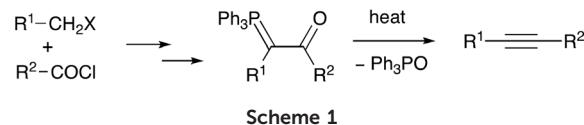


Cite this: *Org. Biomol. Chem.*, 2016,
14, 1794

Synthesis, structure and pyrolysis of stabilised phosphonium ylides containing saturated oxygen heterocycles[†]

R. Alan Aitken,^{*a} Nazira Karodia,^{*‡b} Hollie B. McCarron,^a Cécile Rouxel,^a Nina Sahabo^b and Alexandra M. Z. Slawin^a

A range of twelve stabilised phosphonium ylides containing tetrahydrofuran, tetrahydropyran or 2,2-dimethyl-1,3-dioxolane rings have been prepared and fully characterised, including one X-ray structure determination of each type. The X-ray structures confirm the P=C and C=O functions to be *syn* and all the compounds undergo thermal extrusion of Ph₃PO to give the corresponding alkynes. In some cases there is also competing loss of Ph₃P to give different carbene-derived products and evidence has been obtained for the generation of 2-phenyloxete in this way. Raising the pyrolysis temperature leads in several cases to new secondary reactions of the alkyne products involving a sequence of alkyne to vinylidene isomerisation, intramolecular CH insertion, and retro Diels Alder reaction.


Received 2nd December 2015,
Accepted 5th January 2016

DOI: 10.1039/c5ob02467f

www.rsc.org/obc

Introduction

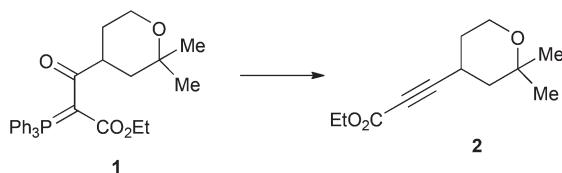
Thermal extrusion of Ph₃PO from suitably substituted β -oxo-phosphonium ylides in the so-called “intramolecular Wittig reaction” is a versatile method of alkyne synthesis.¹ The ylides are readily prepared in a few simple steps from alkyl halides and acid chlorides as stable crystalline solids, and overall this represents an unusual way to construct the alkyne triple bond (Scheme 1). The process was first described in 1959 for R¹ = R² = Ph where simply heating the ylide at 300 °C resulted in the desired elimination of Ph₃PO to give diphenylacetylene in 59% yield.² Shortly thereafter a convenient synthesis of acetylenic esters by pyrolysis of the ylides with R¹ = CO₂Me was reported.³ Over the next 25 years many further examples appeared, but using conventional pyrolysis the scope was limited to examples where R¹ was an electron withdrawing group.⁴ This restriction was overcome by the use of flash vacuum pyrolysis (FVP) which allowed synthesis of purely aliphatic and terminal alkynes from ylides with R¹ = alkyl or H.⁵ Using this method, a wide range of functionalised alkynes have been prepared and typical examples include the synthesis of fused ring heterocycles *via* cascade cyclisation^{6,7} and chiral amino acid-derived

Scheme 1

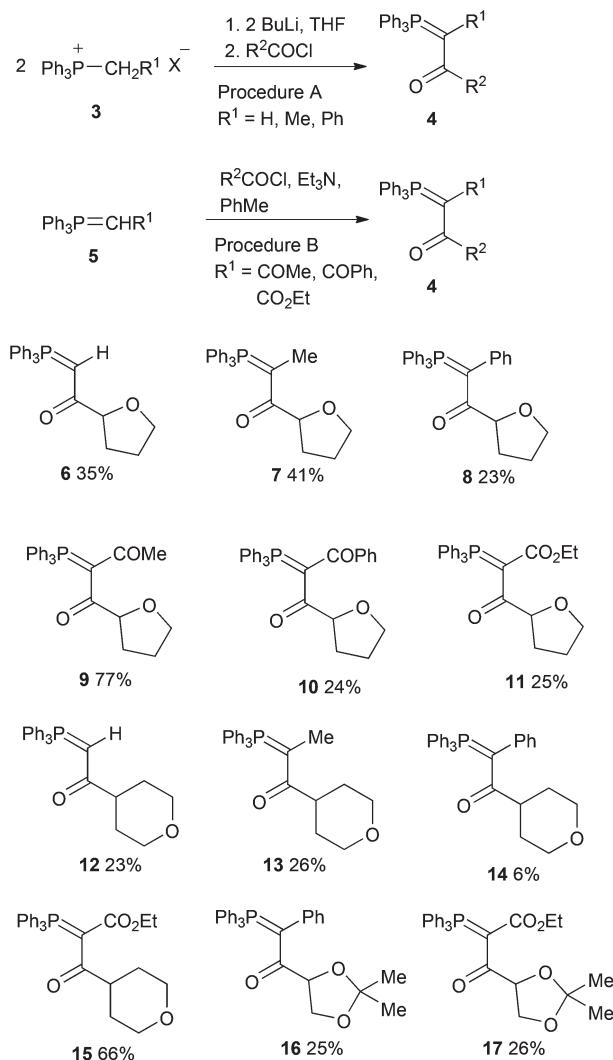
alkynes.⁸ FVP is a technique of increasing importance in the synthesis of heterocyclic compounds,⁹ but has not so far seen any significant application in carbohydrate chemistry. In fact the use of FVP in carbohydrate chemistry is effectively limited to a single example: the pyrolytic elimination of acetic acid to form a derivative of zanamivir (Relenza).¹⁰ In this paper we describe the preparation and pyrolysis behaviour of a series of ylides containing tetrahydrofuran, tetrahydropyran and 2,2-dimethyl-1,3-dioxolane rings to check the compatibility of these ring systems common in carbohydrates with the conditions required for alkyne formation. There has been considerable interest in acetylenic carbohydrate derivatives, both in their own right,¹¹ and as intermediates in synthesis of modified nucleosides.^{12,13} Alkyne-containing 2,2-dimethyl-1,3-dioxolanes have also found use in total synthesis.^{14,15} There is a single previous example of this approach in which a tetrahydropyran-containing ylide 1 was prepared and subjected to conventional pyrolysis at 200–250 °C (heating the solid above its mp) to afford alkyne 2 in 75% yield (Scheme 2).¹⁶

Results and discussion

The ylides 4 were prepared by two different methods depending on the nature of R¹ (Scheme 3). For monostabilised ylides


^aEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK. E-mail: raa@st-and.ac.uk

^bSchool of Life Sciences, University of Bradford, Bradford, W Yorkshire, BD7 1DP, UK


† Electronic supplementary information (ESI) available: Copies of ¹H and ¹³C NMR spectra of all compounds. CCDC 1435297–1435299. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ob02467f

‡ Present address: School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK. E-mail: nazira.karodia@wlv.ac.uk

Scheme 2

Scheme 3 Synthetic routes used and new ylides prepared.

($\text{R}^1 = \text{H, Me, Ph}$) reaction of the appropriate phosphonium salt 3 with butyllithium in THF followed by the acid chloride proceeded with “transylidation”¹⁷ requiring a 2:1 reacting ratio, while for distabilised ylides ($\text{R}^1 = \text{COMe, COPh, CO}_2\text{Et}$) reaction of 5 with the acid chloride and triethylamine in toluene was used.¹⁸ Tetrahydrofuran-2-carbonyl chloride was prepared by reaction of the commercially available acid with oxalyl chloride, tetrahydropyran-4-carbonyl chloride was prepared by hydrolysis of methyl tetrahydropyran-4-carboxylate using

sodium hydroxide followed by reaction with thionyl chloride, while 2,2-dimethyl-1,3-dioxolane-4-carbonyl chloride was prepared from mannitol diacetonide by sodium periodate cleavage¹⁹ followed by potassium permanganate oxidation of the resulting aldehyde and treatment of the potassium carboxylate with oxalyl chloride.²⁰ The 12 ylides 6–17 were obtained in low to moderate yield as colourless or pale yellow crystals (Scheme 3). They all gave ^{31}P NMR chemical shifts in the range $\delta_{\text{P}} +14.9\text{--}17.9$ and the ^{13}C NMR spectra showed a highly consistent and informative pattern of phosphorus coupling. X-Ray diffraction has previously been used to obtain valuable information on the structure of stabilised ylides, particularly in respect of the $\text{P}=\text{C}=\text{O}$ torsion angle which is important for successful pyrolytic alkyne formation.²¹ Since no X-ray structures of ylides containing saturated oxygen heterocycles are known, we have determined the structure of one representative example from each of the three ring systems.

The structure of compound 10 (Fig. 1) shows an almost planar tetrahydrofuran ring and both carbonyl groups *syn* to the $\text{P}=\text{C}$ bond. However the degree of delocalisation in the sense $\text{P}^+-\text{C}=\text{C}-\text{O}^-$ as indicated by the CC and CO bond lengths is much greater for the CO-THF function with a torsion angle of 0.7° than for the COPh with a torsion angle of 34° .

In the tetrahydropyran series, the structure of the mono-stabilised ylide 13 was determined (Fig. 2) and this shows the tetrahydropyran in an almost perfect chair conformation with the oxo ylide function equatorial. The bond lengths again show the oxo ylide function to be substantially delocalised in the sense $\text{P}^+-\text{C}=\text{C}-\text{O}^-$ and $\text{P}=\text{C}$ and $\text{C}=\text{O}$ are *syn*.

The structure of 17 proved to be more complex with two separate and slightly different molecules in the unit cell (Fig. 3). In each case the ester carbonyl is *anti* to the $\text{P}=\text{C}$ bond while the dioxolanyl ketone is *syn* to it but, while the molecule containing P(41) has these functions almost coplanar (torsion angles 178.7 and 1.0°), the geometry for the other molecule containing P(1) is less ideal (torsion angles 156.8 and 10.6°).

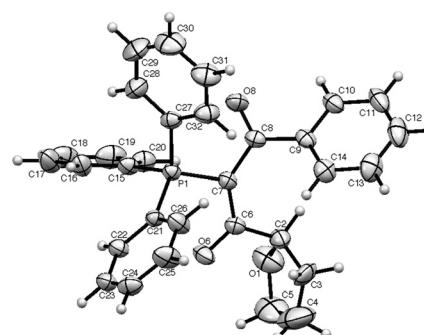


Fig. 1 X-ray structure of 10 showing numbering scheme. Selected bond lengths and torsion angles: $\text{P}(1)-\text{C}(7) 1.752(2)$, $\text{C}(7)-\text{C}(8) 1.459(3)$, $\text{C}(8)-\text{O}(8) 1.232(2)$, $\text{C}(7)-\text{C}(6) 1.423(3)$, $\text{C}(6)-\text{O}(6) 1.240(2)$ Å; $\text{P}(1)-\text{C}(7)-\text{C}(8)-\text{O}(8) 34.2(2)$, $\text{P}(1)-\text{C}(7)-\text{C}(6)-\text{O}(6) 0.7(2)^\circ$.

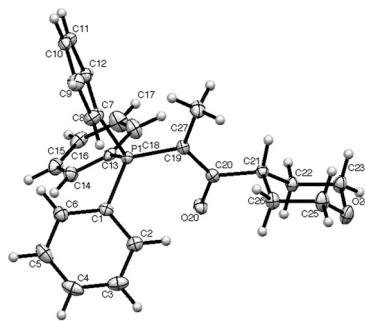


Fig. 2 X-ray structure of **13** showing numbering scheme. Selected bond lengths and torsion angle: P(1)–C(19) 1.729(2), C(19)–C(20) 1.396(2), C(20)–O(20) 1.267(2) Å; P(1)–C(19)–C(20)–O(20) 2.4(2)°.

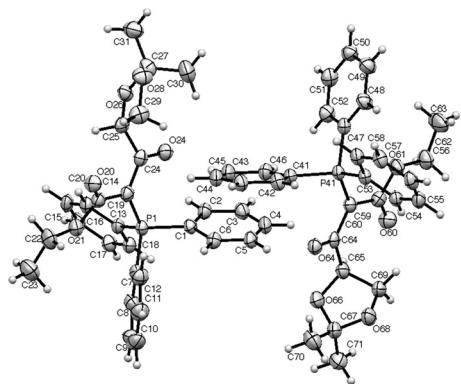
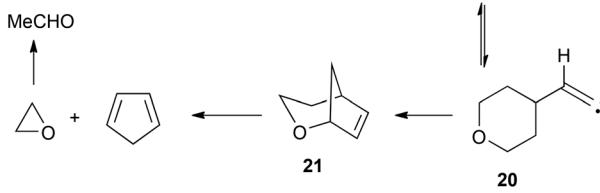
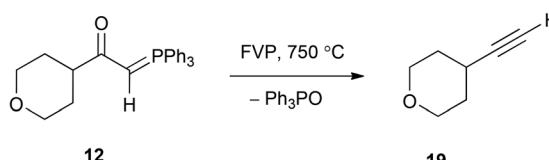
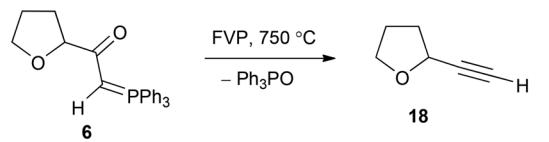
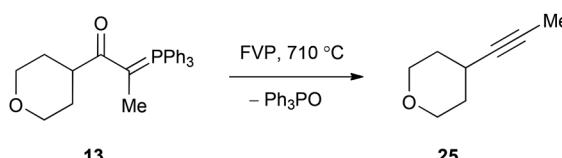
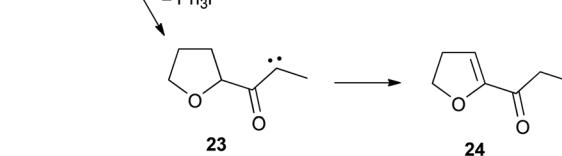
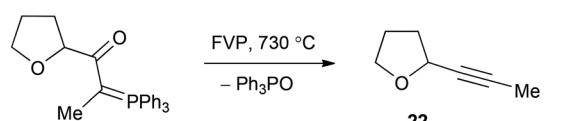
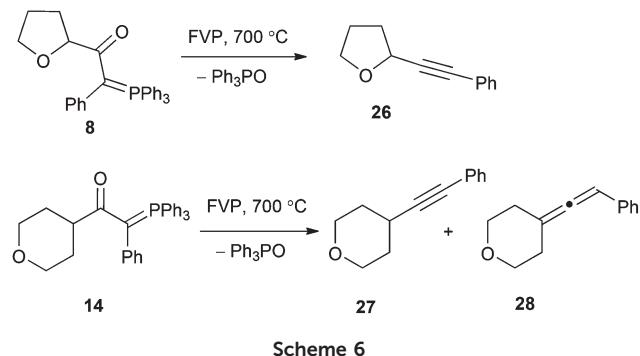








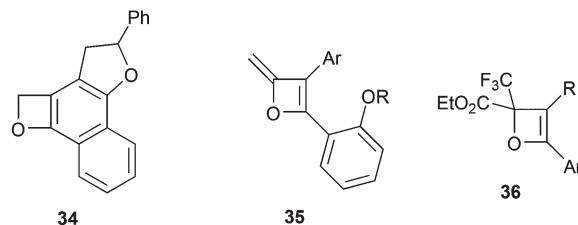
Fig. 3 X-ray structure of **17** showing numbering scheme. Selected bond lengths and torsion angles: P(1)–C(19) 1.751(5), C(19)–C(24) 1.434(6), C(24)–O(24) 1.227(7), C(19)–C(20) 1.445(9), C(20)–O(20) 1.208(7), P(41)–C(59) 1.760(6), C(59)–C(60) 1.445(9), C(60)–O(60) 1.215(7), C(59)–C(64) 1.444(6), C(64)–O(64) 1.224(7) Å; P(1)–C(19)–C(24)–O(24) 10.6(7), P(1)–C(19)–C(20)–O(20) 156.8(4), P(41)–C(59)–C(60)–O(60) 178.7(4), P(41)–C(59)–C(64)–O(64) 1.0(7)°.

The behaviour of the compounds was now studied under flash vacuum pyrolysis conditions. The apparatus used has been described previously,²² and based on our extensive experience with oxo stabilised ylides, temperatures in the range 500–750 °C were used with a pressure of $1-5 \times 10^{-2}$ Torr. The two compounds with a hydrogen atom on the ylidic bond, **6** and **12**, reacted completely at 750 °C with clean extrusion of Ph₃PO being observed in each case (Scheme 4). For **6** the other product was the expected terminal alkyne **18** (36%) together with a little furan and benzene from thermal degradation. In the case of the tetrahydropyran compound **12**, the expected alkyne **19** (42%) was again formed but this was now accompanied by low yields of cyclopentadiene and acet-aldehyde. We believe these to result from the mechanism shown in Scheme 4 in which the alkyne isomerises to the vinylidene **20** and this undergoes intramolecular CH insertion at the 2-position of the tetrahydropyran to form the bicyclic product **21**. This is then set up to undergo a retro Diels–Alder reaction with formation of cyclopentadiene and oxirane, which

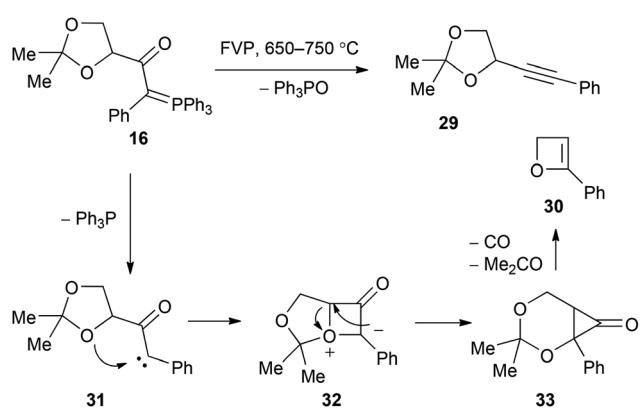
Scheme 4



Scheme 5


isomerises to acet-aldehyde. The formation of vinylidenes such as **20** by rearrangement of alkynes under FVP conditions is well known,²³ and will be encountered again in the FVP of **9** and **10**.

The ylide **7** with a methyl group on the ylidic position reacted completely at 730 °C to give a 2 : 1 mixture of Ph₃P and Ph₃PO at the furnace exit. In the cold trap the expected alkyne **22** (20%) from loss of Ph₃PO was accompanied by 2-propionyl-4,5-dihydrofuran **24** (30%) (Scheme 5). We propose that this product is formed by loss of Ph₃P to give the (triplet) carbene **23**, which then undergoes twofold intramolecular hydrogen atom abstraction to afford the product. In contrast the corresponding tetrahydropyran ylide **13** underwent exclusive elimination of Ph₃PO at 710 °C to give the expected alkyne **25** in



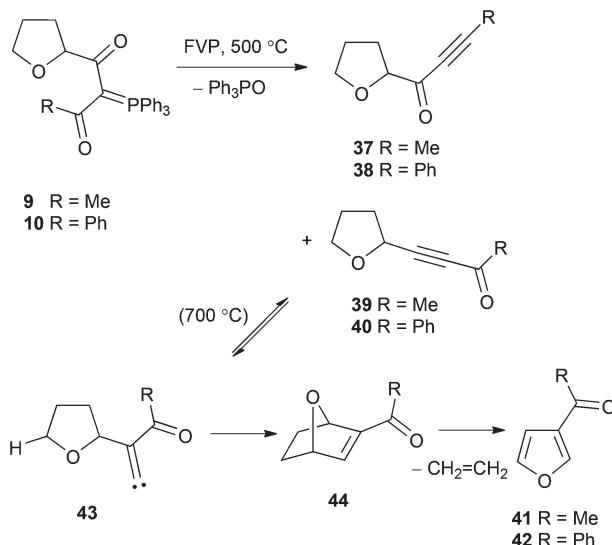
Scheme 6

Scheme 8 Previously reported oxetanes.

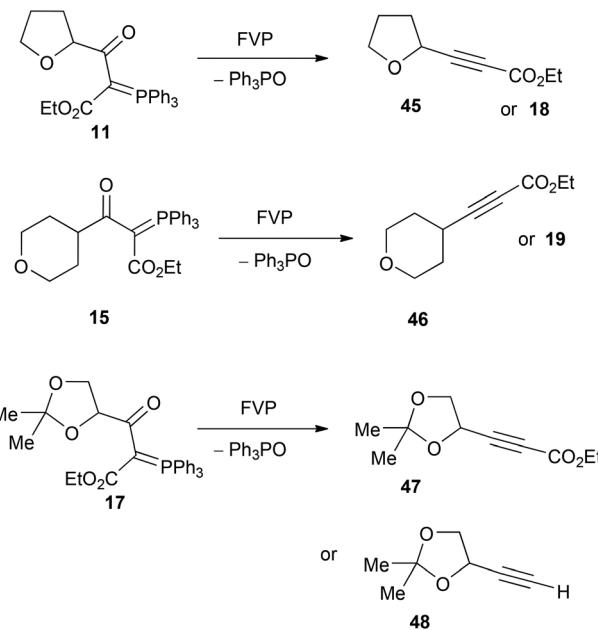
Scheme 7

good yield as the only product. The extrusion of a phosphine as opposed to phosphine oxide from β -oxophosphonium ylides is very unusual, but has been observed in the FVP of a benzotriazolyl ylide,^{24,25} and also upon photolysis of $\text{Ph}_3\text{P}=\text{CHCOPh}$.²⁶

The two compounds **8** and **14** with a phenyl substituent on the ylidic carbon both reacted completely at 700 °C with exclusive elimination of Ph_3PO . With the tetrahydrofuran compound **8** the product was the known alkyne **26** (56%) (Scheme 6), which showed good agreement with literature spectroscopic data,^{27,28} while for the tetrahydropyran compound **14**, the expected alkyne product **27** (46%) was accompanied by the isomeric allene **28** (20%). The ylide **16** containing phenyl and 2,2-dimethyl-1,3-dioxolane groups was found to undergo loss of both Ph_3PO and Ph_3P to give separate products with the relative importance of the two competing pathways varying with temperature (Scheme 7). Thus at 650 °C, there was predominant loss of Ph_3PO ($\text{Ph}_3\text{PO}/\text{Ph}_3\text{P}$ 8 : 1) to afford the expected alkyne **29** in 48% yield readily identified by comparison with reported spectroscopic data.²⁹ By increasing the pyrolysis temperature to 750 °C the importance of the Ph_3P elimination route was increased ($\text{Ph}_3\text{PO}/\text{Ph}_3\text{P}$ 3 : 1) and this allowed tentative identification of the resulting product as 2-phenyloxetane **30**. A correct HRMS measurement corresponding to **30** was obtained and, although peak overlap pre-


vented full spectroscopic characterisation, the key signals in ^1H and ^{13}C NMR spectra were consistent with a highly shielded (enol ether) $=\text{CH}-$ [δ_{H} 6.16 (1 H, t, *J* 6.9); δ_{C} 93.9] adjacent to a $-\text{CH}_2\text{O}-$ [δ_{H} 5.14 (2 H, d, *J* 6.9); δ_{C} 78.7] function. The latter compares well with the value of δ_{H} 5.44 observed for the oxetane CH_2 in compound **34** (Scheme 8).³⁰

Simple oxetanes such as this are almost unknown but there has been recent interest in more highly substituted examples such as the 4-methylene compounds **35** obtained by gold-catalysed cyclisation of α -hydroxybenzylallenes,³¹ and stable fully substituted compounds **36** prepared in high enantiomeric purity from ethyl trifluoropyruvate and alkynes.³² The parent compound has also been generated³³ and was stable enough for a ^1H NMR spectrum to be recorded at -25 °C [δ_{H} 6.70 (1 H, br s), 5.73 (1 H, br s) and 5.27 (2 H, br s)], but it isomerised to acrolein on warming to room temperature.


We rationalise the formation of **30**, as shown in Scheme 7, by initial loss of Ph_3P from ylide **16** to give the carbene **31** which undergoes intramolecular oxonium ylide formation to form **32**. This can then rearrange as shown to give **33**, which loses CO and acetone to afford the oxetane. Further support for this route was provided by the observation of acetone among the pyrolysis products.

We next examined the two ylides **9** and **10** where there is potentially a choice between elimination of Ph_3PO in two directions to give isomeric alkynyl ketones. In previous such cases there has been little selectivity with almost equal proportions of the two possible products being formed.^{34,35} This also proved to be the case here, with compound **9** undergoing complete extrusion of Ph_3PO at 500 °C to afford a mixture of **37** (26%) and **39** (58%), while the benzoyl compound **10** gave a mixture of **38** (29%) and **40** (30%) under the same conditions (Scheme 9). All these alkynyl ketone products are previously unknown.

When ylides **9** and **10** were pyrolysed at the higher temperature of 700 °C an interesting new process was observed. In each case the previously observed alkynyl ketones were still formed but these were accompanied by the 3-acylfurans **41** and **42**, readily identified by comparison with literature spectroscopic data.^{36,37} Thus FVP of **9** at 700 °C gave **37** (18%), **39** (33%) and **41** (17%) while under the same conditions **10** gave **38** (12%), **40** (14%) and **42** (37%). As shown we propose that this involves isomerisation²³ of the alkynyl ketones **39** and **40** to the vinylidene **43** which undergoes intramolecular

Scheme 9

Scheme 10

insertion into the marked CH bond to give the oxabicyclic compounds **44** which are ideally set up to undergo retro-Diels Alder elimination of ethene to afford the observed acytfuran products.

Pyrolysis of ylides containing both adjacent ester and ketone carbonyl functions is well known to result in elimination of Ph₃PO only from the latter to give acetylenic esters. The method was first developed by Märkl using conventional pyrolysis of methyl esters,³ but was later shown to also be amenable to FVP conditions using ethyl esters.³⁸ An added advantage of using the latter technique is that, while efficient Ph₃PO elimination to give the acetylenic esters occurs at 500 °C, simply increasing the temperature to 750 °C additionally leads to loss of the whole ester group to afford the alk-1-ynes. Mechanistic studies of this unusual process have been described.³⁹ In agreement with this pattern, when the three ester-containing ylides **11**, **15**, and **17** were subjected to FVP, mixtures of the acetylenic esters and the alk-1-ynes were obtained with the ratio depending on the temperature (Scheme 10). Thus at 500 °C, FVP of **11** gave ester **45** (42%) together with the alkyne **18** (16%). At 750 °C, there was extensive decomposition with only products such as furan and cyclopentadiene isolated in low yield. FVP of the tetrahydropyan ylide **15** at 500 °C gave the ester **46** in 60% yield, while increasing the furnace temperature to 750 °C led to alkyne **19** (30%) together with the decomposition products cyclopentadiene (20%) and acetaldehyde (25%) formed from **19** as shown in Scheme 4.

FVP of **17** at 600 °C gave mainly the ester **47** (68%) with a little of the alkyne **48** (9%) while at 650 °C the ratio of products had changed to **47** (39%) and **48** (30%). It therefore appears that lower temperature FVP of these three ylides provides an effective route to the acetylenic esters but for the alk-1-ynes FVP of ylides such as **6** and **12** is preferable.

Experimental

Instrumentation, general techniques and starting materials

Melting points were recorded on a Kofler hot-stage microscope and are uncorrected. Infra red spectra were recorded as Nujol mulls for solids and as thin films for liquids on a Perkin Elmer 1420 instrument. NMR spectra were obtained for ¹H at 300, 400 or 500 MHz, for ¹³C at 75, 100 or 125 MHz and for ³¹P at 121 MHz all using Bruker instruments. All spectra were run on solutions in CDCl₃ with internal Me₄Si as reference for ¹H and ¹³C and external H₃PO₄ for ³¹P. Chemical shifts are reported in ppm to high frequency of the reference and coupling constants *J* are in Hz. Mass spectra were obtained on a Micromass LCT spectrometer using electrospray ionisation.

Tetrahydrofuran-2-carbonyl chloride was prepared (87%) by reaction of the commercially available acid with oxalyl chloride, tetrahydropyan-4-carbonyl chloride was prepared by hydrolysis of methyl tetrahydropyan-4-carboxylate using sodium hydroxide (quant.) followed by reaction with thionyl chloride (84%), while 2,2-dimethyl-1,3-dioxolane-4-carbonyl chloride was prepared from mannitol diacetonide by sodium periodate cleavage¹⁹ followed by potassium permanganate oxidation of the resulting aldehyde and treatment of the potassium carboxylate with oxalyl chloride.²⁰

General procedure A for synthesis of monostabilised ylides

A suspension of the appropriate phosphonium salt (1 equiv.) in dry THF was stirred at rt under nitrogen while a solution of *n*-BuLi in hexanes (2.5 M, 1 equiv.) was added dropwise by syringe. After the addition the mixture was stirred for 30 min and then a solution of the acid chloride (0.5 equiv.) in dry THF was added dropwise. The mixture was stirred for 12 h and then

partitioned between water and diethyl ether. The organic extract was dried (MgSO_4) and evaporated to give the product. If necessary a little EtOAc was added to induce crystallisation and the products were recrystallised from EtOAc.

General procedure B for synthesis of distabilised ylides

A solution of the appropriate stabilised ylide (1 equiv.) and triethylamine (1 equiv.) in dry toluene (15 cm^3) was stirred at rt while a solution of the acid chloride (1 equiv.) in dry toluene (5 cm^3) was added dropwise. After stirring for 12 h, the mixture was filtered to remove triethylamine hydrochloride and the filtrate was evaporated to give the product. If necessary a little EtOAc was added to induce crystallisation and the products were recrystallised from EtOAc.

Tetrahydrofuran-containing ylides

1-(Tetrahydrofuran-2-yl)-2-(triphenylphosphoranylidene)ethan-1-one **6.** Reaction using procedure A with methyltriphenylphosphonium bromide (10.62 g, 29.7 mmol) in THF (50 cm^3), 2.5 M *n*-BuLi (12.34 cm 3 , 29.7 mmol) and tetrahydrofuran-2-carbonyl chloride (2.00 g, 14.86 mmol) in THF (20 cm^3) gave the product (1.97 g, 35%) as pale yellow crystals, mp 187–189 °C (from EtOAc) (Found 375.1504. $\text{C}_{24}\text{H}_{24}\text{O}_2\text{P}$ (M + H) requires 375.1514); $\nu_{\text{max}}/\text{cm}^{-1}$ 1531 (CO), 1102, 1072, 872, 758, 716 and 696; δ_{H} (300 MHz) 7.70–7.60 (6 H, m), 7.60–7.50 (3 H, m), 7.50–7.40 (6 H, m), 4.40–4.30 (1 H, m, 2-H), 4.16 (1 H, d, *J* 26.3, CH=P), 4.10–4.00 (1 H, m, 5-H), 3.90–3.80 (1 H, m, 5-H), 2.30–2.15 (1 H, m) and 2.10–1.80 (3 H, m); δ_{C} (100 MHz) 193.6 (d, *J* 3, CO), 133.0 (d, *J* 10, C-2 of Ph), 132.0 (d, *J* 1, C-4 of Ph), 128.8 (d, *J* 12, C-3 of Ph), 127.0 (d, *J* 90, C-1 of Ph), 83.0 (d, *J* 13, 2-CH), 68.9 (5-CH $_2$), 48.5 (d, *J* 109, P=CH), 30.9 (3-CH $_2$) and 25.7 (4-CH $_2$); δ_{P} (121 MHz) +16.2; *m/z* (ESI) 771.28 (2M + Na, 7%), 397.13 (M + Na, 12) and 375.15 (M + H, 100).

1-(Tetrahydrofuran-2-yl)-2-(triphenylphosphoranylidene)propan-1-one **7.** Reaction using procedure A with ethyltriphenylphosphonium bromide (5.6 g, 15 mmol) in THF (40 cm^3), 2.5 M *n*-BuLi (6.0 cm 3 , 15 mmol) and tetrahydrofuran-2-carbonyl chloride (1.0 g, 7.43 mmol) in THF (10 cm^3) gave the product (1.20 g, 41%) as colourless crystals, mp 115–117 °C (from EtOAc) (Found 389.1620. $\text{C}_{25}\text{H}_{26}\text{O}_2\text{P}$ (M + H) requires 389.1670); $\nu_{\text{max}}/\text{cm}^{-1}$ 1520 (CO), 1105, 923, 750, 711 and 693; δ_{H} (300 MHz) 7.60–7.39 (15 H, m), 4.87 (1 H, td, *J* 7.2, 1.2, 2-H), 4.04–3.97 (1 H, m, 5-H), 3.90–3.83 (1 H, m, 5-H), 2.15–2.07 (1 H, m), 2.00–1.60 (3 H, m) and 1.68 (3 H, d, *J* 16.5, Me); δ_{C} (75 MHz) 188.4 (d, *J* 4, CO), 133.4 (d, *J* 10, C-2 of Ph), 131.3 (d, *J* 3, C-4 of Ph), 128.5 (d, *J* 12, C-3 of Ph), 127.3 (d, *J* 90, C-1 of Ph), 78.8 (d, *J* 14, 2-CH), 68.8 (5-CH $_2$), 55.7 (d, *J* 107, P=C), 29.3 (3-CH $_2$), 25.9 (4-CH $_2$) and 12.3 (d, *J* 12, Me); δ_{P} (121 MHz) +17.9; *m/z* (ESI) 389.16 (M + H, 100).

2-Phenyl-1-(tetrahydrofuran-2-yl)-2-(triphenylphosphoranylidene)ethan-1-one **8.** Reaction using procedure A with benzyltriphenylphosphonium chloride (5.78 g, 14.86 mmol) in THF (20 cm^3), 2.5 M *n*-BuLi (6.0 cm 3 , 15.0 mmol) and tetrahydrofuran-2-carbonyl chloride (1.0 g, 7.43 mmol) in THF (10 cm^3) gave the product (0.78 g, 23%) as pale yellow crystals, mp

179–182 °C (from EtOAc) (Found 451.1809. $\text{C}_{30}\text{H}_{28}\text{O}_2\text{P}$ (M + H) requires 451.1827); $\nu_{\text{max}}/\text{cm}^{-1}$ 1530 (CO), 1223, 1106, 1068, 746, 701 and 693; δ_{H} (300 MHz) 7.57–7.42 (9 H, m), 7.38–7.32 (6 H, m), 7.05–6.95 (5 H, m), 4.58 (1 H, t, *J* 6.4, 2-H), 4.00–3.92 (1 H, m, 5-H), 3.80–3.73 (1 H, m, 5-H), 1.99–1.82 (3 H, m) and 1.73–1.65 (1 H, m); δ_{C} (125 MHz) 189.0 (d, *J* 5, CO), 137.2 (d, *J* 11, C-1 of Ph), 135.0 (d, *J* 5, C-2 of Ph), 133.6 (d, *J* 10, C-2 of PPh), 131.4 (d, *J* 3, C-4 of PPh), 128.4 (d, *J* 12, C-3 of PPh), 127.5 (d, *J* 1, C-3 of Ph), 126.8 (d, *J* 90, C-1 of PPh), 125.2 (d, *J* 3, C-4 of Ph), 78.2 (d, *J* 12, 2-CH), 70.2 (d, *J* 106, P=C), 69.2 (5-CH $_2$), 30.4 (3-CH $_2$) and 26.2 (4-CH $_2$); δ_{P} (121 MHz) +15.5; *m/z* (ESI) 923.34 (2M + Na, 42%), 473.16 (M + Na, 6) and 451.18 (M + H, 100).

1-(Tetrahydrofuran-2-yl)-2-(triphenylphosphoranylidene)butane-1,3-dione **9.** Reaction using procedure B with triphenylphosphoranylideneacetone (2.37 g, 7.43 mmol), triethylamine (1.03 cm 3 , 0.75 g, 7.43 mmol) and tetrahydrofuran-2-carbonyl chloride (1.00 g, 7.43 mmol) in toluene (20 cm^3) gave the product (2.4 g, 77%) as colourless crystals, mp 127.5–129.5 °C (from EtOAc) (Found 439.1421. $\text{C}_{26}\text{H}_{25}\text{NaO}_3\text{P}$ (M + Na) requires 439.1439); $\nu_{\text{max}}/\text{cm}^{-1}$ 1553 (CO), 1108, 1066, 757 and 698; δ_{H} (300 MHz) 7.70–7.60 (6 H, m), 7.50–7.35 (9 H, m), 4.86 (1 H, dd, *J* 7.5, 5.4, 2-H), 3.89–3.82 (1 H, m, 5-H), 3.76–3.69 (1 H, m, 5-H), 2.15–2.00 (2 H, m), 2.09 (3 H, d, *J* 0.6, Me) and 1.82–1.72 (2 H, m); δ_{C} (75 MHz) 196.2 (d, *J* 7, 1-CO), 192.7 (d, *J* 10, 3-CO), 133.0 (d, *J* 10, C-2 of Ph), 131.6 (d, *J* 3, C-4 of Ph), 128.5 (d, *J* 12, C-3 of Ph), 126.3 (d, *J* 91, C-1 of Ph), 86.0 (d, *J* 100, P=C), 80.9 (d, *J* 6, 2-CH), 68.8 (5-CH $_2$), 30.1 (d, *J* 4, Me), 29.6 (3-CH $_2$) and 25.3 (4-CH $_2$); δ_{P} (121 MHz) +15.6; *m/z* (ESI) 855.30 (2M + Na, 12%), 439.14 (M + Na, 100) and 417.16 (M + H, 18).

1-Phenyl-3-(tetrahydrofuran-2-yl)-2-(triphenylphosphoranylidene)propane-1,3-dione **10.** Reaction using procedure B with triphenylphosphoranylideneacetophenone (2.83 g, 7.43 mmol), triethylamine (1.03 cm 3 , 0.75 g, 7.43 mmol) and tetrahydrofuran-2-carbonyl chloride (1.00 g, 7.43 mmol) in toluene (20 cm^3) gave the product (0.84 g, 24%) as pale yellow crystals, mp 179–181 °C (from EtOAc) (Found 479.1762. $\text{C}_{31}\text{H}_{28}\text{O}_3\text{P}$ (M + H) requires 479.1776); $\nu_{\text{max}}/\text{cm}^{-1}$ 1546 (CO), 1317, 1105, 1061, 713 and 694; δ_{H} (300 MHz) 7.70–7.60 (8 H, m), 7.50–7.25 (12 H, m), 4.54 (1 H, t, *J* 6.7, 2-H), 3.85–3.70 (1 H, m, 5-H), 3.65–3.55 (1 H, m, 5-H), 1.85–1.75 (2 H, m) and 1.70–1.57 (2 H, m); δ_{C} (75 MHz) 195.0 (d, *J* 3, CO), 192.8 (d, *J* 10, CO), 143.4 (d, *J* 8, C-1 of COPh), 133.2 (d, *J* 10, C-2 of PPh), 131.7 (d, *J* 3, C-4 of PPh), 130.8 (C-4 of COPh), 128.8 (2CH of COPh), 128.5 (d, *J* 12, C-3 of PPh), 128.1 (2CH of COPh), 125.7 (d, *J* 92, C-1 of PPh), 83.3 (d, *J* 100, P=C), 79.7 (d, *J* 9, 2-CH), 69.1 (5-CH $_2$), 30.1 (3-CH $_2$) and 25.4 (4-CH $_2$); δ_{P} (121 MHz) +17.5; *m/z* (ESI) 979.33 (2M + Na, 62%), 501.16 (M + Na, 55) and 479.18 (M + H, 100).

Ethyl 3-oxo-3-(tetrahydrofuran-2-yl)-2-(triphenylphosphoranylidene)propanoate **11.** Reaction using procedure B with ethyl triphenylphosphoranylideneacetate (2.58 g, 7.43 mmol), triethylamine (1.03 cm 3 , 0.75 g, 7.43 mmol) and tetrahydrofuran-2-carbonyl chloride (1.00 g, 7.43 mmol) in toluene (20 cm^3) gave the product (0.82 g, 25%) as colourless crystals, mp 175–177 °C (from EtOAc) (Found 447.1712. $\text{C}_{27}\text{H}_{28}\text{O}_4\text{P}$

(M + H) requires 447.1725; $\nu_{\text{max}}/\text{cm}^{-1}$ 1654 (CO), 1575 (CO), 1299, 1105, 1082, 750 and 692; δ_{H} (300 MHz) 7.70–7.60 (6 H, m), 7.58–7.38 (9 H, m), 5.51 (1 H, ddd, J 8.2, 5.2, 1.0, 2-H), 3.95–3.80 (2 H, m, 5-H), 3.80–3.65 (2 H, m, CH₂ of Et), 2.50–2.38 (1 H, m), 2.10–1.90 (1H, m), 1.90–1.75 (2 H, m) and 0.67 (3 H, t, J 7.1, CH₃ of Et); δ_{C} (100 MHz) 196.6 (d, J 3, 3-CO), 167.4 (d, J 15, 1-CO), 133.0 (d, J 10, C-2 of Ph), 131.5 (d, J 2, C-4 of Ph), 128.4 (d, J 12, C-3 of Ph), 126.5 (d, J 93, C-1 of Ph), 80.7 (d, J 9, 2-CH), 69.1 (5-CH₂), 68.8 (d, J 109, P=C), 58.4 (OEt), 30.9 (3-CH₂), 25.2 (4-CH₂) and 13.7 (OEt); δ_{P} (121 MHz) +17.1; m/z (ESI) 915.32 (2M + Na, 20%) and 447.17 (M + H, 100).

Tetrahydropyran-containing ylides

1-(Tetrahydropyran-4-yl)-2-(triphenylphosphoranylidene)ethanone **12.** Reaction using procedure A with methyltriphenylphosphonium bromide (9.61 g, 26.9 mmol) in THF (50 cm³), 2.5 M *n*-BuLi (11.17 cm³, 26.9 mmol) and tetrahydropyran-4-carbonyl chloride (2.00 g, 13.45 mmol) in THF (20 cm³) gave the product (1.21 g, 23%) as pale orange crystals, mp 162–164 °C (from EtOAc) (Found 389.1659. C₂₅H₂₆O₂P (M + H) requires 389.1670); $\nu_{\text{max}}/\text{cm}^{-1}$ 1540 (CO), 1400, 1110, 1082, 860, 752, and 697; δ_{H} (300 MHz) 7.70–7.60 (6 H, m), 7.60–7.50 (3 H, m), 7.50–7.40 (6 H, m), 4.10–3.95 (2 H, m), 3.70 (1 H, d, J 25.8, CH=P), 3.50–3.35 (2 H, m), 2.45–2.30 (1 H, m, 4-H) and 1.90–1.75 (4 H, m); δ_{C} (100 MHz) 195.1 (d, J 1, CO), 132.9 (d, J 10, C-2 of Ph), 131.9 (d, J 1, C-4 of Ph), 128.8 (d, J 12, C-3 of Ph), 127.2 (d, J 90, C-1 of Ph), 68.1 (2,6-CH₂), 49.2 (d, J 107, P=CH), 46.2 (d, J 14, 4-CH) and 30.8 (3,5-CH₂); δ_{P} (121 MHz) +15.9; m/z (ESI) 389.17 (M + H, 100).

1-(Tetrahydropyran-4-yl)-2-(triphenylphosphoranylidene)propan-1-one **13.** Reaction using procedure A with ethyltriphenylphosphonium bromide (5.00 g, 13.4 mmol) in THF (40 cm³), 2.5 M *n*-BuLi (5.40 cm³, 13.4 mmol) and tetrahydropyran-4-carbonyl chloride (1.00 g, 6.73 mmol) in THF (10 cm³) gave the product (0.71 g, 26%) as yellow crystals, mp 183–185 °C (from EtOAc) (Found 403.1810. C₂₆H₂₈O₂P (M + H) requires 403.1827); $\nu_{\text{max}}/\text{cm}^{-1}$ 1520 (CO), 1099, 856, 754, 716 and 697; δ_{H} (300 MHz) 7.60–7.35 (15 H, m), 4.10–3.95 (2 H, m), 3.50 (2 H, td, J 12, 3), 2.93 (1 H, tt, J 7.8, 3.9, 4-H), 1.95–1.80 (2 H, m), 1.66 (3 H, d, J 16.2, Me) and 1.66–1.55 (2 H, m); δ_{C} (75 MHz) 191.2 (d, J 4, CO), 133.3 (d, J 10, C-2 of Ph), 131.2 (d, J 3, C-4 of Ph), 128.4 (d, J 12, C-3 of Ph), 128.0 (d, J 90, C-1 of Ph), 68.1 (2,6-CH₂), 55.4 (d, J 106, P=C), 40.7 (d, J 10, 4-CH), 29.2 (3,5-CH₂) and 12.7 (d, J 14, Me); δ_{P} (121 MHz) +16.8; m/z (ESI) 425.16 (M + Na, 12%) and 403.18 (M + H, 100).

2-Phenyl-1-(tetrahydropyran-4-yl)-2-(triphenylphosphoranylidene)ethan-1-one **14.** Reaction using procedure A with benzyltriphenylphosphonium chloride (5.23 g, 13.4 mmol) in THF (20 cm³), 2.5 M *n*-BuLi (5.4 cm³, 13.46 mmol) and tetrahydropyran-4-carbonyl chloride (1.00 g, 6.73 mmol) in THF (10 cm³) gave the product (0.20 g, 6%) as pale yellow crystals, mp 178–182 °C (from EtOAc) (Found 465.1962. C₃₁H₃₀O₂P (M + H) requires 465.1983); $\nu_{\text{max}}/\text{cm}^{-1}$ 1520 (CO), 1124, 1105, 861, 756, 709 and 691; δ_{H} (300 MHz) 7.60–7.40 (9 H, m), 7.40–7.30 (6 H, m), 7.05–6.95 (5 H, m), 3.95–3.85 (2 H, m), 3.24 (2 H, td, J 12, 2), 2.74 (1 H, tt, J 11.4, 3.9, 4-H), 1.95–1.75 (2 H, m) and

1.55–1.48 (2 H, m); δ_{C} (125 MHz) 191.4 (d, J 5, CO), 137.9 (d, J 13, C-1 of Ph), 134.8 (d, J 5, C-2 of Ph), 133.5 (d, J 10, C-2 of PPh), 131.2 (d, J 3, C-4 of PPh), 128.3 (d, J 12, C-3 of PPh), 127.6 (d, J 2, C-3 of Ph), 127.4 (d, J 90, C-1 of PPh), 125.1 (d, J 2, C-4 of Ph), 70.1 (d, J 108, P=C), 67.8 (2,6-CH₂), 41.1 (d, J 9, 4-CH) and 29.6 (3,5-CH₂); δ_{P} (121 MHz) +14.9; m/z (ESI) 951.37 (2M + Na, 18%), 487.18 (M + Na, 27%) and 465.20 (M + H, 100).

Ethyl 3-oxo-3-(tetrahydropyran-4-yl)-2-(triphenylphosphoranylidene)propanoate **15.** Reaction using procedure B with ethyl triphenylphosphoranylideneacetate (2.34 g, 6.73 mmol), triethylamine (0.94 cm³, 0.68 g, 6.73 mmol) and tetrahydropyran-4-carbonyl chloride (0.89 g, 6.73 mmol) in toluene (20 cm³) gave the product (2.05 g, 66%) as pale yellow crystals, mp 170–171 °C (from EtOAc) (Found 461.1867. C₂₈H₃₀O₄P (M + H) requires 461.1882); $\nu_{\text{max}}/\text{cm}^{-1}$ 1657 (CO), 1556 (CO), 1291, 1107, 1080, 1063, 746 and 693; δ_{H} (300 MHz) 7.65–7.55 (6 H, m), 7.55–7.35 (9 H, m), 4.01–3.93 (2 H, m), 3.81 (1 H, tt, J 11.4, 3.9, 4-H), 3.70 (2 H, q, J 7.1, OEt), 3.54 (2 H, td, J 11.3, 3.0), 1.85–1.60 (4 H, m, 3,5-H) and 0.63 (3 H, t, J 7.1, OEt); δ_{C} (100 MHz) 198.9 (d, J 5, 3-CO), 167.5 (d, J 15, 1-CO), 132.9 (d, J 10, C-2 of Ph), 131.5 (d, J 3, C-4 of Ph), 128.4 (d, J 12, C-3 of Ph), 126.9 (d, J 93, C-1 of Ph), 69.8 (d, J 109, P=C), 68.0 (2,6-CH₂), 58.3 (OEt), 43.3 (d, J 7, 4-CH), 29.4 (3,5-CH₂) and 13.7 (OEt); δ_{P} (121 MHz) +17.5; m/z (ESI) 943.35 (2M + Na, 32%), 483.17 (M + Na, 7%) and 461.19 (M + H, 100).

1,3-Dioxolane-containing ylides

1-(2,2-Dimethyl-1,3-dioxolan4-yl)-2-phenyl-2-(triphenylphosphoranylidene)ethan-1-one **16.** Reaction using procedure A with benzyltriphenylphosphonium chloride (3.31 g, 8.5 mmol) in THF (40 cm³), 2.5 M *n*-BuLi (3.4 cm³, 8.5 mmol) and 2,2-dimethyl-1,3-dioxolane-4-carbonyl chloride (0.70 g, 4.25 mmol) in THF (10 cm³) gave the product (0.51 g, 25%) as colourless crystals, mp 169–171 °C (from EtOAc) (Found 481.1914. C₃₁H₃₀O₃P (M + H) requires 481.1933); $\nu_{\text{max}}/\text{cm}^{-1}$ 1717, 1549 (CO), 1523, 1103, 870, 761 and 694; δ_{H} (300 MHz) 7.60–7.40 (9 H, m), 7.40–7.30 (6 H, m), 7.00–6.95 (5 H, m), 4.75 (1 H, ddd, J 8.4, 6.9, 1.2), 3.895 (1 H, half AB pattern of d, J 7.5, 6.9), 3.86 (1 H, half AB pattern of d, J 8.4, 7.5), 1.41 (3 H, s, Me) and 1.31 (3 H, s, Me); δ_{C} (75 MHz) 184.3 (d, J 6, CO), 136.5 (d, J 11, C-1 of Ph), 135.0 (d, J 5, C-2 of Ph), 133.6 (d, J 10, C-2 of PPh), 131.5 (d, J 3, C-4 of PPh), 128.4 (d, J 12, C-3 of PPh), 127.7 (d, J 2, C-3 of Ph), 126.3 (d, J 91, C-1 of PPh), 125.6 (d, J 3, C-4 of Ph), 109.7 (dioxolane C-2), 76.4 (d, J 13, dioxolane C-4), 71.0 (d, J 107, P=C), 68.0 (dioxolane C-5), 26.2 (Me) and 26.0 (Me); δ_{P} (121 MHz) +16.1; m/z (ESI) 481.19 (M + H, 100).

Ethyl 3-(2,2-dimethyl-1,3-dioxolan-4-yl)-3-oxo-2-(triphenylphosphoranylidene)propanoate **17.** Reaction using procedure B with ethyl triphenylphosphoranylideneacetate (1.47 g, 4.25 mmol), triethylamine (0.60 cm³, 0.43 g, 4.25 mmol) and 2,2-dimethyl-1,3-dioxolan-4-carbonyl chloride (0.70 g, 4.25 mmol) in toluene (10 cm³) gave the product (0.52 g, 26%) as colourless crystals, mp 154–156 °C (Found 477.1819. C₂₈H₃₀O₅P (M + H) requires 477.1831); $\nu_{\text{max}}/\text{cm}^{-1}$ 1655, 1597 (CO), 1300, 1288, 1104, 1088, 842, 756 and 689; δ_{H} (500 MHz)

7.70–7.60 (6 H, m), 7.60–7.50 (3 H, m), 7.50–7.40 (6 H, m), 5.51 (1 H, ddd, J 7.5, 5.4, 1.2), 4.57 (1 H, dd, J 8.2, 7.5), 4.16 (1 H, dd, J 8.2, 5.4), 3.74 and 3.66 (2 H, AB pattern of q, J 10.5, 7.2), 1.39 (3 H, s, Me), 1.36 (3 H, s, Me) and 0.64 (3 H, t, J 7.2, OEt); δ_c (125 MHz) 193.2 (d, J 3, 3-CO), 167.5 (d, J 14, 1-CO), 133.1 (d, J 10, C-2 of Ph), 131.6 (d, J 3, C-4 of Ph), 128.5 (d, J 12, C-3 of Ph), 126.1 (d, J 94, C-1 of Ph), 109.9 (dioxolane C-2), 79.1 (d, J 9, dioxolane C-4), 68.94 (d, J 110, P=C), 68.89 (dioxolane C-5), 58.4 (OEt), 26.1 (Me), 25.7 (Me) and 13.6 (OEt); δ_p (121 MHz) +16.9; m/z (ESI) 975.34 (2M + Na, 35%), 499.16 (M + Na, 60), 477.18 (M + H, 100).

X-ray structure determination

Compound **10**, $C_{31}H_{27}O_3P$, M 478.53, yellow prism. Monoclinic, space group $P2_1/c$, a 9.9232(13), b 21.836(2), c 11.4086(13) Å, β 96.272(4)°, V 2457.3(5) Å³, Z 4, D_c 1.293 Mg m⁻³, T 173 K, 26 295 reflections, 4506 unique (R_{int} 0.048). R_1 0.0484, wR_2 0.1407, R indices based on 3994 data with $I > 2\sigma(I)$, 316 parameters. Data were recorded using a Rigaku XtaLB P200, Mo K α radiation (confocal optic, λ 0.71073 Å) and Saturn detector. The structure was solved by direct methods and refined using full-matrix least-squares methods.

Compound **13**, $C_{26}H_{27}O_2P$, M 402.47, colourless prism. Monoclinic, space group $P2_1/c$, a 11.829(3), b 11.011(3), c 16.248(4) Å, β 93.341(7)°, V 2112.7(9) Å³, Z 4, D_c 1.265 Mg m⁻³, T 93 K, 23 466 reflections, 3850 unique (R_{int} 0.0592). R_1 0.0369, wR_2 0.1090, R indices based on 3336 data with $I > 2\sigma(I)$, 263 parameters. Data were recorded using a Rigaku XtaLB P200, Mo K α radiation (confocal optic, λ 0.71073 Å) and Saturn detector. The structure was solved by direct methods and refined using full-matrix least-squares methods.

Compound **17**, $C_{28}H_{29}O_5P$, M 476.51, colourless prism. Triclinic, space group $P1$, a 9.345(4), b 10.512(3), c 14.341(4) Å, α 98.497(2), β 106.816(11), γ 110.513(8)°, V 1213.3(7) Å³, Z 2, D_c 1.304 Mg m⁻³, T 125 K, 13 591 reflections, 6259 unique (R_{int} 0.0836). R_1 0.0570, wR_2 0.1352, R indices based on 5802 data with $I > 2\sigma(I)$, 619 parameters. Data were recorded using a Rigaku XtaLB P200, Cu K α radiation (confocal optic, λ 1.54187 Å) and Saturn detector. The structure was solved by direct methods and refined using full-matrix least-squares methods.

10), 1435298 (**13**) 和 1435299 (**17**)。

Flash vacuum pyrolysis (FVP)

这是通过使用先前描述的装置进行的。²² 热区接触时间为 ~10 ms。在每个案例中，从炉子出口处收集的固体被发现是 Ph₃PO 或 Ph₃PO 和 Ph₃P 的混合物。在冷阱中收集的其他产品(s)作为液体或油被溶解，使用 CDCl₃ (小规模) 进行直接 NMR 分析，或使用 CH₂Cl₂ (大规模) 进行纯化和表征。

FVP of ylide 6 (150 mg) 在 750 °C 下于炉子出口处 Ph₃PO; δ_p +29.2, 在冷阱中得到：

2-Ethynyltetrahydrofuran 18 (14 mg, 36%) 为无色液体 (Found 95.0493. C₆H₁₀O (M - H) 需要 95.0497); δ_H (300 MHz) 4.62–4.58 (1 H, m, 2-H), 4.00–3.92 (1 H, m, 5-H), 3.86–3.75 (1 H, m, 5-H), 2.43 (1 H, d, J 2.0, ≡CH) 和 2.24–1.85 (m, 4H, 3,4-H); δ_c (75 MHz) 83.8 (C, -C≡), 72.5 (CH, -C≡), 67.9 (CH₂, C-5), 67.8 (CH, C-2), 33.2 (CH₂) 和 25.3 (CH₂)。

FVP of ylide 12 (110 mg) 在 750 °C 下于炉子出口处 Ph₃PO; δ_p +29.2, 在冷阱中得到：

混合物含 **4-ethynyltetrahydropyran 19** (13 mg, 42%) 为无色液体 (Found: 111.0812. C₇H₁₁O (M + H) 需要 111.0810); ν_{max}/cm^{-1} 3293 (≡C-H), 2240 (C≡C), 1262, 1090, 1058 和 813; δ_H (400 MHz) 3.905 (2 H, ddd, J 11.6, 5.6, 3.6, 2,6-H), 3.505 (2 H, ddd, J 11.6, 8.4, 3.2, 2,6-H), 2.68–2.61 (1 H, m, 4-H), 2.11 (1 H, d, J 2.4, ≡CH), 1.88–1.80 (2 H, m, 3,5-H) 和 1.74–1.64 (2 H, m, 3,5-H); δ_c (100 MHz) 86.6 (C, -C≡), 69.1 (CH, -C≡), 66.2 (CH₂), 32.0 (CH₂) 和 25.9 (CH), 一起与环戊二烯 (4%) ; δ_H 6.57 (2 H, m), 6.47 (2 H, m) 和 2.99 (2 H, m); δ_c 133.1 (CH), 132.2 (CH) 和 41.6 (CH₂) 和丙醛 (3%); δ_H 9.79 (1 H, q, J 3) 和 2.21 (3 H, d, J 3)。

FVP of ylide 7 (200 mg) 在 730 °C 下于炉子出口处 Ph₃P; δ_p -5.5 和 Ph₃PO; δ_p +29.2, 在冷阱中得到：

无色液体由 **2-(prop-1-ynyl)tetrahydropyran 22** (20%) ; δ_H (400 MHz) 4.58–4.50 (1 H, m, 2-H), 3.98–3.85 (2 H, m, 5-H), 1.90–1.80 (2 H, m), 1.75–1.70 (2 H, m) 和 1.84 (3 H, d, J 1.8); δ_c (100 MHz) 79.0 (C, -C≡), 70.7 (C, -C≡), 68.3 (CH), 67.8 (CH₂), 33.3 (CH₂), 25.3 (CH₂) 和 3.5 (Me) [与 δ_H 有良好一致 (lit.⁴⁰)] 和 **2-(propio-nyl)-4,5-dihydrofuran 24** (30%) (Found 127.0754. C₇H₁₁O₂ (M + H) 需要 127.0759); δ_H (300 MHz) 5.94 (1 H, t, J 3.0), 4.47 (2 H, t, J 9.8), 2.82 (2 H, td, 9.8, 3.0), 2.65 (2 H, q, J 7.2) 和 1.12 (3 H, t, J 7.2); δ_c (100 MHz) 193.0 (CO), 156.0 (C≡C), 110.7 (C≡CH), 70.1 (OCH₂), 32.0 (COCH₂), 30.5 (4-CH₂) 和 8.0 (CH₃)。制备 TLC 允许将后者分离为纯品。

FVP of ylide 13 (70 mg) 在 710 °C 下于炉子出口处 Ph₃PO; δ_p +29.2, 在冷阱中得到：

4-(Prop-1-ynyl)tetrahydropyran 25 (65%) (Found: 125.0969. C₈H₁₃O (M + H) 需要 125.0966); ν_{max}/cm^{-1} 2233 (C≡C); δ_H (300 MHz) 3.89 (2 H, ddd, J 11.7, 5.1, 3.9, 2,6-H), 3.47 (2 H, ddd, J 11.7, 8.7, 2.8, 2,6-H), 2.60–2.50 (1 H, m, 4-H), 1.81 (3 H, d, J 2.0) 1.82–1.74 (2 H, m, 3,5-H) 和 1.68–1.55 (2 H, m, 3,5-H); δ_c (75 MHz) 81.7 (C, -C≡), 76.4 (C, -C≡), 66.5 (CH₂), 32.6 (CH₂) 和 3.5 (Me)。

FVP of ylide 8 (80 mg) 在 700 °C 下于炉子出口处 Ph₃PO; δ_p +29.2, 在冷阱中得到：

2-(Phenylethynyl)tetrahydropyran 26 (56%) 为无色液体 (Found 195.0776. C₁₂H₁₂ONa (M + Na) 需要 195.0786); ν_{max}/cm^{-1} 2231 (C≡C), 1727, 1599, 1490, 1054, 757 和 692; δ_H (300 MHz) 7.6–7.2 (5 H, m), 4.81 (1 H, dd, J 7.2, 5.0, 2-H), 4.05–3.98 (1 H, m, 5-H), 3.89–3.82 (1 H, m, 5-H), 2.25–2.15 (1 H, m), 2.15–2.00 (2 H, m) 和 2.00–1.85 (1 H, m);

δ_C (75 MHz) 131.7 (2 CH), 128.22 (CH), 128.17 (2 CH), 122.8 (C), 89.0 (C, $-C\equiv$), 84.4 (C, $-C\equiv$), 68.6 (CH₂), 67.9 (CH), 33.4 (CH₂) and 25.5 (CH₂) [good agreement of δ_H ²⁷ and δ_C ²⁸ with lit.].

FVP of ylide 14 (70 mg) at 700 °C gave at the furnace exit Ph₃PO; δ_P +29.2, and in the cold trap:

A mixture of **4-(phenylethynyl)tetrahydropyran** 27 (46%) (Found 186.1042. C₁₃H₁₄O (M) requires 186.1045); δ_H (300 MHz) 7.45–7.25 (5 H, m), 4.00–3.89 (2 H, m, 2,6-H), 3.60–3.50 (2 H, m, 2,6-H), 2.90–2.80 (1 H, m, 4-H), 1.95–1.85 (2 H, m, 3,5-H) and 1.82–1.70 (2 H, m, 3,5-H); δ_C (75 MHz) 131.6 (2 CH), 128.2 (2 CH), 126.6 (CH), 123.6 (C), 92.2 (C, $-C\equiv$), 81.5 (C, $-C\equiv$), 66.4 (CH₂), 32.3 (CH₂) and 26.8 (CH), and **4-(phenylvinylidene)tetrahydropyran** 28 (20%); δ_H (300 MHz) 7.45–7.25 (5 H, m), 6.10 (1 H, quintet, J 2.1), 3.89–3.75 (2 H, m, 2,6-H), 2.38–2.33 (2 H, m, 3,5-H); δ_C (75 MHz) 200.7 ($=C\equiv$), 135.2 (C), 128.6 (2 CH), 127.7 (2 CH), 126.7 (CH), 101.9 ($=C<$), 93.7 ($=CH$), 68.8 (CH₂) and 31.3 (CH₂).

FVP of ylide 16 (65 mg) at 650 °C gave at the furnace exit an 8:1 mixture of Ph₃PO; δ_P +29.2 and Ph₃P; δ_P –5.5, and in the cold trap:

4-Phenylethynyl-2,2-dimethyl-1,3-dioxolane 29 (48%) (Found 225.0883. C₁₃H₁₄O₂Na (M + Na) requires 225.0891); $\nu_{\text{max}}/\text{cm}^{-1}$ 2234, 2212 (C≡C), 1709, 1680, 1599, 1491, 1065, 758 and 692; δ_H (300 MHz) 7.48–7.40 (2 H, m), 7.35–7.25 (3 H, m), 4.95 (1 H, t, J 6.3, 4-H), 4.24 (1 H, dd, J 8.0, 6.3, 5-H), 4.01 (1 H, dd, J 8.0, 6.3, 5-H), 1.54 (3 H, q, J 0.6) and 1.43 (3 H, q, J 0.6); δ_C (75 MHz) 131.7 (2 C), 128.6 (C-4 of Ph), 128.2 (2 C), 122.2 (C-1 of Ph), 110.3 (dioxolane C-2), 86.2 ($-C\equiv$), 85.8 ($-C\equiv$), 70.0 (dioxolane C-5), 66.0 (dioxolane C-4), 26.2 and 26.0 (CMe₂) [good agreement of δ_H and δ_C with lit.²⁷]. Acetone (20%); δ_H 2.17; δ_C 207.0 and 30.9, was also present.

FVP of ylide 16 (107 mg) at 750 °C gave at the furnace exit a 3:1 mixture of Ph₃PO; δ_P +29.2 and Ph₃P; δ_P –5.5, and in the cold trap a mixture of 29 (data as above), acetone, and:

2-Phenoxetole 30 (Found 133.0649. C₉H₉O (M + H) requires 133.0653); δ_H (300 MHz) 6.16 (1 H, t, J 6.9) and 5.14 (2 H, d, J 6.9); δ_C (75 MHz) 93.9 (CH) and 78.7 (CH₂). Due to peak overlap the phenyl and quaternary $=C-$ signals could not be observed with certainty.

FVP of ylide 9 (70 mg) at 500 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap a mixture of:

1-(Tetrahydrofuran-2-yl)but-2-yn-1-one 37 (26%); δ_H (400 MHz) 4.44 (1 H, dd, J 8.6, 5.8), 3.95–3.80 (2 H, m), 2.30–2.00 (4 H, m) and 2.07 (3 H, s); δ_C (75 MHz) 188.8 (CO), 93.7 (C, $-C\equiv$), 83.7 (CH), 78.3 (C, $-C\equiv$), 69.6 (CH₂), 29.3 (CH₂), 25.25 (CH₂) and 4.3 (CH₃) and **4-(tetrahydrofuran-2-yl)but-3-yn-2-one** 39 (58%); δ_H (400 MHz) 4.74 (1 H, dd, J 8.0, 4.8), 4.1–3.9 (2 H, m), 2.2–1.8 (4 H, m) and 2.35 (3 H, s); δ_C (75 MHz) 184.3 (CO), 91.0 (C, $-C\equiv$), 83.5 (C, $-C\equiv$), 68.3 (CH₂), 67.6 (CH), 32.7 (CH₂), 32.6 (CH₃) and 25.34 (CH₂).

FVP of ylide 9 (110 mg) at 700 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap a mixture of 37 (18%), 39 (33%) data as above, and:

3-Acetyl furan 41 (17%); δ_H (300 MHz) 8.03 (1 H, dd, J 1.5, 0.9), 7.45 (1 H, dd, J 2.0, 1.5), 6.77 (1 H, dd, J 2.0, 0.9) and 2.45 (3 H, s); δ_C (75 MHz) 192.6 (CO), 147.5 (CH), 144.2 (CH), 128.0 (C), 108.5 (CH) and 27.8 (CH₃) [good agreement of δ_H and δ_C with lit.³⁶].

FVP of ylide 10 (70 mg) at 500 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap:

A mixture of **3-phenyl-1-(tetrahydrofuran-2-yl)prop-2-yn-1-one** 38 (29%); δ_H (300 MHz) 7.65–7.35 (5 H, m), 4.58 (1 H, dd, J 8.7, 5.7), 4.14–3.85 (2 H, m) and 2.40–1.90 (4 H, m); δ_C (75 MHz) 83.9 (CH), 69.8 (CH₂), 29.7 (CH₂) and 25.4 (CH₂) [due to low intensity and peak overlap, the signals for CO, $-C\equiv$ and Ph could not be assigned with certainty] and **1-phenyl-3-(tetrahydrofuran-2-yl)prop-2-yn-1-one** 40 (30%); δ_H (300 MHz) 7.65–7.35 (5 H, m), 4.89 (1 H, dd, J 7.8, 4.8), 4.14–3.85 (2 H, m) and 2.40–1.90 (4 H, m); δ_C (75 MHz) 68.4 (CH₂), 67.9 (CH), 32.9 (CH₂) and 25.4 (CH₂) [due to low intensity and peak overlap, the signals for CO, $-C\equiv$ and Ph could not be assigned with certainty]. Aromatic CH signals for 38 and 40 were at 134.2, 133.2, 130.9, 129.6, 128.63 and 128.58.

FVP of ylide 10 (50 mg) at 700 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap a mixture of 38 (12%), 40 (14%) data as above, and:

3-Benzoylfuran 42 (37%); δ_H (300 MHz) 7.93 (1 H, dd, J 1.5, 0.9), 7.87–7.82 (2 H, m), 7.62–7.56 (1 H, m), 7.51 (1 H, dd, J 1.8, 1.5), 7.50–7.46 (2 H, m) and 6.92 (1 H, dd, J 1.8, 0.9) [good agreement of δ_H with lit.³⁷].

FVP of ylide 11 (120 mg) at 500 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap a mixture of:

Ethyl 3-(tetrahydrofuran-2-yl)propynoate 45 (42%) (Found 167.0703. C₉H₁₁O₃ (M – H) requires 167.0708); $\nu_{\text{max}}/\text{cm}^{-1}$ 2239 (C≡C), 1717, 1368, 1254, 1052, 1031, 860 and 752; δ_H (400 MHz) 4.73 (1 H, dd, J 8.0, 4.0, 2-H), 4.23 (2 H, q, J 7.0), 3.99–3.92 (1 H, m, 5-H), 3.89–3.80 (1 H, m, 5-H), 2.30–2.20 (1 H, m, 4-H), 2.20–2.00 (2 H, m), 2.00–1.85 (1 H, m) and 1.31 (3 H, t, J 7.0); δ_C (100 MHz) 153.3 (CO), 86.9 (C, $-C\equiv$), 76.1 (C, $-C\equiv$), 68.3 (CH₂), 67.5 (CH), 62.0 (CH₂), 32.7 (CH₂), 25.3 (CH₂) and 13.9 (CH₃) and **2-ethynyltetrahydrofuran** 18 (16%), data as for FVP of 6.

FVP of ylide 11 (120 mg) at 750 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap a mixture containing low yields of furan, cyclopentadiene and acetaldehyde.

FVP of ylide 15 (100 mg) at 500 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap:

Ethyl 3-(tetrahydropyran-4-yl)propynoate 46 (60%) (Found 205.0830. C₁₀H₁₄O₃Na (M + Na) requires 205.0841); $\nu_{\text{max}}/\text{cm}^{-1}$ 2239 (C≡C), 1712, 1260, 1250, 1095, 1021 and 747; δ_H (500 MHz) 4.23 (2 H, q, J 7.0), 3.90 (2 H, ddd, J 11.6, 5.6, 3.6, 2,6-H), 3.51 (2 H, ddd, J 11.8, 8.8, 3.0, 2,6-H), 2.81–2.75 (1 H, m, 4-H), 1.91–1.84 (2 H, m, 3,5-H), 1.79–1.71 (2 H, m, 3,5-H) and 1.32 (3 H, t, J 7.0); δ_C (125 MHz) 153.8 (CO), 90.3 (C, $-C\equiv$), 73.8 (C, $-C\equiv$), 66.1 (CH₂), 62.0 (CH₂), 31.0 (CH₂), 26.1 (CH) and 14.0 (CH₃).

FVP of ylide 15 (100 mg) at 750 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap **4-ethynyltetrahydropyran**

19 (30%) together with cyclopentadiene (20%) and acet-aldehyde (25%); data as for FVP of 12.

FVP of ylide 17 (130 mg) at 600 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap:

A mixture of **ethyl 3-(2,2-dimethyl-1,3-dioxolan-4-yl)propynoate** 47 (68%) (Found 221.0782. C₁₀H₁₄O₄Na (M + Na) requires 221.0790); $\nu_{\text{max}}/\text{cm}^{-1}$ 2244 (C≡C), 1716 (C=O), 1374, 1248, 1067 and 846; δ_H (300 MHz) 4.82 (1 H, dd, *J* 6.6, 5.6, 4-H), 4.24 (2 H, q, *J* 7.2), 4.21 (1 H, dd, *J* 8.4, 6.6, 5-H), 4.05 (1 H, dd, *J* 8.4, 5.6, 5-H), 1.50 (3 H, q, *J* 0.6), 1.39 (3 H, q, *J* 0.6) and 1.31 (3 H, t, *J* 7.2); δ_C (75 MHz) 153.0 (CO), 111.2 (dioxolane C-2), 84.2 (−C≡), 77.0 (−C≡), 69.2 (dioxolane C-5), 64.9 (dioxolane C-4), 62.2 (CH₂CH₃), 26.0 and 25.7 (CMe₂) and 13.9 (CH₂CH₃) and **4-ethynyl-2,2-dimethyl-1,3-dioxolane** 48 (9%) (Found 125.0602. C₇H₉O₂ (M – H) requires 125.0603); δ_H (300 MHz) 4.72 (1 H, td, *J* 6.3, 2.1, 4-H), 4.18 (1 H, dd, *J* 8.1, 6.3, 5-H), 3.95 (1 H, dd, *J* 8.1, 6.3, 5-H), 2.51 (1 H, d, *J* 2.1, ≡CH), 1.50 (3 H, q, *J* 0.6) and 1.39 (3 H, q, *J* 0.6); δ_C (75 MHz) 110.5 (dioxolane C-2), 85.4 (−C≡), 73.9 (HC≡), 69.8 (dioxolane C-5), 65.2 (dioxolane C-4), 26.1 and 25.8 (CMe₂).

FVP of ylide 17 (120 mg) at 650 °C gave at the furnace exit Ph₃PO; δ_P +29.2 and in the cold trap a mixture of 47 (39%) and 48 (30%), data as above.

Conclusions

Our results show that the tetrahydrofuran, tetrahydropyran and 2,2-dimethyl-1,3-dioxolane rings are generally stable under the conditions required for alkyne formation using the FVP of stabilised phosphonium ylides. Increasing the pyrolysis temperature does lead to observation of new, largely carbene-based, processes in some cases but provided the temperature is carefully controlled the use of this method to construct acetylenic carbohydrate derivatives should be possible and further results on this will be reported shortly.

Notes and references

- 1 R. A. Aitken and A. W. Thomas, in *Chemistry of the functional groups*, Supplement A3, ed. S. Patai, Wiley, New York, 1997, pp. 473–536.
- 2 S. Trippett and D. M. Walker, *J. Chem. Soc.*, 1959, 3874–3876.
- 3 G. Märkl, *Chem. Ber.*, 1961, **94**, 3005–3010.
- 4 A. W. Johnson, in *Ylides and Imines of Phosphorus*, Wiley, New York, 1993, pp. 129–151.
- 5 R. A. Aitken and J. I. Atherton, *J. Chem. Soc., Chem. Commun.*, 1985, 1140–1141.
- 6 R. A. Aitken and A. N. Garnett, *New J. Chem.*, 2009, **33**, 2402–2404.
- 7 R. A. Aitken and L. Murray, *J. Org. Chem.*, 2008, **73**, 9781–9783.
- 8 R. A. Aitken, N. Karodia, T. Massil and R. J. Young, *J. Chem. Soc., Perkin Trans. 1*, 2002, 533–541.
- 9 R. A. Aitken and Y. Boubalouta, in *Advances in Heterocyclic Chemistry*, ed. E. F. V. Scriven and C. A. Ramsden, Elsevier, Oxford, 2015, ch. 2, vol. 115, pp. 93–150.
- 10 E. J. Horn and J. Gervay-Hague, *J. Org. Chem.*, 2009, **74**, 4357–4359.
- 11 J. M. J. Tronchet, A. P. Bonenfant, F. Perret, A. Gonzalez, J.-B. Zumwald, E. M. Martinez and B. Bachler, *Helv. Chim. Acta*, 1980, **63**, 1181–1189.
- 12 R. M. Adlington, J. E. Baldwin, G. J. Pritchard and K. C. Spencer, *Tetrahedron Lett.*, 2000, **41**, 575–578.
- 13 D. E. Bays, R. P. C. Cousins, H. J. Dyke, C. D. Eldred, B. D. Judkins, M. Pass and A. M. K. Pennell, *US Pat.*, 6492348 B1, 2002.
- 14 P. Nakache, E. Ghera and A. Hassner, *Tetrahedron Lett.*, 2000, **41**, 5583–5587.
- 15 K. Fujiwara, Y. Hirose, D. Sato, H. Kawai and T. Suzuki, *Tetrahedron Lett.*, 2010, **51**, 4263–4266.
- 16 R. S. Vartanyan, Zh. V. Kazaryan and S. A. Vartanyan, *Chem. Heterocycl. Compd. (Engl. Transl.)*, 1979, 253–254.
- 17 H. J. Bestmann, *Chem. Ber.*, 1962, **95**, 58–63.
- 18 S. T. D. Gough and S. Trippett, *J. Chem. Soc.*, 1964, 543–544.
- 19 C. R. Schmid and J. D. Bryant, *Org. Synth.*, 1995, **72**, 6–9; C. R. Schmid and J. D. Bryant, *Org. Synth. Coll. Vol.*, 1998, **9**, 450–453.
- 20 M. J. Earle, A. Abdur-Rashid and N. D. Priestley, *J. Org. Chem.*, 1996, **61**, 5697–5700.
- 21 R. A. Aitken, N. Karodia and P. Lightfoot, *J. Chem. Soc., Perkin Trans. 2*, 2000, 333–340.
- 22 R. A. Aitken and J. I. Atherton, *J. Chem. Soc., Perkin Trans. 1*, 1994, 1281.
- 23 R. F. C. Brown, *Recl. Trav. Chim. Pays-Bas*, 1988, **107**, 655–661.
- 24 R. A. Aitken, I. M. Fairhurst, A. Ford, P. E. Y. Milne, D. W. Russell and M. Whittaker, *J. Chem. Soc., Chem. Commun.*, 1993, 1517–1519.
- 25 R. A. Aitken, I. M. Fairhurst, A. Ford, P. E. Y. Milne, D. W. Russell and M. Whittaker, *J. Chem. Soc., Perkin Trans. 1*, 1997, 3107–3112.
- 26 R. R. Da Silva, V. G. Toscano and R. G. Weiss, *J. Chem. Soc., Chem. Commun.*, 1973, 567–568.
- 27 D. S. Brown, M. Bruno, R. J. Davenport and S. V. Ley, *Tetrahedron*, 1989, **45**, 4293–4308.
- 28 A. R. Katritzky, S. Rachwal and B. Rachwal, *J. Chem. Soc., Perkin Trans. 1*, 1990, 1717–1725.
- 29 W. Shen and L. Wang, *J. Org. Chem.*, 1999, **64**, 8873–8879.
- 30 T. Otsuki, *Bull. Chem. Soc. Jpn.*, 1974, **47**, 3089–3093.
- 31 B. Alcaide, P. Almendros, T. Martínez del Campo and I. Fernández, *Chem. Commun.*, 2011, **47**, 9054–9056.
- 32 K. Aikawa, Y. Hioki, N. Shimizu and K. Mikami, *J. Am. Chem. Soc.*, 2011, **133**, 20092–20095.
- 33 P. C. Martino and P. B. Shevlin, *J. Am. Chem. Soc.*, 1980, **102**, 5429–5430.
- 34 P. A. Chopard, R. J. G. Searle and F. H. Devitt, *J. Org. Chem.*, 1965, **30**, 1015–1019.
- 35 Y. Shen, W. Cen and Y. Huang, *Synthesis*, 1985, 159–160.

36 C. Gryparis, I. N. Lykakis, C. Efe, I.-P. Zaravinos, T. Vidali, E. Kladou and M. Stratakis, *Org. Biomol. Chem.*, 2011, **9**, 5655–5658.

37 T. Satoh, T. Itaya, K. Okuro, M. Miura and M. Nomura, *J. Org. Chem.*, 1995, **60**, 7267–7271.

38 R. A. Aitken, C. E. R. Horsburgh, J. G. McCreadie and S. Seth, *J. Chem. Soc., Perkin Trans. 1*, 1994, 1727–1732.

39 R. A. Aitken and J. J. Morrison, *ARKIVOC*, 2008, (x), 103–112.

40 M. Apparu and J. K. Crandall, *J. Org. Chem.*, 1984, **49**, 2125–2130.

