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Gate-controlled conductance enhancement from
quantum Hall channels along graphene p–n
junctions

Endre Tóvári,a Péter Makk,b Ming-Hao Liu,c Peter Rickhaus,b

Zoltán Kovács-Krausz,a,d Klaus Richter,c Christian Schönenbergerb and
Szabolcs Csonka*a

The formation of quantum Hall channels inside the bulk of graphene is studied using various contact and

gate geometries. p–n junctions are created along the longitudinal direction of samples, and enhanced

conductance is observed in the case of bipolar doping due to the new conducting channels formed in

the bulk, whose position, propagating direction and, in one geometry, coupling to electrodes are deter-

mined by the gate-controlled filling factor across the device. This effect could be exploited to probe the

behavior and interaction of quantum Hall channels protected against uncontrolled scattering at the

edges.

Introduction

The unique properties of graphene, such as the peculiar Berry
phase leading to the half-integer quantum Hall effect,1,2 the
possibility to create p–n junctions, and the valley degree of
freedom make it a versatile platform to study novel quantum
effects.

In the quantum Hall regime, applying a perpendicular mag-
netic field B results in an insulating bulk with quantized con-
ducting channels propagating along the edges,3 if the number
of filled Landau levels (LLs) in the bulk – set by electron
density n – is approximately an integer. Graphene can host
spin and/or valley-polarized,4–8 or fractional9–12 quantum Hall
effects, while appropriate engineering of the mechanical strain
could lead to a quantum valley Hall effect.13,14 However,
atomic scale disorder at the edges of a flake causes intervalley
scattering in the quantized edge channels, calling for an
experimental platform where momentum-scattering is
reduced. If doping is non-uniform, n and LL energies change
in real-space, and conducting channels may appear in the bulk

of the sample where a LL intersects the Fermi energy. These
propagating states in the bulk provide additional quantum
Hall channels (QHCs) besides edge states, with the clear
advantage to guide electrons in the nearly disorder-free
environment of the bulk. Simple p–n junctions in the
quantum Hall regime are good examples of co-propagating
QHCs, where in low mobility samples current equilibration
between channels due to cross-scattering has been
observed,15–22 however, in high mobility samples this was
reduced or absent.23–25

In this paper, we present three novel types of device geome-
tries which provide direct information on the conductance of
QHCs in the bulk, by realizing them along the transport direc-
tion, between contacts. The first one is a two-terminal device
with a p–n junction connecting source and drain, showing
increased conductance when channels copropagate in the
bulk. The second one is of a similar design, but has two extra
grounded terminals on the sides, allowing us to observe the
current guiding effect of the p–n junction only. The third one
has a bottom gate geometry that enables the formation of cir-
cular QHCs with a variable diameter and transmission to
source and drain electrodes due to a smooth electrostatic
potential profile, opening a new horizon for controlling
quantum Hall trajectories. Our results indicate that conduct-
ing channels are created in the bulk that are fully thermalized
in the contacts like usual edge states, unaffected by the metal’s
doping26,27 and screening. We suggest that, by using local
gates and suitably selected contact geometries, spin and valley
polarized modes can be selectively biased, and deflected away
from the relaxation mechanisms of the edges.
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Two-terminal p–n junction

We have used a polymer-based suspension method following
ref. 28, 29 and a transfer method by ref. 30 for all three devices
presented in this paper. Details are given in the Methods
section. Measurements were carried out at 1.5 K using a low
frequency lock-in technique. An optical micrograph and sche-
matic of the first device are presented in Fig. 1a. A single-layer
graphene (SLG) flake is suspended between the Pd source (S)
and drain (D) electrodes, above two independently biased
bottom gates. Fig. 1b shows its differential conductance G in
units of the conductance quantum e2/h at a perpendicularly
applied magnetic field of B = 1.5 T, as a function of the gate
voltages Vg1, Vg2.

Though the charge carrier density n tuned by the gates
varies smoothly as a function of position, in order to visualize
QHCs the average densities can be used to define the LL filling
factors in the two halves of the flake: ν1,2 = n1,2h/eB. Along the
diagonal of equipotential tuning (Vg1 = Vg2), filling is uniform,
and the expected quantum Hall plateaus1,2 are observed near
2e2/h. We extract an approximate serial contact resistance of
Rc ≈ 1.4 kΩ from the plateau values. At arbitrary (Vg1, Vg2), G
depends on the two filling factors, and a checkerboard pattern
is expected in G(ν1, ν2), as illustrated in Fig. 1d. However,
cross-capacitances17,31,32 between the gates and both halves of
the flake result in a distortion of the pattern, as can be seen in

G(Vg1, Vg2) plotted in Fig. 1b. Here, different regions – separ-
ated by dashed grey lines – mark the filling of different LLs,
while solid grey lines distinguish the unipolar and bipolar
quadrants. In the latter, G – corrected for Rc – is increased to
3.5 e2/h.

The conductance of our two-terminal device can be easily
explained in the Landauer–Büttiker formalism33–35 by pictur-
ing the QHCs. Fig. 1c shows two cases of non-uniform doping.
The right panel is in the unipolar regime, with an n–n′ junc-
tion near the center of the flake. In this example, the upper
half has a filling of ν1 = 6 with two degenerate edge states at
the top (grey lines from the 0th, and black ones from the 1st
LL), while the bottom-half of the flake has only ν2 = 2. Around
the n–n′ border, the filling changes, giving a four-fold degener-
ate QHC (black) of the 1st LL in the bulk. In an ideal sample,
backscattering is absent, QHCs are fully thermalized at the
contacts, and conductance is G = max(|ν1|, |ν2|)·e

2/h, deter-
mined by the number of biased channels (solid lines, from the
source) counting all degeneracies. The dashed lines denote
unbiased channels whose chemical potential is set by the
drain to the global electrochemical potential. Fig. 1d depicts
the expected checkerboard pattern with conductance plateau
values in units of e2/h as a function of ν1, ν2.

In the case of bipolar doping, as depicted in the left panel
of Fig. 1c for the example of ν2 = −ν1 = −2, oppositely circulating
states form in the two halves of the flake, with copropagating
QHCs at the p–n interface. Ideally, conductance is given by the
contribution of all the channels connecting the source to the
drain: G = (|ν1| + |ν2|)·e

2/h, as displayed in Fig. 1d. After sub-
traction of Rc, the measured conductance (plotted in Fig. 1b)
shows a maximum of G ≈ 3.5e2/h in the bipolar regime, which
approaches the expected value of 4. It is most likely limited by
backscattering between the channels in the bulk and at the
edges, caused by residual disorder after current annealing of
the sample. The enhanced conductance shows that new con-
ducting channels are introduced in the bulk of graphene,
despite the fact that contact electrodes partially screen the
electrostatic potential of the gates, and also dope graphene, in
their vicinity. However, we did not get direct information on
where the current flows. To access the channels guided along
the p–n interface, we have added further terminals to the
design.

Four-terminal p–n junction

Fig. 2a shows the geometry of the second device. Here, an elec-
trode (D) – situated above the gap between the gates – is
biased by voltage VD, and current IS is measured in a contact
(S) on the opposite side. This is equivalent to the picture of
injecting electrons from the source S with a chemical potential
bias eVD, and electron current measurement at drain
D. Electrodes A and B on the left and right of the schematic
ground all edge states, enabling us to study only the QHCs that
propagate through the bulk. The conductance GSD = dIS/dVD at
0.8 T, shown in Fig. 2b, exhibits the expected slanted checker-

Fig. 1 (a) Structure and optical micrograph of the first device: a gra-
phene layer with two terminals (grey in both schematic and photo), sus-
pended over two bottom gates (gold). In the optical image, black lines
mark the edges of the measured flake. (b) Conductance as a function of
gate voltages at B = 1.5 T, corrected for contact resistance. (c) Quantum
Hall channel positions for bipolar (left) and unipolar (right) doping. Solid
lines mark biased electron current trajectories, while dashed lines mark
unbiased ones. Sample dimensions are indicated, with dashed orange
lines showing the outlines of the bottom gates. (d) The expected con-
ductance in units of e2/h as a function of filling factors ν1, ν2. Color
coding is the same as that for (b).
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board pattern as a function of the gate voltages. It drops below
0.04e2/h at ν1 = ν2 = ±2, in the vicinity of points E1, E2, while
reaches a plateau of approximately 4e2/h for (ν1, ν2) = (−2, 2)
around point BIII, as well as for (ν1, ν2) = (−6, −2) (UII) and
(ν1, ν2) = (2, 6) (UIV).

Most features can be explained in the Landauer–Büttiker
formalism. The (dashed) solid lines in Fig. 2c mark (un)biased
electron channels, for various ν1, ν2 filling factor combi-
nations, while Fig. 2d shows the ideal plateau values of GSD in
units of the conductance quantum. Panels denoted by bold
Roman numbers correspond to the cases in Fig. 2c.
Depending on the sign and relationship of ν1,2, we distinguish
four regions on the map. (i) Along the equipotential diagonal
ν1 = ν2, no direct channels exist between source and drain, and
the injected electrons are fully absorbed in A and B. Above the
diagonal, QHCs propagate from D to S, but since S is biased,
GSD = 0 (such as case I). (ii, iv) In the parts of the unipolar
regions below the diagonal (like cases II and IV), a net electron
current is carried from S to D by the channels whose number
is determined by the difference between the right and left
filling factors: GSD = |ν2 − ν1|·e

2/h. (iii) In the bipolar quadrant
below the diagonal (such as case III), all channels contribute
to the current, and the conductance is (|ν1| + |ν2|)·e

2/h.
The measured plateau of 4e2/h around point BIII in Fig. 2b

matches with the theory in Fig. 2d. Current flows directly from S
to D, along the p–n junction, as depicted in Fig. 2c. Here we
have measured the current flowing into contacts A and B as
well, and found that approximately 89% of the total electron
current injected at S reaches D, suggesting that such p–n junc-
tions can serve as high-efficiency electron guides. Widening the
source and drain contacts and the graphene flake, and increas-
ing the magnetic field or the magnitude of the potential step
across the junction may further increase the efficiency.

The plateaus of GSD ≈ 0 at ν1 = ν2 = ±2 near points E1, E2 of
the equipotential diagonal are also in good agreement with
expectations. Conductance at point BI deviates slightly from
the ideal value, possibly due to occasional scattering between
the bottom and top edges of the flake, introducing finite elec-
tron current to D. We note that the plateau at (ν1, ν2) = (2, 6)
(around UIV) is less developed than the one at UII, which can
be attributed to a slight asymmetry in the annealed sample,
resulting in non-zero transmission probability from the biased
QHC (solid black line in panel IV of Fig. 2c) to the right-propa-
gating (dashed black) channel at the top, by-passing the drain.

We have shown that in the vicinity of the Dirac-point, when
LL occupation is |ν1 = −ν2| = 2, a robust channel is formed in
the bulk, acting as a direct, high-efficiency electron guide
between source and drain. In the following, we investigate a
more complex setup which allows us to study QHCs partially
disconnected from the contacts in a circular geometry.

Circular p–n junction

The third device we studied was suspended over a bottom gate
with a circular hole, as displayed in Fig. 3a. To show the gener-
ality of our approach we have used a bilayer graphene flake.
The carrier density in the central part of the flake could be
tuned through the hole by the doped Si backgate (referred to
as the inner gate from here on) with bias VI, while the sur-
rounding area was doped by the bottom gate (later referred to
as the outer gate) with voltage VO. Two-terminal conductance
G(VO, VI) at the zero B field is depicted in Fig. 3b. The data
indicates that VI slowly shifts the point of minimum conduc-
tance along the VO axis due to cross-capacitances, while

Fig. 2 (a) Setup and optical image of the second device, similar to the one in ref. 36, with current injected from and collected in electrodes D and S
symmetrically placed at, and locally supported by the top and bottom flake edges, respectively, while side contacts A and B are grounded (see also
panel (c)). (b) Differential conductance between S and D as a function of the gate voltages at 0.8 T, corrected for a contact resistance of 1.2 kΩ,
which was estimated based on the expected plateau values shown in (d). Solid green lines separate the areas of unipolar and bipolar doping, and
mark the equipotential diagonal. The dashed lines distinguish the areas of different filling factors. (c) QHCs in the electron injection picture from S,
for various filling factor combinations ν1,2 of the left and right sides. The solid lines are biased electron channels, as opposed to the dashed lines.
Sample dimensions are indicated, with the dashed orange lines showing the outlines of the bottom gates. (d) A map of the expected conductance as
a function of ν1, ν2, with Arabic numbers denoting the plateau values in units of e2/h. Bold Roman numbers of different panels correspond to the
examples of (c). Black-and-white circles in (b) mark the points in unipolar (U) and bipolar (B) regions that correspond to the Roman-numbered cases
in (c), (d), with a few points (E) along the equipotential diagonal.
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increasing its Gmin value, as the Dirac-point is varied in-
homogeneously across the sample.

Fig. 3c shows the conductance map at B = 1.5 T. Quantum
Hall plateaus of 4 and 8e2/h appear in the unipolar regimes. A
narrow region with a minimum conductivity of 0.3e2/h forms
around the estimated Dirac-point (white dot), indicating that
the 0th (zero-energy) LL starts to split into two four-fold degen-
erate levels due to electron–electron correlations.4–8

The transition between the unipolar plateaus of 4 and 8e2/h
– see the lower left part of Fig. 3c, with white color coding, par-
allel to the blue arrow – slowly moves as a function of VI due to
the cross-capacitance between the inner gate and the outlying
graphene regions. In order to eliminate this effect, we plot
horizontal conductance cuts at a series of inner gate voltages
in Fig. 3d, all shifted along the VO axis by a linear function of
VI. As a result, the unipolar plateaus of the curves approxi-
mately overlap, and the blue and green arrows in Fig. 3c corres-
pond to those in Fig. 3d. The electron side of the curves is cor-
rected for Rc = 0, while the hole side for Rc = 0.42 kΩ, to match
with the expected plateau values of 4 and 8e2/h at unipolar
doping, found at VI ∈ [−60, −40] V and V′O < 0, or VI ∈ [40, 60]
V and V′O > 0.

The most striking features of the map in Fig. 3c are the
ridges of enhanced conductance where one expects the bipolar
regimes: at the upper part of the blue arrow, and the lower

part of the green arrow. Fig. 3d shows that G may be increased
by more than 2e2/h with respect to the 4e2/h plateaus, at
(V′O, VI) ≈ (−11, 60) V and (V′O, VI) ≈ (10, −60) V, respectively.
The 8e2/h plateaus are also enhanced in the bipolar regime.
We suggest that the formation of new, circular channels in the
bulk of graphene is the reason behind this conductance
enhancement, whose contribution is not quantized due to
partial transmission to contacts and to the overlap and scatter-
ing between the various QHCs. In the following, we discuss
this concept in detail.

Since the outer gate screens a large part of the electrostatic
potential of the Si inner gate, local normalized capacitance
values dn(x, y)/dVO,I strongly depend on the real-space position
(x, y) on the flake. In order to obtain a qualitative picture of
the formation and positions of quantum Hall channels, we
have performed 3D electrostatic simulations on the electron
density n(x, y) for B = 0.

Fig. 4a shows the Landau level filling factor ν(x, y) ∝ n(x, y)
across the bilayer flake for B = 1.5 T, based on the simulated
density map at ΔVO = 9 V and ΔVI = 50 V from the Dirac-point,
for unipolar electron doping. In the white regions of the map,
an integer number of four-fold degenerate LLs is approxi-
mately full or empty, therefore they contain only localized
states at the Fermi level. Although the first positive-energy LL
of bilayer graphene is filled from empty to full in the highly

Fig. 3 (a) Schematic drawing and dimensions, and optical image of the third, bilayer device tuned by a gate (yellow) with a hole, referred to as the
outer gate, and the p-Si backgate as the inner gate. (b) Conductance G as a function of the outer gate VO and inner gate VI voltages at B = 0, and (c)
at B = 1.5 T. The dashed yellow rectangle in (c) highlights the gate voltage range used in (b). Both maps are corrected for Rc ≈ 0.42 kΩ contact resist-
ance. The white dot in (c) marks the point of minimum conductivity. (d) Conductance cuts at a series of VI voltages, horizontally shifted along VO by
a linear function of VI to eliminate its cross-capacitance to the outer graphene areas. Inset: Cuts along the two ridges of enhanced bipolar conduc-
tance, highlighted by blue and green arrows in (c) and (d). The hole side is corrected for Rc ≈ 0.42 kΩ, while the electron side for Rc = 0, in both (d)
and its inset.
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doped central region (dark blue, 4 < ν < 8), resulting in a circu-
lating QHC whose propagation direction is shown by black
arrows, it does not contribute to the current between the con-
tacts or to the backscattering between the edges, as they are
insulated from each other by regions of integer filling (white).
Despite the charge accumulation near the edges,37,38 conduc-
tance is determined only by usual edge states, as indicated by
the straight arrows. As a result, this figure corresponds to a
conductance of 4e2/h, qualitatively explaining the value of the
green curve at large VI in the inset of Fig. 3d.

Decreasing VI along the green line in Fig. 3c keeps the
density profile approximately constant in the outer parts of the
flake, while it lowers the enhanced density in the center. The
first LL is emptied, then, passing homogeneous doping, so is
the 0th. Fig. 4b depicts the filling factor map at Δ VO = 14 V
and ΔVI = −50 V from the Dirac-point well into bipolar doping.
The center of the flake is hole-doped: ν < −4, indicating partial
filling of the first negative-energy level. Following the +x direc-
tion, an insulating region with ν ≈ −4 is crossed, then ν gradu-
ally increases to 4.

As mentioned previously, the near-zero conductance in
Fig. 3c and d indicates that a gap opens at the Dirac-point: the
0th LL splits into two four-fold degenerate levels, denoted by

0− and 0+. Fig. 4d shows a sketch of the LL structure along a
horizontal cross-section of the sample, consistent with the
filling factor map in Fig. 4b. The levels flatten when intersect-
ing the Fermi energy EF, as the density of states has a local
maximum at the LL energy.6,39

Where the four-fold degenerate 0− level is gradually filled
with electrons (red stripe in Fig. 4b), a circular propagating
QHC forms, marked by an arrow. Further outside, the 0+ level
is filled (blue stripe), again giving a QHC. The two states pro-
pagate in the same direction as in a regular p–n junction as a
result of the slope of the LLs. Around ν = 0, the Fermi-level is
between the 0− and 0+ levels, in a Landau gap. However, the
fact that the sample exhibits a finite (0.3e2/h) conductance
even when tuned homogeneously to this point (the white dot
in Fig. 3c) indicates that the disorder-broadened 0− and 0+

levels still overlap, and the narrow region of ν ≈ 0 between the
QHCs of the levels is not insulating.

Fig. 4b suggests that the channel belonging to the 0+ level
(blue) has finite transmission to the contacts. Consequently,
the inner and outer circular QHCs on the sides of the p–n
junction act as extra current-carrying states between source
and drain, and give a positive contribution to the base conduc-
tance of 4e2/h of the edge states. Thus the simulation in
Fig. 4b qualitatively corresponds to the enhanced-conductance
(VI = −60 V) end of the green line in the inset of Fig. 3d.

Based on the electrostatics in Fig. 4b, Fig. 4c shows the
structure of the circular propagating channels with possible
transmissions between them and the contacts. Tc transmission
probabilities indicate scattering mechanisms from the QHCs
of the 0−, 0+ levels to the contacts, and T± to each other.
Backscattering between the circular channels and the edge
states is most likely negligible, as they are insulated by a
region of near-integer filling.

In a simple example with realistic assumptions, we estimate
the conductance contribution of the circular QHCs. Ideally,
the outer channel is fully transmitted to the contacts, while
the inner one is most likely too far away, and fully reflected.
Thus, Tc

+ = 1, and Tc
− = 0. Since the inner and outer channels

overlap (for the 0− − 0+ Landau gap is not well-developed), the
current that is injected only to the outer channel at the source
is distributed between them. At the opposite contact, only the
outer channel’s current is drained. Considering that both chan-
nels are four-fold degenerate, and assuming full equilibration
along their trajectory, their conductance enhancement is ΔG =
2.6e2/h. This value is slightly larger than the observed ∼2.2e2/h.
The enhancement may be limited by backscattering to edge
states or imperfect coupling to electrodes. In contrast, if the
gap between the 0− and 0+ levels was well formed, the
enhancement would be higher, up to the maximum possible
contribution of the outer channel, 4e2/h.

If we slightly raise the voltage of the outer gate, the density
increases in the graphene areas above it. The circular blue
stripe (ν ∼ 2) in Fig. 4b shrinks, the QHC of the 0+ level
becomes insulated from the contacts, and a local conductance
minimum is expected to appear, in agreement with measure-
ments in Fig. 3c and d.

Fig. 4 (a) Zero-field electrostatic simulation of the electron density of
the bilayer graphene flake, converted to filling factor using ν = nh/eB,
for B = 1.5 T, at ΔVO = 9 V, ΔVI = 50 V from the Dirac-point, and (b) at
ΔVO = 14 V, ΔVI = −50 V. The dotted black line is the outline of the hole
in the outer gate. Curved arrows mark the propagating directions of
QHCs in the bulk, while straight arrows indicate usual edge states. (c)
Structure of QHCs in the case of (b) and transmission possibilities
between them and contacts. (d) Scheme of the Landau levels in (b) as a
function of the x coordinate, at y = 0. LL numbering is defined by energy
relations: 0−, 0+ originate from the originally zero-energy level, while 1
(−1) and 2 (−2) correspond to the first and second positive (negative)
energy LLs.
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Along the green line of Fig. 3c, the filling factor profile of
the outer parts of the flake remains approximately constant.
Decreasing VI continuously changes the doping of the central
part from electron to hole. In a range of VI values, the 0+ LL is
partially filled with electrons in most parts of the flake and
conducts diffusively between the source and drain electrodes.
Due to the larger-than-one aspect ratio of the device, this may
be the reason for increased conductance40,41 that is observable
already in the unipolar regime (inset of Fig. 3d). Further
decreasing VI, this local conductance maximum evolves into
the ridge of enhanced conductance in Fig. 3c. This monoto-
nous transition can be explained by the formation of the 0+

level’s circular QHC, and the gradual increase in its diameter,
resulting in better and better Tc

+ coupling to the contacts. The
formation of a plateau around 6.2e2/h in the measured conduc-
tance suggests that Tc

+ eventually reaches close to unity trans-
mission. The evolution of the blue line of Fig. 3c is caused by
the same mechanism, but with opposite signs of the filling
factors.

The same effect can be seen at higher plateaus: the electron
(hole) side unipolar 8e2/h plateau’s conductance also increases
in the bipolar regime. In this case, it is the 1st (−1st) LL that
forms a circular QHC coupled to the contacts, enhancing the
conductance. However, channels are more tightly packed and
the insulating regions are narrower, as the density gradient is
higher. The scattering between circular and edge states is
increased, consequently, their contribution is somewhat
smaller than that for lower plateaus.

Besides the device shown in Fig. 3a, we have performed
control measurements on another, single-layer sample with a
holey outer gate, where the hole diameter was 1 μm, and the
width was 1.4 μm, while the source–drain distance remained
almost the same, 1.8 μm. Here, the contacts were located
400 nm, and the flake edges 200 nm from the hole’s border in
the plan view, compared to the 250 nm and 450 nm values,
respectively, of the bilayer flake described above. No positive or
negative change was observed in the 2e2/h or 6e2/h plateaus in
the same voltage range, suggesting that the increased screen-
ing of the outer gate decreased the size of the inner gate
induced circular QHCs, enough that they were fully decoupled
from the contacts, as well as from the edge states.

Conclusions

We have examined three types of local gated samples. Measure-
ments on previously unexplored two and four-terminal con-
figurations prove that quantum Hall channels propagating
along a p–n junction can be fully absorbed in a contact despite
its screening and doping, and contribute to the conductance
in a quantized way. Our results show that p–n junctions can
serve as high-efficiency current guides, and indicate that
different Landau levels’ co-propagating edge states can be
detached from the edges and directed into the bulk by local
gating, and independently biased using grounded contact
electrodes, suggesting a way to study the physics of spin and

valley-polarized, or fractional channels avoiding disorder and
valley decoherence at edges. This is a huge advantage, since
although interesting phenomena like the formation of valley-
polarized edge states are predicted using strain13,14 in properly
engineered suspended graphene, the atomically rough edges
would inevitably cause scattering between these channels.

Moreover, circularly propagating quantum Hall channels
have been created, whose size and coupling to contacts depend
on the gate voltages. These observations demonstrate the ability
to tune a propagating channel’s trajectory such that trans-
mission to electrodes or other channels is controlled, paving the
way for graphene quantum point contacts and interferometers
operated in the quantum Hall regime: experiments that, so far,
have been available only in 2D semiconductor systems.42–44

Methods

Fabrication steps followed ref. 28 and 29. First, 5/45–55 nm
thick Ti/Au bottom gates were fabricated on a p:Si wafer
covered by 300 nm SiO2, which were covered first with an elec-
tron-beam evaporated, 40 nm thick MgO insulating layer (not
displayed in the figures), second with 600 nm thick LOR resist.
Graphene was exfoliated onto a separate wafer and transferred
using the method described in ref. 30. Subsequently, the flake
was contacted with 40 or 60 nm thick Pd wires, and etched
using e-beam lithography and reactive ion etching. Finally, gra-
phene was suspended by exposing and developing the LOR
resist below. To remove solvent and polymer residues, samples
were current annealed at 1.5 K in a vacuum. Measurements
were performed under the same conditions, using the stan-
dard lock-in technique.

The 3D electrostatic model is built on the device dimen-
sions shown in Fig. 3a, and is used to obtain the self-partial
capacitances45,46 to individual metal contacts and gates, via
the finite-element simulator FENICS47 combined with the
mesh generator GMSH.48 Electron density maps were calcu-
lated at the zero magnetic field, and in a not self-consistent
way, i.e. without taking into account the formation and screen-
ing effects of the compressible areas, where a Landau level is
partially filled. In spite of this limitation, we have achieved a
good qualitative representation of the circular QHCs.
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