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Causation or only correlation? Application of
causal inference graphs for evaluating causality in
nano-QSAR models†

Natalia Sizochenko,a,b Agnieszka Gajewicz,a Jerzy Leszczynskib and Tomasz Puzyn*a

In this paper, we suggest that causal inference methods could be efficiently used in Quantitative

Structure–Activity Relationships (QSAR) modeling as additional validation criteria within quality

evaluation of the model. Verification of the relationships between descriptors and toxicity or other

activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known

phrase “correlation does not imply causation” reflects insight statistically correlated with the endpoint

descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken

when moving from traditional statistical correlation analysis to causal analysis of multivariate data.

Methods of causal discovery have been applied for broader physical insight into mechanisms of action

and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for

toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the

causality criteria. Using the descriptors confirmed by the causal technique, we have developed new

models consistent with the straightforward causal-reasoning account. It was proven that causal inference

methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR

models.

Introduction

Quantitative Structure–Activity/Property Relationships (QSAR/
QSPR) analyses are widely used by chemoinformaticians for
investigating the biological activity of various compounds.
QSAR/QSPR based on the assumption that the molecular
structures of a series of compounds contain key information
about the factors responsible for their physical, chemical or
biological properties.1 In QSAR/QSPR analysis one takes
theoretical or experimental information related to the mole-
cular structures of the studied compounds (structural descrip-
tors) and correlates them with values of the investigated
activity/property.

Nowadays one of the biggest challenges in QSAR/QSPR
studies is related to assessing the reliability of mechanistic
interpretation of the identified relationships.2 There are an
extremely large number of descriptors available and a huge
array of statistical methods may serve to select the most appro-
priate descriptors and to correlate them with the studied pro-

perty. Hence, there are a substantial number of possible ways of
building QSAR/QSPR equations that yield approximately equal
measures of statistical quality (i.e. correlation coefficients).

Johnson3 noticed that a large number of publications
devoted to QSAR/QSPR modeling contain a logical fallacy
related to the fact that causality was incorrectly assigned to the
variables which were only correlated. It is widely known that
any statistical relationship does not automatically imply causa-
tion, because just having a high correlation coefficient
between two variables is not a sufficient condition for pointing
out the existence of causation. Saying that in mathematical
language, the correlation is a necessary part, but it is not
sufficient to confirm the existence of the causal relationship.
Therefore, the usual way of interpreting QSAR/QSPR models
that are based on the values of correlation coefficients does
not necessarily confirm the existence of a cause–effect relation-
ship. Unfortunately, specific algorithms that infer causal inter-
actions between particular variables have recently been
developed and applied only to genomics data.4 Possible appli-
cations of those methods in QSAR have not been extensively
studied yet.

Nowadays an emerging field for employing QSAR/QSPR
methods is the risk assessment of newly designed nano-
particles (nano-[Q]SAR).5–11 As such, in our previous contri-
bution we have applied causal inference methods for
interpretation of the classification nano-SAR model that
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predicted cytotoxicity towards BEAS-2B and RAW 264.7 cell lines
for a series of metal oxide nanoparticles.7 However, causal infer-
ence methods have never been used in quantitative SAR studies
before. Thus, an expansion of these methods onto nano-QSAR
studies might be of the high benefit and the high importance.8

In current contribution, we investigated causality of the
descriptors from the recently developed nano-QSAR models for
predicting toxicity of metal oxide nanoparticles towards E. coli
bacteria.5,6,9–11 Our intention was to demonstrate the useful-
ness of causal inference methods in nano-QSAR modeling.

Materials and methods
Causal inference methods

Causality refers to the relationship between two sets of events,
where one set of events (the effects) is a direct consequence of
another set of events (the causes). The goal of causal modeling
is to provide coarse descriptions of mechanisms, at a level
sufficient to predict the result of changes.8,12

Causal inference methods are based on several fundamen-
tal mathematical concepts. They include conditional prob-
ability and its joint distribution, as well as directed and
undirected graphs.8,13 Conditional probability measures the
probability of an event given that another event has occurred.
Statistically, conditional probability is an update of the prob-
ability of an event based on new information. A probability dis-
tribution denotes a probability each measurable event. Given
two jointly distributed random variables, X and Y, the con-
ditional probability distribution of Y given X represents the
probability distribution of Y when X is known to be a particu-
lar value. For example, the probability of obtaining a random
number from a dataset of size 5 is equal to 1/5, and would be
denoted by P(X|Y).

The main aim of the causal inference method is to separate
the cause from the effect if the given two variables X and Y
have a causal relationship. Cause–effect relationships are rep-
resented by directed graphs.8,15 A directed graph must equal a
product of terms, one term for each variable, with each term
giving the conditional probability of that variable on its parent
variables in the graph. For instance, in a system with three
variables A, B, and C, there are six possible types of graph:8

1. Unconnected graph: A, B, C with the independent struc-
ture A ⊥ B, A ⊥ C, B ⊥ C;

2. Single arrow chain: A → C, B or C → A, B with the inde-
pendent structures A ⊥ B and C ⊥ B;

3. Chain: A → B → C or A ← B ← C with the independent
structures A ⊥ C and C ⊥ A;

4. Fork: A ← B → C with the independent structure A ⊥ C|B;
5. Collider: A → B ← C with the independent structures A ⊥

B and C ⊥ B.
6. Fully connected graph: A → B → C and A → C without

independencies.
Described above are fundamental ideas of probability

theory. For readers who are interested in the details, several
fundamental references can be recommended.8,14,16

In the current paper we utilized the Peter Spirtes and Clark
Glymour (PC)15 algorithm to determine causal relationships
using causal inference graphs (CIGs). This algorithm is also
based on conditional independence tests. PC starts with the
assumption of a complete undirected graph. Then, a series of
conditional independence tests is done and edges are deleted.
The result is a skeleton, in which every edge is still undirected.
The orientation of edges is found by repeatedly applying the
above rules. Thus, a form of digraphs consists of a set of
vertices (V), and a set of directed edges between the vertices,
e(v1, v2) where v1 and v2 are parts of whole set V. As a represen-
tation for causal relationships, the vertices correspond to the
variables (or attributes) that are in a dataset. Each directed
edge from v1 to v2 corresponds to a causal influence from v1 to
v2.

16 For example, as one can see in Fig. 1, there is a causal
relationship between vertices v1 and v2, while the remaining
part of the set, V (vertices v3 and v4), does not demonstrate
causal relationships.

Source code for the described algorithm is available on the
website of the Max-Planck-Institute for Intelligent Systems
Tübingen.17 During the last two decades many various algo-
rithms that infer causal interactions from observational data
have been developed. For those readers who are interested in
the details an excellent review can be recommended.14

Existing nano-QSAR models of toxicity of metal oxide
nanoparticles towards bacteria E. coli

In our previous paper5 we developed a nano-QSAR model that
linked the experimental data on the toxicity of 17 nano-sized
metal oxide nanoparticles to their structure (Model I). The
toxicity has been expressed as the negative decimal logarithm
of MIC50 – the minimum inhibitory concentration where 50%
of the population exhibit a response (note: in the original

Fig. 1 Directed edge.
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Paper5 it is referred as EC50 – minimum concentration which
affects the reduction of bacteria viability of 50%). The model
employs only one descriptor – the enthalpy of formation of a
gaseous cation having the same oxidation state as that of the
metal oxide structure (ΔHMe+) derived from quantum-mecha-
nical calculations (semi-empirical PM6 method):

pMIC50 ¼ 2:59� 0:50ΔHMeþ ð1Þ

Toropov et al.9 developed another nano-QSAR model based
on the same experimental toxicity data (Model II). In contrast,
they utilized the SMILES-based optimal descriptor DCW con-
taining information on the two SMILES attributes: double
bonds and oxygen atoms (encoded as ‘=’, and ‘O’):

pMIC50 ¼ 3:4056þ 0:4000DCW ð2Þ

Similarly, Kar et al.10 proposed two nano-QSAR models
(Models III and IV), that employ periodic table-based descrip-
tors: the charge of the metal cation corresponding to a given
oxide (Z) and metal electronegativity (χ)

pMIC50 ¼ 4:781� 1:380Z ð3Þ

pMIC50 ¼ 4:401� 1:324Z þ 0:176χ ð4Þ
It is worth highlighting that all of the above nano-QSAR

models are linear. Statistical parameters of the mentioned
models are presented in Table 1.

Finally, in one of our recent contributions,11 we have
applied a more comprehensive, non-linear classification
Random forest approach to build a model describing the toxi-
city of metal oxides (Model V). This model uses several types of
descriptors, such as fragmental descriptors calculated using
the Simplex Representation of Molecular Structure (SiRMS)18

approach, size-dependent descriptors based on the Liquid
Drop Model (LDM)19,20 and metal–ligand binding character-
istics (MLB).21 Statistical parameters characterizing Model V
are presented in Table 1 as well. Descriptor values from all
listed contributions are presented in Table 2.

Evaluating causality in the previously published QSAR models

All models (Model I–V) are comparable to each other in terms
of the statistical quality. However, by using inference causal
methods, one can verify whether all of the models discover
really causal relationships.

Therefore, we propose the following procedure to evaluate
causality of the observed structure–activity relationships:

1. Development of CIGs to find the causal relationships
between independent variables (here: descriptors) and a
dependent variable (here: toxicity towards bacteria E. coli);

2. Selection of first elements (main causes) in the CIG
chain;

3. Evaluation: measuring the Pearson’s correlation coeffi-
cient (in the case of monotonic relationships) or the interclass
correlation coefficient (in the case of non-monotonic relation-
ships) for chain first elements and co-dependent variables;22

4. Selection of the best elements of CIGs to develop the best
QSAR equation.

Table 1 Statistical qualities of the studied models

Model
I5

Model
II9

Model
III10

Model
IV10

Model
V11

R2 (training
set)

0.85 0.74–0.83 0.73–0.90 0.81–0.90 0.93

RMSE
(training set)

0.20 0.17–0.23 0.16–0.27 0.16–0.22 0.13

R2 (test set) 0.83 0.83–0.96 0.65–0.91 0.73–0.96 0.78
RMSE
(test set)

0.19 0.14–0.33 0.15–0.29 0.15–0.26 0.32

R2 – coefficient of determination; RMSE – root-mean-square error.

Table 2 Toxicity data and the values of the descriptors

Metal oxide nanoparticle pMIC50

Model I5 Model II9

Models III
and IV10 Model V11

ΔHMe+ DCW χ Z S1 S2 S3 rw SV CPP ρ

Al2O3 2.49 1187.83 −1.817 1.61 3 1 13.54 0 0.183 0.033 0.168 3960
Bi2O3 2.82 1137.40 −1.817 2.02 3 1 14.36 0 0.232 0.021 0.087 8900
CoO 3.51 601.80 −0.127 1.88 2 0 5.32 0 0.144 0.012 0.062 6000
Cr2O3 2.51 1268.70 −1.817 1.66 3 1 13.64 0 0.191 0.025 0.146 5210
CuO 3.20 706.25 −0.127 1.90 2 0 5.34 0 0.143 0.035 0.055 6450
Fe2O3 2.29 1408.29 −1.817 1.83 3 1 13.98 0 0.194 0.048 0.164 5250
In2O3 2.81 1271.13 −1.817 1.78 3 1 13.88 0 0.210 0.056 0.113 7180
La2O3 2.87 1017.22 −1.817 1.10 3 1 12.52 0 0.229 0.040 0.087 6510
NiO 3.45 596.70 −0.127 1.91 2 0 5.35 0 0.134 0.054 0.058 7450
Sb2O3 2.64 1233.06 −1.817 2.05 3 1 14.42 0 0.238 0.013 0.118 5190
SiO2 2.20 1686.38 −3.252 1.90 4 1 8.78 1 0.176 0.094 0.400 2650
SnO2 2.01 1717.32 −3.252 1.96 4 1 8.84 1 0.173 0.030 0.232 7010
TiO2 1.74 1575.73 −3.252 1.54 4 1 8.42 1 0.174 0.093 0.302 3600
V2O3 3.14 1097.73 −1.817 1.63 3 1 13.58 0 0.194 0.048 0.141 4870
Y2O3 2.87 837.15 −1.817 1.22 3 1 12.76 0 0.223 0.047 0.100 4840
ZnO 3.45 662.44 −0.127 1.65 2 0 5.09 0 0.151 0.017 0.054 5700
ZrO2 2.15 1357.66 −3.252 1.33 4 1 8.21 1 0.173 0.029 0.222 5680
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Results and discussion

In order to evaluate causality in the recently published nano-
QSAR models we have developed CIGs and estimated corre-
lation measurers for the most significant cases (Fig. 2).

Descriptors showing cause–effect relationships with toxicity
(Fig. 2) are the descriptors forming the first edges of the CIG,
namely: ΔHMe+ (Model I) and rw (Model V). We suggest that
these descriptors are the best choices to develop a model with
both correlational and causal relationships.

The enthalpy of formation of metal cations (enthalpy,
ΔHMe+) is the most relevant parameter describing toxicity of
metal oxide nanoparticles towards bacteria E. coli. The
enthalpy ΔHMe+ linearly correlates with pMIC50 with R2 = 0.85
(Pearson’s correlation coefficient r = −0.92). Model I employed
only one descriptor. Therefore Model I is the perfect case in
terms of causality and correlation.

The enthalpy of formation of metal cations has a straight
single connection to the toxicity. Moreover, there is the collider
graph structure with the charge (Z, Models III and IV) and the

cation polarization power (CPP, Model V). The enthalpy
(ΔHMe+) is closely related to the lattice energy, which increases
with increasing charge (Z) of the metal ion.5 The charge (Z)
correlates with the enthalpy (ΔHMe+) with R2 = 0.85 (Pearson’s
correlation coefficient r = −0.92). Single arrows connect cation
polarization power (CPP) with charge (Z) and then with the
enthalpy (ΔHMe+). The fact that CPP (eqn (5)) represents the
combination of the charge of the ion (Z) and the Pauling
radius (r) might explain this observation:21

CPP ¼ Z2

r
ð5Þ

At the same time, the cation polarization power (CPP) is
directly related to the enthalpy and the best way to describe
the relationship between CPP and ΔHMe2+ (r = −0.83) is the
exponential function (eqn (6)):

CPP ¼ f ðΔHMeþÞ ð6Þ
As we previously noticed,11 cation polarization power (CPP)

reflects electrostatic interactions, important to the process of

Fig. 2 A causal graph illustrating the relationships between the descriptors used in the studied models and the toxicity of nanoparticles towards
bacteria E. coli.

Paper Nanoscale

7206 | Nanoscale, 2016, 8, 7203–7208 This journal is © The Royal Society of Chemistry 2016

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Fe

br
ua

ry
 2

01
6.

 D
ow

nl
oa

de
d 

on
 8

/1
2/

20
25

 5
:1

5:
54

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5nr08279j


inducing toxicity. CPP might reflect a metal cation release.
This is in agreement with the assumption that the enthalpy of
formation of a gaseous cation describes the release of metal
cations from the nanoparticle surface.5 It means that the
descriptors ΔHMe+, Z and CPP are closely related to each other
and they indirectly describe the same processes. Since the cal-
culations of Z and CPP descriptors are simpler and faster
when compared with the computation of enthalpy, it might be
more efficient to use them in modeling instead of enthalpy.
KNIME node for these calculations is available on the website
of the NanoBRIDGES project.23

All mutually-related descriptors are related to each other
(mechanically or statistically). For example, the Wigner–Seitz
radius (rw) and mass density (ρ) are not directly correlated to
each other in statistical terms (the Pearson’s correlation coeffi-
cient is 0.07). However, the relationship between ρ and rw has
straightforward mechanistic behavior and can be deducted
from the basic LDM equation (eqn (7)).19,20

rw ¼ 3M
4πρ

� �1=3

ð7Þ

where M = molecular weight.
Wigner–Seitz radius also do not demonstrate simple linear

relationships with the target toxicity (the Pearson’s correlation
coefficient is r = −0.25, Fig. 2). Using numerical analysis, poly-
nomial regression for the Wigner–Seitz radius (R2 = 0.69) was
identified.24,25 Polynomials are non-monotonic non-linear
functions. Pearson’s correlation coefficient is not applicable to
such types of relationship.22,26 Therefore, there are some limit-
ations to the mechanistic interpretation of polynomial
equations. To estimate correlation measures for the Wigner–
Seitz radius, the intraclass correlation coefficient was
measured.27 It operates on data structured as groups, rather
than data structured as paired observations. Intraclass corre-
lation evaluates the level of agreement between raters in
measurements, where the measurements might be intervals.28

We observed individual intraclass correlations equal to −0.921.
Next, we have utilized the Wigner–Seitz radius as a simi-

larity measure for studied nanoparticles. Similarity in the
chosen descriptor space (1D) was measured using the k-means
algorithm.29 Using rw we divide nanoparticles into four clus-
ters: separate clusters for MeO and MeO2 and two clusters for
Me2O3 (see ESI†).

This observation is in agreement with the mentioned toxi-
city trend: toxicity decreases in the following order of the
formal charge of the metal cations:3 Me2+ > Me3+ > Me4+. It
means that rw represents not only a fraction of the free mole-
cules on the nanocluster’s surface, but also the charge of the
metal ions. It brings us back to the importance of ionic pro-
perties, as was demonstrated by other descriptors in our pre-
vious contributions.9–11 As it was mentioned in earlier works,
one of the main mechanisms of metal oxide nanoparticles’
toxicity towards E. coli bacteria is related to the release of the
metal ions from the nanoparticle’s surface.7–11 Therefore, we
assume that the release of ions may be a dominant cause.30,31

There are several other mutually related variables. At first,
the metal electronegativity (χ, Model IV) is mutually related to
SiRMS-based aligned electronegativity of the metal oxide (S2,
Model V) and the SiRMS-based descriptor of electronegativity
(S3, Model V). This observation is not surprising in the light of
the previously proposed mechanism of the toxicity of MeOx to
the E. coli bacteria. In other words, different descriptors from
particular models are in causal agreement and depict the
same basic mechanisms associated with the process of metal
cations’ release from the particle surface.

The charge of the metal cation (Z) and the electronegativity
(χ) also have a causal relationship. It follows one of the basic
concepts of physics: the more electronegative element has a
greater share of electrons. As such, the partial negative charge
reflects the higher electron density. In the same way, the less
electronegative element has a partially positive charge reflect-
ing the lack of electron density.32

The SMILES-based descriptor DCW (Model II) is mutually
related to the charge of the metal cation (Z, Models III and IV).
However, it is not just a causal relationship. DCW and charge
(Z) are highly correlated (r = 1.0). In other words, the SMILES-
based DCW descriptor represents the charge of the metal
cation in 100%.

Finally, we found that several descriptors, such as surface
area-to-volume ratio (SV) and SiRMS-based descriptor of the
van-der-Waals interactions (S1) from the Model V are un-
connected (independent) and do not demonstrate causal
relationships with both the target toxicity and other descrip-
tors (Fig. 2). It means they have little or even no impact on the
relevant toxicity of the metal oxide nanoparticles towards bac-
teria E. coli.

Based on the above discussion, we can conclude that the
descriptor ΔHMe+ (Model I) is the best choice for nano-QSAR
modeling. Enthalpy was the only main cause, with clear linear
behavior and a significant Pearson’s correlation coefficient. All
other descriptors are somehow related to each other or to
target toxicity. Thus, Occam’s razor33 must be applied before
formulating the scope of new studies. The Occam’s razor prin-
ciple is a heuristic technique based on the idea that among
competing hypotheses, the one with the fewest assumptions
should be selected. In other words, it would be helpful to for-
mulate the initial causal hypothesis to see relationships
between new descriptors with known theories and models.

Conclusions

In this paper, we have illustrated that causal inference methods
could be used efficiently in QSAR modeling (particularly in
nano-QSAR) as additional criteria for QSAR quality evaluation.
Previously developed nano-QSAR models of metal oxides’ toxi-
city towards bacteria E. coli have been validated by means of the
causality criteria. We have verified the character of the relation-
ships between the descriptors and target toxicity. We found that
not every descriptor that is statistically correlated with the
studied toxicity endpoint, in fact, explains the toxicity.
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The relationships between the descriptors were discovered
based on the developed causal structure. The causal inference
technique is useful in situations when descriptors that are
more sophisticated are not applicable (e.g., quantum chemistry
software and/or appropriate computational resources are not
available).

We have analyzed the descriptors selected by causal criteria
in terms of a straightforward causal-reasoning account.
Selected descriptors reflect specific properties of the nano-
particle’s surface: the release of ions and the fraction of avail-
able molecules on the nanocluster’s surface. Selected
descriptors demonstrate high quality in terms of statistics,
causality and interpretation.

Causal inference methods are able to clarify the existing
associations and complex causal relationships between the
descriptors and between the descriptors and the endpoint.
Moreover, the causal inference methods are able to provide
more robust mechanistic interpretation of the developed nano-
QSAR models. The insights described above allow develop-
ment of better schema for nano-QSAR modeling using the
causal discovery approach.
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