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Evaluation of fluoropyruvate as nucleophile in
reactions catalysed by N-acetyl neuraminic acid
lyase variants: scope, limitations and
stereoselectivityt
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The catalysis of reactions involving fluoropyruvate as donor by N-acetyl neuraminic acid lyase (NAL)

variants was investigated. Under kinetic control, the wild-type enzyme catalysed the reaction between

fluoropyruvate and N-acetyl mannosamine to give a 90: 10 ratio of the (3R,4R)- and (3S,4R)-configured

products; after extended reaction times, equilibration occurred to give a 30 : 70 mixture of these products.

The efficiency and stereoselectivity of reactions of a range of substrates catalysed by the E192N, E192N/
T167V/S208V and E192N/T167G NAL variants were also studied. Using fluoropyruvate and (2R,3S)- or
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Introduction

The introduction of fluorine can have a profound effect on bio-
active molecules including their conformation, binding, bio-
availability, metabolism, pharmacokinetics and pharmaco-
dynamics." As a consequence, around 20% of prescribed
drugs, and 30% of leading blockbuster drugs, contain at least
one fluorine atom.> Examples of fluorinated pharmaceuticals
include the cholesterol-lowering drug Atorvastatin, and
Sofosbuvir which is exploited in the treatment of Hepatitis C
(Fig. 1).>* Moreover, fluorinated sugars can serve as valuable
mechanism-based  probes of  carbohydrate-processing
enzymes.’
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(2S,3R)-2,3-dihydroxy-4-oxo-N,N-dipropylbutanamide as substrates, it was possible to obtain three of
the four possible diastereomeric products; for each product, the ratio of anomeric and pyranose/furanose
forms was determined. The crystal structure of S. aureus NAL in complex with fluoropyruvate was deter-
mined, assisting rationalisation of the stereochemical outcome of C-C bond formation.

The stereoselective synthesis of compounds with a fluorine-
bearing stereocentre is a significant challenge. Most solutions
to this problem rely on stereoselective C-F bond formation,
for example by fluorination of allylic silanes.® Some catalytic
methods for enantioselective C-F bond formation have been
developed: for example by organocatalytic a-fluorination
of aldehydes’ or Pd-catalysed o-fluorination of p-keto
phosphonates.®
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Fig. 1 Examples of fluorinated drugs.
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Scheme 1 Envisaged strategy for controlling F-bearing stereocentres
by C-C bond formation.

OH OH O
E192N/ PF2N -
T167G COH
O OH
OH O 3a, >98:<2
H ‘ (e]
ProN ; )J\
CO.H
O OH
DHOB \
E192N/ OH OH O
ProN 2 2
T167V/ 2 oM
S208V
OH
3b, >98:<2

Scheme 2 Stereoselective aldol reactions catalysed by aldolases gen-
erated by directed evolution.** The products are drawn in open chain
form for clarity.

We envisaged a complementary catalytic approach in which
a F-bearing stereocentre would be controlled by formation of a
neighbouring C-C bond (Scheme 1). Aldolase-catalysed
reaction involving fluoropyruvate and an aldehyde 1 would
yield an aldol product 2 with two new stereogenic centres. This
catalytic approach would complement enantioselective aldol
reactions involving fluoroacetone.’

N-Acetyl neuraminic acid lyase (NAL) is a Class I aldolase
that catalyses the reversible aldol reaction between pyruvate
and N-acetyl mannosamine (ManNAc) to give N-acetyl neura-
minic acid (Neu5Ac). A combination of mutagenesis, structural
biology and computational chemistry has revealed insights
into its catalytic mechanism.'® Despite a report that it is not
a substrate,"" fluoropyruvate is a viable donor.'”> However,
differing stereochemical outcomes have been reported for the
NAL-catalysed reaction between fluoropyruvate and ManNAc."?
An initial aim of our study was, therefore, to clarify the stereo-
chemical outcome of this reaction.

We also sought to investigate the catalysed reactions
between fluoropyruvate and alternative aldehyde acceptors.
Here, we investigated the value of synthetically-useful NAL var-
iants that we have previously generated using directed evol-
ution.'®'* The E192N variant of NAL is an excellent catalyst of
the poorly stereoselective reaction between pyruvate and the
alternative substrate (2R,3S)-2,3-dihydroxy-4-oxo-N,N-dipropyl-
butanamide, DHOB (Scheme 2)."* The structural basis of the
modified substrate specificity of this variant has been gleaned
using protein crystallography.'® In contrast, the E192N/T167G
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and E192N/T167V/S208V variants of NAL control the stereo-
chemistry of C-C bond formation, and catalyse respectively the
selective formation of the alternative diastereomeric products
3a and 3b (Scheme 2)."*

Results and discussion

Evaluation of wild-type NAL in the synthesis of fluorinated
analogues of N-acetyl neuraminic acid

Initially, the reaction between fluoropyruvate and ManNAc cat-
alysed by wild-type NAL was investigated (Panel A, Scheme 3).
Accordingly, the reaction was performed at 37 °C in an NMR
tube (20 mM sodium fluoropyruvate and 100 mM N-acetyl
mannosamine in 20 mM Tris-HCl pH 7.4 buffer) and followed
by '°F NMR spectroscopy. After 500 min, the fluoropyruvate
was >98% consumed, and a 90:10 mixture of the diastereo-
meric products 4a and 4d had been formed (which vary only in
their configuration at C-3). However, after a prolonged reaction
time (~5 weeks), with regular addition of more enzyme, the
ratio of products had switched to 30:70 in favour of 4d. The
alternative possible diastereomeric products (4b and 4c; Panel
B) were not detected. These data suggest that 4a is the kinetic
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OH OH O HJ\ COH OH NHAcF
HO 2 F 4a  (3R4R)
B wild type
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500 min: 4a:4d 90:10
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Scheme 3 Reaction between fluoropyruvate and ManNAc catalysed by
wild-type NAL. A: The stereochemical outcome is determined by the
reaction time. The products are depicted in open chain form for clarity.
NAL was regularly added to the 5 week reaction. B: Diastereomeric pro-
ducts that were not observed. C: Cyclised forms of 4a and 4d.
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Table 1 Spectroscopic data for the fluorinated products of aldolase-catalysed reactions
5F/ 53H/ 54H/ 55H/ 56H/ 2.]HF a/ 3]HF a/ 3]3H74H/ 3J4H75H/ 3JSH*GH/
Product Form (proportion) ppm ppm ppm ppm ppm Hz Hz Hz Hz Hz
4a Major pyranose (98%) —-208.1 4.65 3.93 4.07 3.87 49.3 30.0 2.1 10.6 10.6
Minor pyranose (2%) -217.9 NM?  NM? NM? NM? 51.3 29.9 NM? NM? NM?
ad Major pyranose (96%) -199.3  4.47 ~3.90  ~3.90 ~3.90  49.7 12.0 8.8 NM? NM?
16a Major pyranose (92%) —-206.0 4.78 3.94 3.88 4.75 49.9 32.5 3.4 9.7 9.2
Minor pyranose (8%) -216.8 NM?  NM? NM? NM? 51.4 32.8 NM? NM? NM?
16¢ Major pyranose (35%) —-190.5 4.85 4.39 4.12 4.65 50.5 24.0 4.8 5.0 6.1
Major furanose (25%) -194.5  4.72 4.02 3.96  NM? 43.7 4.7 1.7 NM? NM?
Minor pyranose (30%) -201.9 5.03 4.46 3.95 4.57 53.1 18.7 5.5 5.6 7.2
Minor furanose (10%) —-207.4 4.86 4.30 4.18 4.75 48.5 10.1 7.3 NMm? 5.4
ent-16d Pyranose (>98%) —199.8 4.60 3.95 3.78 4.62 49.3 13.3 9.3 9.3 9.7
17a Major pyranose (98%) —-207.8 4.90 4.16 4.23 4.83 49.0 29.1 2.2 10.9 10.0
Minor pyranose (2%) -2185 NM”  NM? NM? NM? 50.2 28.8 NM? NM? NM?

“ Determined by analysis of the 296 MHz '°F NMR spectrum. ” Not measured.

product of the reaction, and that 4d is the thermodynamic
product. The relative thermodynamic stability of 4d may stem
from the stabilising gauche interaction between fluorine and
vicinal electronegative atoms.'® As with previous studies, the
reaction was found to yield selectively (4R)-configured pro-
ducts. The different ratios of products under kinetic and ther-
modynamic control may account for the contrasting
selectivities reported in previous studies.*?

The interpretation of the spectroscopic data was greatly
assisted by the preparation of standard samples of the pro-
ducts 4a and 4d."*® The reaction between ManNAc and
sodium fluoropyruvate, catalysed by wild-type NAL, was con-
ducted at 37 °C in 100 mM Tris-HC] pH 7.4 buffer, and the
products purified by column chromatography. After 24 h reac-
tion, the product 4a was obtained in 34% yield; whilst after
reaction for >1 week, the product 4d was obtained in 43%
yield. In both cases, a single pyranose anomer predominated
(Table 1; Panel C, Scheme 3). The configuration of 4a and 4d
was determined by careful analysis of vicinal coupling con-
stants.”” In both pyranose anomers of 4a, there was a large
coupling constant between fluorine and H-4 (~30 Hz) and a
small coupling constant between H-3 and H-4 (2.1 Hz in the
major anomer) (Table 1). In contrast, in the major anomer of
4d, there was a small coupling constant between fluorine and
H-4 (~12 Hz) and a large coupling constant between H-3 and
H-4 (8.8 Hz).

The catalysis of the cleavage of the reaction products 4a
and 4d was also studied using an established coupled enzyme
assay'®” (Table 2). The cleavage of the fluorinated N-acetyl
neuraminic acid analogue 4a was much less efficient than that
of Neu5Ac itself (kea/Kp: 0.11 min™" mM™" for 4a compared
with 260 min™" mM~" for Neu5Ac). However, the catalysis of
the cleavage of the diastereomeric fluorinated analogue 4d was
even less efficient and was not detectable under the conditions
of the assay. This observation is consistent with (3R,4R)-config-
ured 4a being the kinetic product of the NAL-catalysed reaction
between fluoropyruvate and ManNAc.

This journal is © The Royal Society of Chemistry 2016

Table 2 Kinetic parameters for the cleavage of substrates catalysed by
wild-type NAL?

Substrate kea/min™" Ky/mM keat/Kp/min™' mM™?
Neu5Ac 510 £ 10 2.0+£0.1 260

4a 0.91 £ 0.03 8.4+0.7 0.11

4b ND? ND?

“Determined using a coupled enzyme assay involving lactate
dehydrogenase. ? Not detectable.

Preparation of substrate precursors

To enable evaluation of alternative potential substrates,
a range of alkene precursors was prepared: ozonolysis of these
alkenes (10, ent-10, 15 and ent-15) would yield the corres-
ponding aldehydes (DHOB, ent-DHOB, AHOB§ and ent-AHOB).
The alkene'?” ent-10 was prepared using a route that was ana-
logous to an established'® synthesis of 10 (Scheme 4). Thus,
treatment of the lactone 5 (derived from lyxose'®) with concen-
trated hydrochloric acid in acetone gave the corresponding
acetonide®® 6. Treatment of 6 with iodine and triphenyl-
phosphine gave the corresponding iodolactone 7, which was
followed by reductive ring-opening to give the carboxylic acid
ent-8 (whose enantiomer had been used to prepare’® 10).
Finally, amide formation (—9) and deprotection gave the
required alkene ent-10.

The alkenes 15 and ent-15 were prepared from the known”'
enantiomerically pure lactones 11 and ent-11 (see Scheme 4 for
the synthesis of 15). Treatment of the lactone 11 with LHMDS
at —78 °C, and reaction with the N-sulfonyl imine 12, gave the
product 13 as a 94:6 mixture of diastereomers; the relative
configuration of the major diastereomer was determined by
subsequent conversion into a cyclic derivative (see below). The
lactone 13 was ring-opened by treatment with Pr,NAIMe, and,

§ (2R,35)-3-acetyl-2-hydroxy-4-oxo-N,N-dipropylbutanamide.
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Scheme 4 Synthesis of precursors of aldehyde substrates. In addition,
the alkene ent-15 was prepared from the enantiomeric lactone starting
material 11; and 10 was prepared using an established route.*®

following acetal hydrolysis, the p-amino amide derivative 14
was obtained in 88% yield. Finally, desulfonylation of 14, fol-
lowed by acetylation, gave the required alkene 15.

Evaluation of variant NALs in the catalysis of reactions
involving fluoropyruvate

Efficiency of catalysis. The ability of NAL variants to catalyse
reactions involving fluoropyruvate as donor was investigated.
The aldehydes DHOB, ent-DHOB, AHOB and ent-AHOH were
investigated as potential substrates for the E192N, E192N/
T167G and E192N/T167V/S208 V NAL variants (Scheme 5). The
efficiency of catalysis was initially investigated by determining
the rate of consumption of fluoropyruvate by 'F NMR
spectroscopy. In each case, the corresponding alkene precursor
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Scheme 5 Possible diastereomeric products of aldolase-catalysed
reactions with fluoropyruvate as nucleophile.

(10, ent-10, 15 or ent-16) was cleaved ozonolytically in methanol
at =78 °C, and the reaction mixture quenched with dimethyl-
sulfide, transferred into an NMR tube and evaporated; the
reaction (20 mM sodium fluoropyruvate and 100 mM substrate
in 50 mM Tris-HCIpH 7.4 buffer) to give aldol products was
then followed by 296 MHz '°F NMR spectroscopy. The results
are presented in Table 3.

The rate of consumption of fluoropyruvate was highest with
the combination of DHOB and the E192N variant (9.1 nmol
min~" per nmol protein). This observation is, perhaps, unsur-
prising given that E192N was obtained via a directed evolution
approach that sought to optimise catalysis of cleavage to yield
DHOB."® However, it is notable that the E192N variant - in
addition to the wild-type enzyme - accepts fluoropyruvate as
an alternative donor.

This journal is © The Royal Society of Chemistry 2016
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Table 3 Activity and selectivity of aldolase variants with fluoropyruvate as donor

Substrate®  Variant Specific activity’/nmol min™ nmol™* Product  Ratio“a:bh:c:d  (3R/4R):(3S,4S):(3R,4S):(35,4R)"
DHOB E192N 9.1 16 40:0:50:10 40:0:50:10
DHOB E192N/T167V/S208V 0.56 16 0:0:100:0 0:0:100:0
DHOB E192N/T167G 0.06 16 30:0:70:0 30:0:70:0
ent-DHOB E192N 0.46 ent-16 10:0:0:90 0:10:90:0
ent-DHOB E192N/T167V/S208V 0.03 ent-16 0:0:0:100 0:0:100:0
ent-DHOB E192N/T167G 0.12 ent-16 20:0:0:80 0:20:80:0
AHOB E192N 1.1 17 60:0:40:0 60:0:40:0
AHOB E192N/T167V/S208V ND* —

AHOB E192N/T167G 0.03 17 NM?

ent-AHOB E192N 0.07 ent-17 Nm?

ent-AHOB E192N/T167V/S208V ND* )

ent-AHOB E192N/T167G 0.03 ent-17 Nm?

“prepared by ozonolysis of the corresponding alkene (10, ent-10, 15 or ent-15). > Consumption of fluoropyruvate (nmol min~" per nmol protein)
determined by 296 MHz '°F NMR spectroscopy. ° Kinetic ratio of diastereomeric products determined by 296 MHz *°F NMR spectroscopy. ¢ Not

measured. ° Not detectable.

Catalysis by the E192N variant was significantly less
efficient with the other substrates investigated. For example,
with AHOB, in which the a-hydroxy group of DHOB has been
replaced with an a-NHAc group, the rate of consumption of
fluropyruvate was about 8-fold slower. Switching to the enan-
tiomeric substrate series was also detrimental to catalysis: the
rate of consumption of fluoropyruvate was about 20-fold
slower with ent-DHOB (compared to DHOB) and about 15-fold
slower with ent-AHOB (compared to AHOB).

In addition, the E192N/T167G and E192N/T167V/S208V var-
iants are less efficient catalysts than the E192N variant. For
example, with DHOB as substrate, the rate of consumption of
fluoropyruvate was about 15- and 150-fold slower with the
E192N/T167G and E192N/T167V/S208V variants respectively
than with the E192N variant. These variants were generated to
catalyse complementary stereoselective reactions between pyru-
vate and DHOB (Scheme 2): a reduction in the efficiency of cat-
alysis (compared to the E192N variant) was also observed with
pyruvate as the donor substrate.'*

Preparation and characterisation of reaction products

The determination of the stereoselectivity of the reactions was
complicated by the possibility of four diastereomeric products,
each of which might exist in different anomeric and pyranose/
furanose forms. To assist analysis, selected reactions were con-
ducted preparatively, and the products purified and character-
ised (Table 4). In each case, the aldehyde substrate and
sodium fluoropyruvate were dissolved in 50 mM Tris-HC] pH
7.4 buffer, and the relevant NAL variant added. The conversion
of each reaction was determined by analysis of the crude
product by 296 MHz '°F NMR spectroscopy.

In two cases, the aldolase-catalysed reactions were highly
diastereoselective, and >98 : <2 mixtures of diastereomeric pro-
ducts were obtained after ion exchange chromatography. Thus,
with the E192N/T167V/S208V variant, fluoropyruvate and
DHOB reacted to give 16¢ which was isolated in 41% yield.
Similarly, with the same NAL variant, fluoropyruvate and ent-

This journal is © The Royal Society of Chemistry 2016

Table 4 Preparation of fluorinated products of aldolase-catalysed
reactions

Time/day
Substrate” (conversion®/  Yield/%
(eq.) Variant Product’ %) (ratio®)
DHOB E192N 16aand 2 (>99) 33/ (40:60)
(2eq.) 16¢
DHOB E192N/T167  16¢ 2 (95) 41
(2eq.) V/S208V
ent-DHOB E192N/T167  ent-16d 1 (NM#) 52
(1eq.) V/S208V
AHOB (5 eq.) E192N 17a 5 (50) 7"

¢ Prepared by ozonolysis of the corresponding alkene (10, ent-10, 15 or
ent-15). ?See Table 1 for details of ratios of anomers and pyranose/
furanose forms. ‘Determined by analysis of the crude product by
296 MHz '°F NMR spectroscopy. “ Yield of purified product based on
the limiting reactant. ¢ Determined by 296 MHz '°F NMR spectroscopy.
fsmall samples of each diastereomer could be obtained by reverse-
phase HPLC. ¢Not measured. " After purification by mass-directed
HPLC.

DHOB reacted to give ent-16d which was isolated in 52% yield.
However, with the E192N variant, fluoropyruvate and DHOB
were converted into a 40:60 mixture of 16a and 16c from
which it was possible to obtain small samples of both products
after reverse-phase HPLC purification. Similarly, using E192N,
fluoropyruvate and AHOB reacted to give a diastereomeric
mixture of products, from which a small sample of 17a could
be obtained by mass-directed HPLC.

The fluorinated products 16a, ent-16d and 17a existed in
pyranose forms (Panel A, Fig. 2). In both pyranose anomers of
16a and 17a, there was a large coupling constant between fluo-
rine and H-4 (~30 Hz); in addition, in the major anomer of
each compound, there was a small coupling constant between
H-3 and H4 (16a: 3.4 Hz; 17a: 2.2 Hz) (Table 3). These data
imply that 16a and 17a are (3R,4R)-configured (and indirectly
enabled determination of the relative configuration of 13). In
contrast, ent-16d had a small coupling constant between the

Org. Biomol. Chem., 2016, 14, 105-112 | 109
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Fig. 2 Forms of reaction products. Panel A: The products 16a, ent-16d
and 17a exist predominantly in pyranose forms. Panel B: the product 16c
exists as a mixture of pyranose and furanose anomers.

equatorially-positioned fluorine and H-4 (13.3 Hz) and a large
coupling constant between the axial protons H-3 and H-4
(9.3 Hz). The configuration of 16a and ent-16d was corrobo-
rated by the observation of nOe interactions between the axial
protons at H-4 and H-6. The analysis of 16¢ was hugely compli-
cated by the existence of both pyranose and furanose anomers
(Panel B, Fig. 2); however, "H/*F HSQC-TOCSY spectroscopy
enabled extraction of the "H NMR spectra of each of the four
species that were present (Table 1 and ESIf). The pyranose
anomers of 16¢ have axially-oriented fluorine and 4-OH groups
which cannot enjoy a stabilising gauche interaction.*®

Stereoselectivity of reactions. The characterisation of the
products enabled determination of the stereoselectivity of
reactions catalysed by NAL variants (Table 3). With the
E192N variant, DHOB and fluoropyruvate yielded a
40:0:50:10 mixture of 16a, 16b, 16c and 16d; this poor
stereoselectivity parallels that observed with this enzyme in the
reaction between pyruvate and DHOB."*“' In contrast, the
E192N/T167V/S208V variant yielded selectively the (3R,4S)-con-
figured product 16¢. This variant was generated'* by directed
evolution to yield selectively the 4S-configured product (3b)
with pyruvate as nucleophile (Scheme 2): it is remarkable that
the 45 selectivity is retained with an alternative nucleophile
(fluoropyruvate). However, in contrast, selectivity for 4R-config-
ured products was not observed with the E192N/T167G
variant: with this variant, the reaction between DHOB and
fluoropyruvate was very inefficient, and a 30 : 70 mixture of 16a
and 16c¢ was obtained.

The effect of the structure of the aldehyde substrate on
stereoselectivity was also investigated. AHOB has an a-NHAc
group in place of the a-hydroxy group of DHOB; with AHOB
and the E192N variant, similarly poor stereoselectivity was also
observed with this substrate (17a:17b:17¢:17d 60:0:40:0).
In the enantiomeric series, ent-DHOB gave predominantly the
(3R,4S)-configured product ent-16d with all three NAL variants;
here, the NAL variant had only a small effect on the stereo-
selectivity of the aldol reaction.

Structural insights into stereoselectivity. It is notable that
all combinations of substrates and NAL variants yielded
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Fig. 3 Rationale for stereoselectivity of NAL-catalysed reactions
between fluoropyruvate and aldehyde substrates. Panel A: S. aureus NAL
in complex with fluoropyruvate with general acid Y137 and residues that
have key roles in recognition and stereocontrol (T167, E192 and S208)
shown (PDB: 5A8G). The top face (as depicted) of the Z-configured
enamine is poised to react with an aldehyde substrate. Panel B: Y137A
variant of E. coli NAL in compex with 4-epi-Neu5Ac (PDB: 4BWL). Panel
C: Possible stereochemical outcomes of the reaction of the top face of
the Z-configured enamine with an aldehyde substrate.

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5ob02037a

Open Access Article. Published on 05 November 2015. Downloaded on 2/7/2026 8:08:37 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Organic & Biomolecular Chemistry

3R-configured products selectively under kinetic control. With
DHOB/AHOB, the products 16a/17a [with (3R,4R) configur-
ation] and/or 16¢/17c¢ [with (3R,4S) configuration] pre-
dominated. With ent-DHOB, although a different diastereomer
(ent-16d) was formed selectively, its absolute configuration was
still (3R,4S). In contrast, the stereoselectivity at C-4 could
sometimes be altered by changing the enzyme variant used.

To gain an insight into the structural basis of stereo-
selectivity, the crystal structure of S. aureus NAL was deter-
mined in complex with fluoropyruvate (PDB: 5A8G) (Panel A,
Fig. 3); the structure and kinetic properties of S. aureus NAL
have been previously shown to be extremely similar to those of
E. coli NAL.>®> The formation of a Z-configured enamine was
observed, which presents only one face to aldehyde substrates.
Reaction of this face of the (Z)-enamine intermediate would
necessarily lead to the formation of 3R-configured products.
The structure'® of an aldol product (4-epi-Neu5Ac) in complex
with NAL (the Y137A variant of the E. coli enzyme) (PDB:
4BWL) is provided for comparison (Panel B, Fig. 3). Previous
studies have shown that an analogue of DHOB - (2R,35)-2,3-tri-
hydroxy-4-oxo-N,N-dipropyl butanamide - can bind to the
E192N variant of E. coli NAL in two distinct conformations
(Panel B, Fig. 3)." Aldehyde substrates may react via confor-
mations that allow protonation by the general acid Y137.'° The
facial selectivity of the reaction of the aldehyde determines the
configuration of the product - (3R,4R) or (3R,4S) — obtained
(Panel C, Fig. 3). In some cases, the ratio of C-4 epimers could
be changed by altering the specific NAL variant used.

Conclusions

NAL variants can be useful catalysts of reactions between fluoro-
pyruvate and aldehyde substrates. Wild-type NAL catalysed the
reaction between fluoropyruvate and ManNAc, albeit much
less efficiently than with pyruvate as donor. It was shown that
a 90: 10 ratio of (3R,4R)- and (3S,4R)-configured products was
obtained under kinetic control; whilst a 30:70 mixture of
these products was obtained at equilibrium. The switch
between kinetic and thermodynamic control may account for
previous apparently conflicting reports of the outcome of this
reaction.?

It was also shown that NAL variants are useful catalysts of
reactions between fluoropyruvate and unnatural aldehyde sub-
strates. The efficiency of catalysis varied widely, depending on
the specific combination of NAL variant and aldehyde used.
However, using the aldehyde DHOB or its enantiomer as sub-
strate, three of the four possible diastereomeric products could
be isolated.

It was noted that, under kinetic control, all productive NAL
variant-catalysed reactions involving fluoropyruvate yielded
(3R)-configured products selectively. The crystal structure of
S. aureus NAL in complex with fluoropyruvate reveals the pres-
ence of a (Z)-configured enamine. The (3R)-selectivity of NAL
catalysed reactions may be rationalised in terms of selective

This journal is © The Royal Society of Chemistry 2016
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reaction of this (Z)-configured enamine via the face that is
presented to aldehyde substrates.
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