaborated these frag-
ment hits and developed small molecule inhibitors which have a 100-fold improvement of potency
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Introduction

Tuberculosis (TB) has been estimated to claim one and a half
million lives worldwide each year, an epidemic that has been
declared a global health emergency by the World Health
Organisation (WHO)."? Despite the gravity of the situation, the
treatment of active drug-susceptible (DS)-TB infection still
relies on the first line antibiotics isoniazid, pyrazinamide,
ethambutol and rifampicin, which were introduced over 50
years ago.’ There has been a concerted effort to discover new
drugs to target TB that is being met with very limited
success.”” An alternative therapeutic strategy is to boost the
effect of existing second line TB drugs such as ethionamide.®
Ethionamide works by targeting the 2-trans-enoyl reductase
enzyme InhA that belongs to the type II fatty acid synthase
system (FAS II) of Mycobacterium tuberculosis (Fig. 1).”® 1t is a
prodrug, requiring the flavin-dependent monooxygenase
enzyme EthA for its activation (Fig. 1).>'° The large effective
therapeutic dose and related toxicity issues of ethionamide in
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patients are determined in part by the mycobacterial intra-
cellular levels of EthA, whose expression is controlled by the
transcriptional repressor EthR.' Small molecules, which
bind to EthR, have been shown to allosterically inhibit the
DNA-binding ability of the EthR dimer, thus abolishing
its function as a transcriptional repressor of EthA.® Previous
work by Baulard et al. has shown that EthR binders can be
used as ethionamide boosters in whole cell M. tuberculosis
assays.®'? 14

In search for novel ethionamide booster scaffolds, a frag-
ment-merging approach has been used to identify a new class
of potent inhibitors of the transcriptional repressor EthR. This
identified a set of fragments that occupy the entire 20 A long
hydrophobic cavity of EthR located in the drug-binding
domain, playing a regulatory role in the DNA-binding.® We
show how these fragments can be systematically merged to
afford potent EthR ligands. Surface plasmon resonance (SPR)
is used as a functional assay®'' to demonstrate the ability of
the merged compounds to disrupt the interaction between the
transcriptional repressor, EthR, and its DNA operator. A range
of other biophysical techniques, including fluorescence-based
thermal shift,"® ITC,"® and X-ray crystallography'” are used to
further validate the binding of the merged compounds
to EthR.

Previously, we reported screening of a 1250-member frag-
ment library against EthR where 86 fragment molecules were
identified using fluorescence-based thermal shift, SPR and
ligand-based NMR.'® A fragment was considered a hit if it
raised the melting temperature (T},) in the thermal shift assay

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 The mechanism of activation of ethionamide (ETH) and the inhibition of InhA from FASII by the ETH-NAD adduct.
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Fig. 2

(a) X-ray crystal structure of fragment 1 bound to sub-pockets Il and IV of the EthR binding cavity. LE values throughout this paper are calcu-

lated using ICsq values determined by SPR. (b) X-ray crystal structure of fragment 2 bound to sub-pockets | and Il of the EthR binding cavity. The
numbers |, Il, Ill and IV denote the four sub-pockets, into which the binding cavity of EthR can be divided according to the four distinct binding posi-

tions of fragments 1 and 2. (PDB codes 5F1J and 5F27 respectively).

of EthR by more than 1 °C when used at a concentration of
5 mM."® Two of the fragment hits, 1 and 2, were shown by
X-ray crystallography to bind twice to the EthR monomer
(Fig. 2a and b).1

i Protein X-ray crystallography structures of compounds 1-5, 14, 15, 21, 22 and
28 bound to M. tuberculosis EthR are available via the RCSB Protein Data Bank
via PDB codes: 5F1], 5F27, 5F04, 5F0C, 5EYR, 5F08, 5FOF, 5EZH, 5EZG, 5FOH.

This journal is © The Royal Society of Chemistry 2016

One molecule of 1 bound within a polar surface area
hotspot (sub-pocket II), where the side chains of residues
Asn179, Asn176 and Thr149 are located. The second molecule
of 1 bound in a cryptic sub-pocket (IV) situated in the inner-
most region of the EthR binding cavity. This is in contrast to
the fragment hit 2, where the two molecules interact with
Asn176 (sub-pocket IIT) and the hydroxyl group of Tyr148 (sub-
pocket I) respectively. Together fragments 1 and 2 span the
entire length of the EthR hydrophobic cavity and represent
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Fragment merging strategy I

Based on the overlay of the crystal structures of fragments 1
and 2 bound to EthR (Fig. 3a), Fig. 3b-d summarise possible
structures of compounds arising from the direct merging of
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ring of fragment 1 and the piperidine ring of fragment 2
bound to EthR are aligned sufficiently to allow them to be
used as the site of merging of the two units to obtain molecule
5 (Fig. 3d). The left hand side of ligand 1 (the pyrrolidine
amide) could also be modified by merging the structures of
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Fig. 4 Synthetic scheme for the preparation of 3-cyclopentyl-1-(3-(4-((methylamino) methyl)phenyl) tetrahydropyrimidin-1(2H)-yl)propan-1-one
(3). (a) di-tert-butyl dicarbonate, NEts, THF; 0 — 22 °C; overnight; (b) di-tert-butyl dicarbonate, NEts, THF; 0 — 22 °C; overnight; (c) NaBH,4, MeOH,
0 °C; 2 h; (d) 3-cyclopentylpropionic acid, DCM, diisopropylethylamine, COMU, 22 °C; 18 h; (e) TFA, DCM, 22 °C; 2 h; (f) Pd(OAc),, KO'Bu, 2-(di-tert-
butylphosphino) biphenyl, toluene; 100 °C, 4 h; (g) TFA, DCM, 22 °C; 2 h.
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fragment 2 bound to sub-pocket III of EthR with the molecule
of 1 residing in sub-pocket II of the protein (Fig. 3c). The final
two-unit fragment-merging strategy involves combining the
structures of fragment 1 (sub-pocket IV) of EthR with the unit
of 2 residing in sub-pocket III of the protein as shown in
Fig. 3b. The pyrrolidine ring of 1 and the piperidine ring of 2
in this configuration (Fig. 3b) are well aligned and this region
of overlap is the site of merging of the two units to obtain a
hybrid molecule such as 3.

Initially, compounds 3, 4 and 5 were synthesised. The syn-
thesis of compound 3 is shown in Fig. 4. Further synthetic
schemes and experimental procedures for the synthesis of

ICsp> 100 M
AT, =+0.3°C

ICsy> 100 uM
AT, =+4.5°C

PHER184

< GLN#125

ICs=35 M
ATp=+4.3°C

Fig. 5
shown. (PDB codes 5F04, 5FOC and 5EYR).

This journal is © The Royal Society of Chemistry 2016
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molecules 4 and 5, as well as for all other compounds dis-
cussed are described in the ESL.}

The synthesis of compound 3 (Fig. 4) started with the Boc
protection of 1,4,5,6-tetrahydropyrimidine 8 to give intermedi-
ate 9. Sodium borohydride reduction of 9 afforded tert-
butyl tetrahydropyrimidine-1(2H)-carboxylate 10,"® which was
coupled with 3-cyclopenane propionic acid using COMU to
give intermediate 11.° The deprotection of 11 with trifluoro-
acetic acid in dichloromethane afforded 3-cyclopentyl-1-(tetra-
hydropyrimidin-1(2H)-yl)propan-1-one 12 in near quantitative
yield. The coupling of 12 with tert-butyl (4-bromobenzyl)-
(methyl)carbamate under Buchwald-Hartwig conditions® and

(a—c) X-ray crystal structures of merged compounds 3, 4 and 5 bound to EthR. ICso (SPR) and AT, (DSF) values for the three ligands are also

Org. Biomol. Chem., 2016, 14, 2318-2326 | 2321
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subsequent Boc deprotection of the resulting intermediate 13
gave the target compound 3 in 5% yield over six steps.

The merged compounds 4 and 5 increased the melting
temperature of EthR by +4.5 °C and +4.3 °C respectively when
screened at a concentration of 100 pM. The merged ligand 5
also showed an eight-fold increase in the disruption of the
interaction between EthR and its DNA operator as measured
by SPR when compared to the starting fragment 1. Most sig-
nificantly the structures of 3, 4, and 5 bound to EthR were
determined by X-ray crystallography (Fig. 5).

The good overlap between the X-ray crystal structures of
ligands 4 and 5 (Fig. 5b and c respectively) and their parent
fragments 1 and 2 fully justifies the merging operations used
to construct these two ligands. In contrast, X-ray crystallo-
graphy showed that compound 3 soaks into sub-pockets II and
III of EthR (Fig. 5a) and does not span sub-pockets IV and III
as intended by design (Fig. 3b). This could be attributed to the
more favourable polar interactions available to the amide func-
tionality of compound 3 in the vicinity of the polar uncharged
amino acid Asn179 located in sub-pocket II. Thus the carbonyl
oxygen atom of 3 is capable of interacting with the side chain
of residue Asn179 through a well defined hydrogen bond. The
analogous polar interaction between the carbonyl oxygen atom
of the starting fragment 1 and Asn179 (2.8 A, Fig. 2a) is also
observed in the X-ray crystal structures of the EthR-bound com-
plexes of ligands 4 (Fig. 5b) and 5 (Fig. 5¢).

Subsequent exploration of SAR around compound 5 (sum-
marised in Table 1) yielded ligands with significantly higher
affinity towards EthR than the parent fragments 1 and 2. The
original merged ligand 5 (ICs, = 35 uM) showed an eight-fold
improvement in binding affinity towards EthR compared to its
parent fragment 1 (IC5, = 280 uM). Interestingly, compound
14, the Boc protected synthetic precursor of 5, gave a further
five-fold improvement in affinity by SPR (Kp = 3 pM (ITC) and
1Cs0 = 7 pM) compared to the originally-designed merged com-
pound 5 (IC5o = 35 pM).

Substituting the 4-(methylamino)methyl functionality on
the aromatic ring of compound 5 for a nitrile group to give
molecule 15, resulted in a five-fold decrease in Kp by ITC and a
significant 10-fold improvement using the SPR functional
assay (Kp = 1 pM by ITC and ICs, = 3 pM by SPR). Compound
16, which contains an ethyl ester functionality instead of the
nitrile group of 15, displayed comparable affinity (IC5, = 3 pM)
by SPR, however binding could not be measured by ITC. Func-
tional activity as measured by SPR was maintained when the
amide groups of compounds 15 and 16 were changed to urea
in derivatives 17 (IC5, = 4 pM) and 18 (ICs, = 2 pM) respecti-
vely. The substitution of the pyrrolidine ring of ureas 17 and
18 with a cyclopentane ring was however detrimental to the
affinity of the resulting compounds 19 (ICs, = 25 pM) and 20
(IC50 > 100 pM) respectively.

The compounds 15, 21 and 22 were successfully soaked
into crystals of EthR. The X-ray crystal structures of nitrile 15
and urea 21 are shown in Fig. 6a and b respectively. The struc-
ture of compound 22 bound to EthR is given in the ESI (Fig. S2
and S37).

2322 | Org. Biomol. Chem., 2016, 14, 2318-2326
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Table 1 Exploration of SAR around compound 5. Fluorescent-based
thermal shift (AT,,) values against the EthR target (at 100 pM concen-
tration of compound), ICso values measured by SPR and binding
affinities (Kp) determined by ITC are given where available (n. d. = no
heats of binding detected)

ICso/ Ko/
Compound AT/ pM uM
number Compound structure °C (SPR) (ITC)
1 Q +3.5 280 12
SRAe
2 < ;NO_\ +3.8  >100 n.d.
HN—
5 Q +4.3 35 5
NH‘CN@
L N
14 Q +6.3 7 3
NMN@
Q BocN—
15 Q +7.5 301
MNCQCN
16 Q 0 +9.3 3 nd.
L o\
o)
17 " +7.2 4 nd.
OO
18 °§_NH o +8.8 2 nd
o O-OA
o\
19 Q NH +5.9 25 n.d.
OO
)
20 NH 0 +5.5 >100 n.d.
OO
o\
21 o>_NH N +3.8 22 24
g I
Q +3.7 20 12

22 >\»NH N \
N N
chaSa%

Compound 5 and its derivatives 15, 21 and 22 all span sub-
pockets I and II of the EthR binding cavity adopting analogous
binding positions. In contrast to ligands 5 and 15, which bind
to EthR in a 1: 1 stoichiometry, two molecules of 21 or 22 soak
into the binding cavity of a single EthR protomer (see Fig. 6b
and ESI, Fig. S3,T respectively). Ligands 21 and 22 were shown

This journal is © The Royal Society of Chemistry 2016
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Fig. 6 X-ray crystal structures of ligands 15 and 21 respectively bound to EthR. ICsq (SPR) and AT, (DSF) and LE values (based on ICso by SPR) for

the two compounds are also shown. (PDB codes 5FOF and 5EZH).

by X-ray crystallography to bind to EthR in an analogous way
to each other and are directly superimposable. The second
units of both 21 and 22 bind in the region of sub-pockets III
and IV, which are fully exposed in the conformations adopted
by residues Phe184, GIn125 and Trp138. The carbonyl oxygen
atoms of the ligands in this binding mode are stabilised by a
hydrogen-bonding interaction with an interstitial water mole-
cule. The pyridyl ring of 21 and the pyrimidyl ring of 22 bound
to sub-pocket IV of EthR probe deeper into the binding cavity
than the parent fragment 1.

II

I

Fragment merging strategy II

Finally, to explore whether molecules spanning an even larger
volume of the EthR binding pocket might display further
improvement in their binding affinity towards EthR, fragment
1 occupying sub-pocket II of EthR was merged with two mole-
cules of 2 from sub-pockets I and III, as shown in Fig. 7. In
view of the potency of nitrile 15, the 4-(methylamino)methyl
functionality of fragment 2 from sub-pocket I was simplified to
a nitrile group for the design and synthesis of compound 23.

L«

Fig. 7 The merging of a molecule of 1 from sub-pocket Il (green) surrounded by two molecules of 2 (blue) gives rise to compound 23.

This journal is © The Royal Society of Chemistry 2016
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Fig. 8 Synthetic scheme for the preparation of 3-(1-(4-cyanophenyl)piperidin-4-yl)-N-(3-(piperidin-1-yl)phenyl)propanamide (23). (a) DCM, DIPEA,
COMU, 22 °C; (b) TFA, DCM, 22 °C; 2 h; (c) 4-fluorobenzonitrile, K,COs, anhydrous DMSO, 100 °C; 3 h.

The synthesis of compound 23 is shown in Fig. 8. Coupling
of 3-(piperidin-1-yl)aniline 24 with carboxylic acid 25 using
COMU gave amide 26 in 82% yield.>® Removal of the Boc pro-
tection of 26 followed by nucleophilic aromatic substitution®
with 4-fluorobenzonitrile afforded the target molecule 23 in
45% yield over three steps.

Two additional derivatives of compound 23, compounds 28
and 29 (Table 2), were also made (see ESI and Fig. S14 and
S157 respectively). The three compounds, 23, 28 and 29, were
screened against EthR using the fluorescent-based thermal
shift assay and the SPR functional assay (Table 2). Compounds
23, 28 and 29 all gave high positive thermal shift values with
EthR (+8.3 °C, +8.7 °C and +9.2 °C respectively) when screened
at a concentration of 100 pM. These values provide compelling
evidence for the stabilisation imparted by these molecules to
EthR under the elevated temperature conditions of the
thermal shift assay. Nevertheless, the binding of compounds
23, 28 and 29 to EthR could not be observed by ITC. These
three ligands are less soluble and show significantly decreased

ability to disrupt the interaction between EthR and its DNA
operator as shown by their ICs, values determined by SPR com-
pared to compounds 15, 16, 17 and 18.

An X-ray crystal structure of ligand 28 bound to EthR was
solved to 2.0 A resolution (see Fig. 9a and b). This structure is
of particular interest since electron density was observed
corresponding to 28 bound in two different orientations.
Furthermore, in both binding modes compound 28 does not
fill the EthR binding cavity in the way observed for other
ligands previously studied. The usual shape of the EthR
binding pocket (see ESI, Fig. S41) is compromised as a result
of the binding of ligand 28. Despite the conformations of the
side chains of residues Phe184 and Trp138 precluding the for-
mation of sub-pockets III and IV in the sense of Fig. S3,T com-
pound 28 still bound to EthR by altering the shape of the
hydrophobic cavity and moulding it around its own scaffold
(see ESI, Fig. S51).

In order to see whether the SPR results translate into
effective levels of ethionamide boosting, all the merged com-

Table 2 A summary of fluorescent-based thermal shift values against EthR (at 100 pM ligand concentration) and ICso values determined by SPR for

compounds 23, 28 and 29

Compound number Compound structure

AT/°C (100 pM) IC50/uM (SPR)

23 O J@/CN +8.7 >100
H
28 1% +8.3 33
/@/\NJ\/\G
H N
@) CL
CN
29 +9.2 52

2324 | Org. Biomol. Chem., 2016, 14, 2318-2326

cm”“@Q

CN

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ob02630j

Open Access Article. Published on 18 January 2016. Downloaded on 1/21/2026 6:15:06 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Organic & Biomolecular Chemistry

N
e
ICsy =33 M oN

AT, =+83°C

View Article Online

Paper

(o)

Fig. 9

pounds were tested for their ability to boost ethionamide
activity in M. tuberculosis infected macrophages as described
previously.">'* None of compounds 3-5, 14-23, 28 and 29
showed any ethionamide boosting in macrophages. The lack
of efficacy is probably compounded by poor permeability
across the mycobacterial envelope and/ or host cell membrane.
The ability of 1 to boost ethionamide, which we have reported
previously,'® possibly arises due to its small size and ability to
penetrate the M. tuberculosis bacillus.

Conclusions

We have previously identified two fragment molecules, 1 and
2, each binding twice to EthR, which together fill the entire
hydrophobic cavity. Examination of the X-ray crystal structures
of these fragments gave three possible combinations of
merging two adjacent fragment units. These merged com-
pounds 3, 4 and 5 were synthesised and soaked into preformed
crystals of EthR. X-ray crystallography showed that compounds
4 and 5 recapitulated the binding mode of the original frag-
ment hits 1 and 2.

Compounds 14-22, synthesised to explore the SAR around
merged compound 5, resulted in compounds capable of inhi-
biting the interaction between EthR and its DNA operator with
ICs, values in the range 2-4 pM, representing valuable new
molecular probes for the EthR system. Subsequent further
strategies to merge fragment 1 with two molecules of fragment
2 within the EthR binding cavity were also explored. Although
this approach resulted in compounds exhibiting high positive
thermal shifts with EthR, these ligands were not as effective at
disrupting the interaction between the transcriptional repres-
sor and its DNA operator as the most potent compounds 15,
16, 17 and 18.

Our fragment merging strategy and the subsequent SAR
work around compound 5 proved fruitful in providing inhibi-
tors capable of disrupting the interaction between EthR and

This journal is © The Royal Society of Chemistry 2016

(a and b) X-ray crystal structure of 28 bound to EthR in two different orientations. (PDB code 5FOH).

its DNA operator with ICs, values in the single-digit micro-
molar range as shown by SPR. However, none of the merged
compounds were capable of boosting ethionamide activity in
M. tuberculosis infected macrophages, presumably due to
inability to permeate the mycobacterial cell envelope.
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