Nanoscale

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Nanoscale, 2016, 8, 18808

Correction: Ultrathin titanium oxide nanosheets film with memory bactericidal activity

Gen Wang,^{a,b} Zheng Xing,^b Xiangkang Zeng,^b Chuanping Feng,^a David T. McCarthy,^c Ana Deletic^c and Xiwang Zhang*^b

DOI: 10.1039/c6nr90230h

www.rsc.org/nanoscale

Correction for 'Ultrathin titanium oxide nanosheets film with memory bactericidal activity' by Gen Wang, et al., Nanoscale, 2016, DOI: 10.1039/c6nr06313f.

The authors would like to draw the attention of the readers to the corrected figure captions for Fig. 3 and 5:

Fig. 3 The shift of open circuit potential in response to light on/off for (a) the (TONs-PDDA)₁₀ electrode and (b) TiO_2 (P25) electrode. (c) Discharge capacity of the (TONs-PDDA)₁₀ electrode as a function of irradiation time. (d) Discharge capacity of the (TONs-PDDA)_n electrodes as a function of layer numbers upon 30 minutes of UV irradiation. Cyclic voltammograms of the (TONs-PDDA)₁₀ electrode (e) before and (f) after 30 minutes of UV irradiation. Scan rate: 50 mV s⁻¹, reference electrode Ag/AgCl, counter electrode Pt, supporting electrode 3% (wt%) NaCl solution (pH 5.0).

^aSchool of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China

^bDepartment of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia. E-mail: xiwang.zhang@monash.edu

^cEnvironmental and Public Health Microbiology Laboratory. (EPHM Lab), Department of Civil Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia

Nanoscale

Fig. 5 (a) *E. coli* removal efficiency of the pre-irradiated (TONs-PDDA)₁₀ film (1) in the absence of scavengers and (2) in the presence of Fe(II)-EDTA and (3) in the presence of TEMPOL; *E. coli* removal efficiency of the non-preirradiated (TONs-PDDA)₁₀ film (4) in the absence of scavengers and (5) in the presence of Fe(II)-EDTA and (6) in the presence of TEMPOL. (b) *E. coli* removal performance of the (TONs-PDDA)₁₀ film with prolonged UV irradiation time in 5 consecutive runs.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.