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Topological analysis of non-granular, disordered
porous media: determination of pore connectivity,
pore coordination, and geometric tortuosity in
physically reconstructed silica monoliths

Kristof Hormann, Vasili Baranau, Dzmitry Hlushkou, Alexandra Höltzel and
Ulrich Tallarek*

Gaining adequate knowledge on the morphology of porous media is critical to ensuring their continued

success as support structures in applications that rely on efficient mass transport. The physical

reconstruction of a porous medium provides the optimum basis for an accurate characterization of its

morphology, yet the identification of meaningful descriptors is not straightforward, especially not for

monolithic materials, whose continuous solid phase and open pore network resist the tessellation

schemes applicable to granular media. In this work, we focus on a hardly investigated component of

silica monolith morphology, namely the topology of the hydrodynamically accessible macropore space.

We propose and apply suitable methods to determine pore connectivity, pore coordination, and

geometric tortuosity in four silica monolith samples after physical reconstruction of their macropore space

by confocal laser scanning microscopy. Pore connectivity is traced by medial axis analysis, whereas pore

coordination is evaluated after compartmentalization of the open macropore space into individual pores

and pore throats by a maximum inscribed spheres approach. The geometric tortuosity is determined by

medial axis analysis as well as by a propagation method that maps the geodesic distance from the center

point of a reconstruction to every other point in the pore space. The presented results provide a

comprehensive description of silica monolith topology as well as quantitative data for the construction of

pore network models. The proposed analysis methods are applicable to any porous material that can be

physically reconstructed at the required resolution.

1 Introduction

Silica-based materials with a hierarchical pore space are of
substantial technical relevance as support structures for chemical
separations1–3 and heterogeneous catalysis.4–6 In silica mono-
liths, a hierarchical pore space architecture is realized through a
continuous silica skeleton perforated by intersecting networks of
larger and smaller pores.7–10 Macropores (450 nm) provide fast,
advection-dominated mass transport through the material;
micro- and mesopores (o2 nm and 2–50 nm, respectively), which
are accessible only by diffusion, generate a large surface area for
adsorption and reaction of solutes. Silica monoliths are prepared
in a polycondensation reaction. Macropores and a microporous
silica skeleton are formed during the sol–gel transition that
accompanies spinodal decomposition of the reactants.7 In a
second step, the micropores in the silica skeleton are widened

into mesopores, for example, through thermal treatment. The
mesopore space can also be generated by alternative routes, for
example, by transforming the silica skeleton into an MCM-41-
type pore structure (i.e., an ordered structure) under conditions
that preserve the original morphology and macroporosity of the
material.11 The successive preparation of macro- and mesopore
space enables an independent adjustment of permeability, sur-
face area, and textural characteristics, which gives the materials
chemist in principle a much wider influence over the properties
of the final product than possible with traditional particulate
packings (packed beds), whose permeability is dependent on the
particle size and is limited by the requirement of mechanical
stability under high pressure.

High-performance liquid chromatography (HPLC) is not only
an important application of particulate packings and monoliths
as separation columns, but also a valuable and easily available
method to probe the complex relationship between the morphol-
ogy and the mass transport properties of the employed porous
medium. In HPLC, the separation efficiency is mainly deter-
mined by the uniformity of the pressure-driven flow field in the
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macropore space as well as by the resistance to mass transfer
between macropores and mesopores.12,13 The first generation of
silica monoliths prepared for use as analytical HPLC columns
suffered from large average macropore sizes, wide macropore size
distributions, as well as from variations in porosity and macro-
pore size over the column cross-section.1,14,15 In recent years the
preparation process has been substantially improved,16–20 culmi-
nating in the so-called second generation of silica monoliths.21

With negligible radial heterogeneity and macropores reaching
the sub-mm regime,22 second-generation monoliths demonstrate
higher separation efficiencies.15,22,23 Remarkably, in addition to
their radially homogeneous macropore and skeleton size distri-
butions,15 the second-generation monoliths realize smaller
macropore sizes at even increased macropore homogeneity with
respect to the first-generation monoliths.15,22

Apart from characterizing the morphology of silica monoliths
according to their performance as HPLC columns, morphological
information is available from various other indirect methods.
Most prominent among them are mercury intrusion porosimetry
for the macropores and nitrogen physisorption for the micro- and
mesopores.24–27 These methods are fast and convenient, but
provide no local resolution. The generated data are converted
into pore size distributions by assuming a certain morphology,
that is, a specific pore shape and connectivity. The current
morphological models have been recognized as too simplistic,
but the development of better models awaits the availability of
accurate morphological information.

The obvious solution to the problem are direct methods that
reveal the true morphology of silica monoliths. Several methods
are able to provide a spatially resolved picture of the macropore
space, whereas the much smaller mesopores can be resolved
only with transmission electron microscopes and micropores
have not been imaged yet. Basic imaging methods like scanning
electron microscopy (SEM) lack depth information and thus
cannot provide a faithful three-dimensional (3D) image of the
macropore space. The latter requires imaging techniques with
tomographic capabilities, such as focused ion beam (FIB)-SEM,
serial block face (SBF)-SEM, and confocal laser scanning micro-
scopy (CLSM).28–39 Combined with advanced image processing
methods, the acquired data enable to physically reconstruct the
exact structure of a material. CLSM and FIB-SEM have both
successfully been used to reconstruct the macropore space of
silica-based structures.37,40–43 Our group has focused on the
reconstruction of particulate packings and silica monoliths in
capillary and analytical column format.15,22,44–46 The geometrical
properties of the macropore space, that is, how the void space is
distributed over the column, were accurately derived by statistical
analysis methods. Combined with numerical simulations,47–50

the collected morphological data allowed us to evaluate the flow,
diffusion, and dispersion properties of a material, to calculate its
theoretical separation efficiency as a chromatographic column,
and to find out why a further reduction of macropore size in
second-generation silica monoliths did not result in the expected
gain in separation efficiency.22,43,51,52

Compared with the geometrical aspect of macropore space
morphology, the topological aspect, that is, how the pores are

coordinated and connected as well as how tortuous (sinuous)
the pathways through the pore space are, has received little
attention so far. In the current work, we attempt a compre-
hensive analysis of the macropore space topology by using
complementary approaches to gather data on pore inter-
connection and geometric tortuosity. As representative
samples we selected commercially available silica monoliths
intended for use as analytical HPLC columns. Importantly,
these samples are employed here merely to help us illustrating
general methodology and the application of accompanying
software. It will guide the materials scientist in analyzing the
topological properties of a material at hand in all relevant detail
and especially in comparing materials obtained with distinct
modifications of their synthesis. We reconstruct the macropore
space of each monolith by CLSM and determine the most
relevant geometrical properties, namely average macropore
size and skeleton thickness, by chord length distribution
(CLD) analysis.15,22 The first step of the topological analysis
relies on skeletonization of the pore space.37,43,53–56 A thinning
algorithm reduces the pore space to a continuous medial axis,
from which values for the pore connectivity and geometric
tortuosity are derived. The determination of pore connectivity
and geometric tortuosity by medial axis analysis (MAA) does
not require to define the limits of individual pores, similar to
how CLD analysis yields the geometrical properties of the
macropore space without defining (and assigning a size to)
individual pores. In contrast, the second step of the topological
analysis relies on compartmentalization of the pore space. We
use a maximum inscribed spheres approach (MISA) to divide
the open macropore space of a silica monolith into a set of
individual pores.57–61 MISA supplements the solid–void borders
present in the silica monolith with calculated void–void borders
that delimit individual pores from each other. The calculated
borders are located along local minima of solid–void distances
and in this way resemble pore throats that connect larger
voids with each other. The compartmentalized version of the
macropore space allows to determine the number of pores a
given pore shares pore throats with (the pore coordination)
as well as the number of pores that share a given pore throat
(the pore throat coordination). These data provide the link to
pore network models, which, by reducing the complexity of a
pore space into a simpler network of pores and pore throats,
enable simulations of multiphase flow, wettability, or precipi-
tation60,62–64 as well as the interpretation of porosimetry and
physisorption data. The third step of the topological analysis
works directly with the reconstructed macropore space. By
mapping the geodesic distances between the center point
and all other points in the void space of a reconstructed
sample, we determine the global geometric tortuosity of the
macropore space.

The primary goal of this study is to complement our knowl-
edge about the macropore space geometry of silica monoliths
with quantitative data on the topology. Further, we want to
propose and share suitable methods for the topological analysis
of disordered porous media, particularly (but not exclusively)
monolithic materials.
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2 Materials and methods
2.1 Chemicals and materials

Laboratory samples of silica monoliths prepared according
to an established procedure18 were generously given by Merck
Millipore (Darmstadt, Germany) as cylindrical bare-silica rods
of 4.6 mm I.D. � 150 mm length. Samples #1, #2, and #3 are
second-generation monoliths (from different preparation charges),
sample #4 is a first-generation monolith. This set of monoliths
thus addresses timely, representative samples, which here serve
exclusively to illustrate the general methodology for topological
analysis. The fluorescent dye Bodipy 493/503 was bought from Life
Technologies (Darmstadt, Germany). Dimethyl sulfoxide (DMSO),
glycerol, and octadecyltrimethoxysilane as well as HLPC-grade
acetone, ethanol, and toluene were from Sigma Aldrich Chemie
(Taufkirchen, Germany). HPLC-grade water was obtained
from a Milli-Q gradient water purification system (Millipore,
Bedford, MA).

2.2 Confocal laser scanning microscopy

2.2.1 Sample preparation. Cylindrical disks (ca. 1 mm thick)
were cut at about mid-length from the bare-silica rods using a
water-cooled circular saw. Cuts were made orthogonal to the
cylinder axis. The disks were washed with ethanol and toluene,
and then immersed in an octadecyltrimethoxysilane solution
(220 mg mL�1 in toluene) for 6 h at 343 K. The disks were then
washed with toluene and acetone before being immersed in a
Bodipy 493/503 solution (0.5 mg mL�1 in acetone) for 12 h. The
pore space was filled 1 h before the microscopic investigation
with a glycerol/DMSO/water mixture (70/19/11, v/v/v) to match
the optical dispersion behavior of monolithic silica.44,45 Prior to
use the refractive index at the sodium D line (nD = 1.4582) of
the matching liquid was verified using a digital refractometer
(Reichert Analytical Instruments, Depew, NY).

2.2.2 Image acquisition. Microscopic experiments were per-
formed on a TCS SP5 II confocal microscopy system equipped with
a HCX PL APO 63x/1.3 GLYC CORR CS (211) glycerol immersion
objective lens (Leica Microsystems, Wetzlar, Germany). A
custom-made sample holder was used to mount the silica disks
directly beneath a ‘type 0’ cover slip (Gerhard Menzel GmbH,
Braunschweig, Germany). The refractive index matching liquid
was used as immersion and embedding liquid to minimize
spherical aberrations.45 The Bodipy dye was excited at a wave-
length of 488 nm. Emitted light was detected at the interval of
491–515 nm. The sampling step size was adjusted to 30 nm in
lateral direction and to 126 nm in axial direction to comply with
the Nyquist criterion.

Stacks of 150–200 grayscale images (8-bit, 2048 � 2048 pixels)
were acquired at arbitrarily chosen locations on the disk, but at a
distance of at least 10 mm from the disk surface to avoid imaging
morphological distortions generated by the cutting process. The
propagation direction z of the image-stack acquisition was
perpendicular to the disk surface, that is, parallel to the axis of
the cylindrical column from which the disk had been cut.

2.2.3 Image processing. Microscopic images were restored
and segmented in a four-step procedure: (1) photon noise was

reduced using the PureDenoise ImageJ plug-in.65 (2) Photo-
bleaching was corrected with an intensity adjustment based on
fitting an exponential decay function to the z-axis of the image
stack. (3) Huygens maximum likelihood iterative deconvolution
(Scientific Volume Imaging, Hilversum, The Netherlands) was
applied. (4) Segmentation was carried out by subtraction of a
Gaussian blurred image stack copy (kernel size = 200 pixels)
from the initial image stack. This last step was repeated once
with the image data obtained from the first segmentation. After
this process, all pixels with an intensity value of zero were
assigned as void (macropore) space; the remaining non-zero
pixels were considered as solid phase (silica skeleton). To
eliminate artifacts at the borders of the image stack, five slices
were discarded from top and bottom of the stack and images
were symmetrically cropped to 2000 � 2000 pixels. The final
physically reconstructed volume of each investigated silica mono-
lith was 60 mm � 60 mm � 18–25 mm.

2.3 Morphological analysis

2.3.1 Chord length distributions. The geometrical proper-
ties of the reconstructed macropore spaces were evaluated by
CLDs.66–68 A CLD was obtained by placing seed points randomly
into the void space.15,22,44,69 32 equiangular distributed vectors
per seed point were spread out until they reached the solid–void
border.51,70 The length of a chord consisting of two opposing
vectors was collected in a histogram, unless one vector projected
out of the image bounds, in which case the chord was discarded.
Histograms contained 106 chords at a bin size of 0.2 mm. Using
the Levenberg–Marquardt algorithm,71 histograms were fitted to
the k-Gamma function:

f lcð Þ ¼
kk

GðkÞ
lk�1c

mk
exp �klc

m

� �
(1)

For the investigated, microscopically disordered monoliths the
use of the k-Gamma function to describe their void volume
fluctuations can be motivated from a statistical mechanics point
of view.72 We have previously observed that the k-Gamma func-
tion accurately fits CLDs generated in the macropore space of
physically reconstructed packed beds45,73 and silica as well as
organic–polymer monoliths.15,22,36,37,39,51 In eqn (1) lc is the
chord length, G the Gamma function, m the first statistical
moment, and k = (m/s)2 the second statistical moment of the
distribution. A CLD of the silica skeleton was obtained by
generating chords in the solid phase rather than the void space.
Solid phase CLDs of monolithic materials have also been found
to be well described by the k-Gamma function.15,36,39,43 The
values for m and k obtained from fitting the CLD to the
k-Gamma function are quantitative measures for the average
size and for the homogeneity of the size distribution of the
investigated (solid or void) phase, respectively.15,22,50,51

2.3.2 Medial axis generation. An iterative-thinning algo-
rithm, available as an ImageJ plug-in bundle (Skeletonize3D
and AnalyzeSkeleton), was applied to reduce the macropore
space to a medial axis of one voxel thickness under conserva-
tion of its topological properties.65,74,75 An average pore con-
nectivity Z was calculated as the average number of branches
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of the medial axis meeting at a junction (i.e., a node of the
medial axis network):

Z ¼ 3
nt

nj
þ 4

nq

nj
þ 5

nx

nj
(2)

with

nx

nj
¼ 1� nt

nj
� nq

nj
(3)

where nj is the total number of junctions, nt is the number
of triple-point junctions (connecting three branches), nq the
number of quadruple-point junctions (connecting four branches),
and nx the number of higher-order junctions (connecting five or
more branches). Therefore, nt/nj, nq/nj and nx/nj give the frac-
tion of nodes in the network connecting 3, 4 or 44 branches,
respectively.

The average value of the geometric branch tortuosity htbranchi
was calculated as the average of all node-to-node network dis-
tances di over the Euclidean distances dEuclid,i between these
nodes:

tbranchh i ¼ 1

n

Xn
i¼1

di

dEuclid;i
(4)

2.3.3 Sphere inscription. The reconstructed macropore
space of a silica monolith was compartmentalized by a four-
step algorithm developed by us building on previous work by
Dong and Blunt.59 We provide here a brief description; detailed
information and the software download can be found else-
where.76 (1) Starting from the 3D binary image of solid and void
voxels, a sphere that just touched the solid–void border
was inscribed around each void voxel by determining the
smallest distance between the particular void voxel and the
solid phase through Euclidean distance transform.77–81 In
the resulting Euclidean distance transform field, each void voxel
was assigned the radius of its surrounding maximum inscribed
sphere. The field contained as many maximum spheres as
the binary image contains void voxels. (2) The large set of
maximum inscribed spheres meant that a particular void voxel
could be part of (covered by) several spheres. The set of maxi-
mum spheres was reduced to a subset of containing spheres by
searching for each void voxel for the largest sphere in which
this voxel was contained and assigning the containing sphere
radius to the voxel. This implies that spheres contained within
a larger sphere as well as spheres contained by a union of two
or more larger spheres were eliminated. After completion of
step 2, all void voxels were unequivocally assigned the radius of
their largest containing sphere. (3) Either single containing
spheres or unions of containing spheres with equal radii
formed local maxima (plateaus) in the containing sphere radius
(CSR) field. We used the centers of these spheres as the seed
points for pore propagation. Starting from the seed voxel with
the largest assigned CSR value as the first pore seed, the
neighboring void voxels were assigned as belonging to the pore
sprouting from the current seed for as long as their CSR values
were equal to or smaller than that of their direct predecessor.
Then, the pore seed with the next-to-largest CSR value was

propagated, and so on. If pore propagation reached voxels that
had already been assigned as belonging to another pore, these
voxels were marked as shared pore voxels. After completion of
this step, all void voxels in the 3D image were assigned as either
belonging to a certain pore or as shared-pore voxels. (4) Finally,
shared-voxel volumes were reduced to single-voxel-thick bound-
ary layers by a variant of the watershed segmentation.82,83 The
CSR values were interpreted as the depth of the relief where
watershed happens. The water level was initially set at the
largest CSR value among the pore seeds (i.e., the deepest point
in the relief) and then stepwise increased. At each iteration, the
boundary voxels at the current water level for each pore as well
as the 26 neighbors of every propagation boundary voxel
were processed. If a neighbor was (i) a void voxel and (ii) its
CSR value was not larger than those of the current boundary
voxel, the boundary could propagate to this voxel. If the
neighbor did not belong to any pore yet, we marked the
neighbor as belonging to the current pore and added it to
the pore boundary (to be processed on the next iteration). If the
neighbor was already marked as belonging to one or more
pores, we specified that the neighbor belonged to the current
pore as well, did not add it to the pore boundary, and removed
it from the boundaries of other pores to which it belonged
(to be processed on current or future iteration steps). After pro-
cessing all boundary voxels at the current water level, the water
level was increased by one step and pore propagation resumed.
This procedure was repeated until, after a final increase of the
water level, no boundary voxels were left for pore propaga-
tion. Following watershed segmentation, all void voxels were
assigned as either belonging to a certain pore or as belonging to
a boundary layer between two or more pores (i.e., a pore throat).
The 3D image then contained solid voxels, pore voxels, and
pore-throat voxels.

2.3.4 Geodesic distance propagation. The geodesic distance
dg is the shortest path between two locations in the void space
that does not cross the silica skeleton at any point. We calculated
the geodesic distances between a single starting point and all
other void voxels in the 3D image.59 Starting from the void voxel
closest to the geometric center of the reconstructed volume, we
calculated the shortest paths to all other void voxels employing
Dijkstra’s shortest path algorithm.84 Each voxel was connected
to 26 neighbors, excepting solid voxels, which were excluded
from the analysis. A void voxel was treated as a vertex in a
graph. The Euclidean distance between voxels was used as a
weight of edges in this graph and could thus take only values

of 1,
ffiffiffi
2
p

, or
ffiffiffi
3
p

.
The global geometric tortuosity tgeo is the ratio of dg to

dEuclid for the case of sufficiently long geodesic distances:85

tgeo ¼ lim
dg!1

dg

dEuclid
(5)

where dEuclid is the Euclidean distance between starting and
current voxel. We used about 2.6 � 106 values per reconstructed
sample volume for calculating the global geometric tortuosity.
More information and the software download can be found
elsewhere.76
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3 Results and discussion
3.1 Geometrical characterization by chord length distribution
analysis

Of each investigated silica monolith, a volume of 60 mm� 60 mm�
18–25 mm was physically reconstructed for morphological analysis.
As first step we characterized the average geometrical properties
of the macropore space (Table 1) as reference for the subsequent
topological analysis. The external porosity (eext) was calculated as
the fraction of void voxels in a reconstructed volume. Average
macropore size (mmacro) and average skeleton thickness (mskel) were
determined by CLD analysis. CLD analysis allows to determine the
size distribution of each phase of a porous medium without
defining the geometry of three-dimensional objects. This is
especially valuable for monolithic materials, where both, void
space and solid phase, are continuous. Fig. 1A shows how
chords were generated in the reconstructed macropore space
of a silica monolith. The chord lengths were collected into a
macropore CLD, which was then fitted to the k-Gamma function
to determine mmacro (Fig. 1B). mskel was analogously received by
generating chords in the solid phase and fitting the resulting
skeleton CLD to the k-Gamma function. The data in Table 1 show
that the monoliths share a highly similar external porosity of
65–68%, whereas average macropore size and skeleton thickness
nearly double in value from monolith #1 with mmacro = 2.54 mm
and mskel = 1.13 mm to monolith #4 with mmacro = 4.93 mm and
mskel = 2.01 mm. The microscopy images shown in Fig. 1C visualize
the fine structure of monolith #1 next to the coarse structure of
monolith #4, both at an external porosity of 67%. Over the
investigated sample set, average macropore size and skeleton
thickness increase in the same direction, maintaining a ratio of
2–2.5 (Table 1). In principle, macropore size and skeleton thick-
ness are considered independently adjustable parameters.1 In
practice, however, when data from several silica monolith samples
are surveyed (usually values for the domain size and the skeleton
diameter estimated from SEM images) a constant relation
between macropore size and skeleton thickness is found.2,14,22

For monoliths intended as HPLC columns, smaller macropores
may be desirable to decrease hydrodynamic dispersion in the
system and thus further improve the separation efficiency.
Decreasing the skeleton thickness along with the macropore size
shortens the pathways for diffusion-limited mass transport, which
may be desirable as well, as long as the monolith’s mechanical
stability is not endangered. In the following, we turn to the
topological properties of the investigated silica monoliths, which
will be referenced by their average macropore size (mmacro).

3.2 Topological characterization by medial axis analysis

We begin the topological characterization of the monoliths’
macropore space by MAA, a method that acknowledges the
continuous nature of the silica skeleton and the open structure
of the macropore network. A thinning algorithm reduces the
pore space to a medial axis of one voxel thickness, while the

Table 1 Average geometrical properties of the investigated silica mono-
liths. Average macropore size and skeleton thickness were determined by
CLD analysis. The external porosity was determined as the fraction of void
voxels within a reconstructed volume

Monolith mmacro (mm) mskel (mm) mmacro/mskel eext (%)

#1 2.54 1.13 2.25 67.1
#2 3.35 1.65 2.03 64.9
#3 4.00 1.64 2.44 67.5
#4 4.93 2.01 2.45 66.6

Fig. 1 (A) Scheme illustrating the generation of chords in the reconstructed
macropore space of a silica monolith (white – silica skeleton, black – void
space). Seed points (P1 to P3, yellow) are randomly distributed over the entire
void space. From every seed point vectors are spread in 32 equiangular
directions. If two opposing vectors reach the solid–void border, the sum of
both vector lengths is counted as a chord length (green); otherwise, the
vector pair is discarded (red). Chord lengths are collected into a macropore
CLD. (B) k-Gamma function fits of the macropore CLDs and the average
macropore size (mmacro) obtained for each silica monolith. (C) Binary images
of monoliths #1 (left, mmacro = 2.54 mm) and #4 (right, mmacro = 4.93 mm)
visualize a fine and a coarse structure, respectively, at the same external
porosity (eext E 67%).
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topological character of the pore space is conserved.75 Fig. 2
gives an impression of how the macropore space is traced by a
voxel line that branches at every junction of the network to
enter abducent channels.

The number of branches that originate from a junction
(a node of the medial axis) quantifies the local branch con-
nectivity, which is interpreted as the local pore connectivity
without ever defining the limits of individual pores. According
to MAA, the investigated silica monoliths share a highly similar
distribution of the local pore connectivity (Table 2). The vast
majority of junctions (87–90%) connects three branches
(i.e., the minimal number of branches that defines a junction),
about 10% of junctions connect four branches, and higher-
order junctions are scarce (1–2%). Highly similar distributions
were found for other silica monoliths with comparable
mmacro-values,43 interestingly also for the one existing example
of a reconstructed mesopore space,37 and for phase-separated
organic–polymer mixtures in the late stage of spinodal decom-
position (i.e., at a critical step of organic–polymer preparation).54

The close agreement between the available data for silica mono-
liths suggests three-branch junctions as typical, four-branch
junctions as already comparatively seldom, and higher-order
junctions as very rare, which will inevitably result in a conserva-
tive value of Z E 3 for the average pore connectivity. A closer
analysis of the data in Table 2 indicates an increase of three-
branch junctions and concurrent decrease of four-branch and

higher-order junctions with increasing average macropore size of
a silica monolith. An inverse correlation between mmacro and the
percentage of four-branch and higher-order junctions was pre-
viously shown in a study of eight silica monolith samples that
covered a range of mmacro = 0.43–7.20 mm.43 The sample with
mmacro = 0.43 mm (a silica monolith with unusually small macro-
pores) had 33.4% four-branch and higher-order junctions, the
sample with mmacro = 7.20 mm (a silica monolith with unusually
large macropores) had 10.9% four-branch and higher-order
junctions; the samples with mmacro = 2.48 and 4.14 mm had
14.4% and 12.1% four-branch and higher-order junctions,
respectively, highly similar to the percentages determined in
the present study for monolith samples #1 (mmacro = 2.54 mm,
13.2%) and #3 (mmacro = 4.00 mm, 11.3%). The higher percentage
of four-branch and higher-order junctions in monoliths with
smaller macropore size raised their average pore connectivity
slightly, with a maximum value of Zav = 3.47 observed for the
silica monolith sample with mmacro = 0.43 mm. The monolith
samples with typically sized macropores had values of Zav = 3.14
and 3.17, highly similar to the values in Table 2. Our study
features a smaller range of macropore sizes than the earlier
one,43 because we focus on commercial silica monoliths for
analytical HPLC columns; accordingly, the pore connectivity
varies only very slightly over our sample set. The finely structured
monolith #1 (mmacro = 2.54 mm) has only 2% more four-branch
and higher-order junctions than the coarser monolith #4 with
nearly twice the average macropore size (mmacro = 4.93 mm).

3.3 Topological analysis by a maximum inscribed spheres
approach

The interstitial pore space of mechanically stable, random sphere
packings, which are the paradigm for HPLC columns or packed
beds in general, consists of larger voids connected through
smaller channels. Individual pore limits can be set through
tessellation schemes, for example, by using the spheres’ centers
for a neat division of the space into polyhedra that contain void
space (pore) enclosed by solid phase (spheres).86 The continuous

Fig. 2 (A) The reconstructed macropore space of a silica monolith (white – silica skeleton) and its medial axis (blue) are combined to illustrate how MAA
works. Higher magnifications (B and C) make the character of the medial axis visible. The medial axis permeates the entire pore space, the number of
branches that meet at a junction indicates the local pore connectivity.

Table 2 Results of MAA. Fraction of nodes in the medial axis network
connecting 3, 4, or 44 branches (nt/nj, nq/nj and nx/nj, respectively) as well
as the resulting average pore connectivity (Z). The average branch tortu-
osity (htbranchi) indicates the average crookedness of the branches in the
medial axis network

mmacro (mm) nt/nj nq/nj nx/nj Z htbranchi

2.54 0.868 0.112 0.020 3.15 1.18 � 0.13
3.35 0.886 0.098 0.016 3.13 1.18 � 0.12
4.00 0.887 0.098 0.015 3.13 1.18 � 0.14
4.93 0.892 0.093 0.015 3.12 1.18 � 0.11
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solid phase of a silica monolith, on the other hand, does not
lend itself to tessellation schemes. To arrive at a similarly clear-
cut representation of the open macropore space, we supple-
mented the natural borders made by the solid phase (solid–void
borders) with calculated boundaries in the macropore space
(void–void borders). To maintain the analogy to the pore space
of random sphere packings and to pore network models, we
will refer to these calculated boundaries as pore throats.

The delineation of individual pore limits was based upon
the inscription of maximum spheres into the open macropore
space. For each void voxel, the smallest distance to the solid
phase was determined through Euclidean distance transform.
This distance is the radius of the largest (maximum) sphere
around this void voxel that can be inscribed into the macropore
space. The resulting set of inscribed spheres was reduced to a
smaller set of containing spheres by assigning each void voxel
the radius of the largest sphere in which it is contained. The
resulting field of containing sphere radii contained plateaus
(local maxima). The centers of containing spheres located at
local maxima were used as seed points for pore propagation. In
this step, all void voxels were assigned as either belonging to a
certain pore or as void space shared by several pores based on
the value of their assigned containing sphere radius. At this
processing stage, the shared pore volumes were often as large
as or even larger than that of pores. The final step propagated
the pore boundaries to reduce shared pore volumes to single-
voxel thick boundary layers by watershed segmentation. The
identified boundaries are the watershed between individual
pores at whose centers the imagined water sources are located.
Harking back to maximum sphere inscription, the centers of
the final pores correspond to local maxima and the calculated
boundaries to local minima in the field of solid–void distances.

Fig. 3 illustrates the separate processing steps taken to
compartmentalize the reconstructed macropore space of a

silica monolith into a set of individual pores delimited by pore
throats. The compartmentalized macropore space (Fig. 3E)
differs substantially from conventional pore network models,
which feature spherical or cylindrical pores homogeneously
connected by cylindrical tubes (pore throats). The image in
Fig. 3E shows a void space laid out in irregularly shaped and
differently sized allotments, bordered by slightly curved channels
(the pore throats), and interspersed with likewise irregularly
shaped and differently sized patches of solid phase (the silica
skeleton).

Contrary to conventional pore network models, where pore
volume is quantified by the sphere or cylinder diameter (which
are then collected into a pore size distribution), Fig. 3E does not
suggest a comparably simple relation between size and volume
for the irregularly-shaped macropore compartments. But their
volume can be accurately determined by simply counting the
voxels belonging to each compartment. Fig. 4A displays the
resulting pore volume distributions for the four silica mono-
liths. The data follow the same trend as the macropore CLDs
(Fig. 1B), that is, the average pore volume increases with
mmacro (Table 3). The upper pore volume limit increases from
106 mm3 for mmacro = 2.54 mm over 201 mm3 for mmacro = 3.55 mm
and 280 mm3 for mmacro = 4.00 mm to 519 mm3 for mmacro = 4.93 mm.
Fig. 4B shows the pore volume distributions normalized to the
respective average pore volume (hVporei). The normalized distribu-
tions reveal that smaller pore volumes relative to the average pore
volume appear with higher frequency in a monolith with a finer
structure than in a monolith with a coarser structure but the same
external porosity.

Table 3 compares the average pore volume to the volume of
the largest inscribed sphere (the largest sphere that can be
inscribed into the void space). The data show that the average
pore volume increases with mmacro and is consistently about five
times larger than the volume of the largest inscribed sphere.

Fig. 3 Image processing steps taken to compartmentalize the open macropore space of a silica monolith into individual pores delimited by single-
voxel-thick boundaries. (A) The segmented image of the reconstructed macropore space: white – silica skeleton, black – void space. (B) Through
Euclidean distance transform each void voxel is assigned the radius of the largest (maximum) sphere that can be inscribed around this voxel into the void
space: white – silica skeleton, color – radius of maximum sphere; color coding runs from blue (small radii) to red (large radii). (C) For each void voxel the
largest containing sphere is found: white – silica skeleton, color – radius of containing sphere; color coding runs from blue (small radii) to red (large radii).
(D) Through pore propagation from the local maxima of containing sphere radii, void voxels are assigned as either belonging to a certain pore (shades of
blue) or as shared by several pores (black). (E) Watershed segmentation expands pores (blue) to their final size and reduces shared areas to single-voxel
thick pore throats (black).
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This observation mirrors the constant ratio between average
macropore size and skeleton thickness as obtained from CLD
analysis of the reconstructed macropore space (cf. Table 1).

After this short excursion into the geometrical properties of
the compartmentalized macropore space, we return to the focus
of our study, the pore interconnection. We determined the pore
coordination by counting the number of neighbors with which
a given pore shares throat voxels. Fig. 5A shows the resulting
pore coordination number distributions for the four silica
monoliths, which look highly similar. According to the pore
coordination data every compartment functions as a central

hub from which most of the surrounding compartments are
accessible. 71–74% of pores are coordinated by five to fifteen
neighbors. The average pore coordination number is Cp = 10–11
(Table 3), which is clearly beyond the pore coordination of the
frequently used cubic network model (Cp = 6). Pore coordina-
tion numbers Z20 are less frequent, although a small fraction
of pores (5–8%) shares throat voxels with up to 35 neighbors. At
first glance, these high coordination numbers seem to conflict
with the average pore connectivity of Z E 3.1 determined by
MAA. Pore coordination number and pore connectivity, how-
ever, describe different properties and should not be confused.
The pore connectivity is a measure for the branching of pores in
a skeletonized representation of the macropore network. The
pore coordination number refers to the compartmentalized
representation of the macropore space and measures the
number of pores with which a given pore shares throat voxels.
The latter principle is illustrated in Fig. 5B, where the pore
under consideration (colored green) shares throat voxels with
six neighbors (colored in shades of yellow to tangerine). The
pore coordination number is comparatively small in this example
because only two dimensions were taken into account; the calcu-
lations of pore coordination for the distributions in Fig. 5A were
carried out in three dimensions. Note that a pore that is separated
from the center pore by the solid phase, for example, the pore
between pores 5 and 6 in Fig. 5B, does not count towards the pore
coordination number, as the latter’s definition refers to access
through advective flow. Solid phase borders can be crossed by
diffusion through the mesoporous silica skeleton.

Fig. 6 illustrates how pore coordination in the compartmen-
talized macropore space looks like in 3D. By leaving the solid
phase invisible, Fig. 6 provides an unobstructed view of the void
space. The 3D image shows five directly neighbored pores and
their delimiting pore throats, which are actually curved boundary
layers separating individual pores. This is best visible at the
pores’ outer surfaces where the boundaries with further adja-
cent pores (that are not part of this image) are indicated. The
central pore in Fig. 6 (light green) is not rimmed in red, because
in the view provided by Fig. 6 this pore is hidden behind
solid phase.

Since pore throats are the connecting element in the com-
partmentalized representation of the macropore space, we
evaluated the pore interconnection also from the perspective
of the pore throats. By counting the number of pores that
shared a particular throat, we received the pore throat coordi-
nation distributions for the four silica monoliths (Fig. 7).
50–57% of pore throats are shared by three pores, 37–45% by
two pores, and only 5–7% by four pores. On average a particular
throat coordinates Ct E 2.7 pores (Table 3), a value that
approaches the average pore connectivity (the average number
of branches meeting at a junction) of Z E 3.1 determined by
MAA. The average pore connectivity cannot be smaller than three,
because three is the minimum number of branches required for
a junction. A throat between two pores (which may be seen as a
constriction) is interpreted as a pore boundary by watershed
segmentation, whereas MAA registers the same structural feature
as a single pore.

Fig. 4 (A) Distribution of pore volumes as determined by MISA. (B) Pore
volume distributions normalized by the respective average pore volume
hVporei (cf. Table 3).

Table 3 Results of MISA. Average pore volume, volume of the largest
sphere that can be inscribed into the macropore space, as well as average
pore and pore throat coordination numbers (Cp and Ct, respectively)

mmacro
(mm)

hVporei
(mm3)

Vsphere,max
(mm3)

hVporei/
Vsphere,max Cp Ct

2.54 11.92 2.17 5.49 10.6 � 5.3 2.70 � 0.58
3.35 23.45 4.55 5.15 10.4 � 5.3 2.60 � 0.58
4.00 34.51 7.10 4.86 10.1 � 5.3 2.65 � 0.58
4.93 57.90 11.09 5.22 11.1 � 5.7 2.67 � 0.59
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3.4 Determination of the global geometric tortuosity by
geodesic distance propagation

Solute molecules percolating through porous solids are forced
to take a detour from the direct straight line when the latter is
blocked by the material itself. The global geometric tortuosity
defines how much longer, on average, the molecule’s pathway
is compared with the direct Euclidean distance.85,87 Combined
with porosity, the tortuosity defines the effective diffusivity of a
solute within a porous medium and is therefore an important
parameter for the mass transfer properties of a material.86–89

To determine the global geometric tortuosity of the macro-
pore space of a silica monolith, we extracted the geodesic
distances between the center of a reconstructed volume and

any void voxel in the 3D image through a voxel-by-voxel propa-
gation. The geodesic distance gives the shortest path on which
any particular void voxel can be reached from the center point
without once crossing the solid–void interface. Fig. 8 illustrates
the geodesic distance extraction for the monolith with the
finest structure among the four samples (mmacro = 2.54 mm).

Fig. 9 summarizes the geodesic distances of the center slice
plotted versus the Euclidean distance for the four silica monoliths.
The strictly linear behavior of the plots confirms the validity of
eqn (5) for determining global geometric tortuosity values in the
reconstructed volumes of the silica monolith samples.85 The
derived value of tgeo = 1.09 is constant within our sample set, as
expected from the highly similar porosity, pore connectivity, pore
coordination, and pore throat coordination data determined for
the four silica monoliths.

Fig. 5 (A) Distribution of pore coordination numbers as derived by MISA. The four silica monoliths share highly similar distributions with close to 75% of
pores surrounded by 5–15 neighbors; 5–8% of pores have Z20 neighbors. (B) 2D view (slice) of a compartmentalized macropore space (white – silica
skeleton, black – pore throats, color – pores). The central pore (green) in the image shares throat pixels with six neighbors (yellow to tangerine). Pores
that do not share throat pixels with the central pore are colored in shades of blue. In the 3D reconstruction, the central pore is coordinated by
ten neighbors.

Fig. 6 Close-up, 3D view of a compartmentalized macropore space. Shown
are five pores (pale blue, true blue, yellow, dark green, and light green) and
their delimiting pore throats (red). Solid phase is not shown. Red patches at
the outer surfaces of pores indicate the boundaries with adjacent pores in the
compartmentalized macropore space.

Fig. 7 Distribution of pore throat coordination numbers as derived by MISA.
The four silica monoliths have highly similar distributions. On average, a throat
is shared by 2.7 pores. The inset shows that a five-pores coordinating throat
appears with 0.04% frequency in the monolith with the finest structure.
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Additionally, we determined geometric tortuosity values by
MAA as the ratio of the length of a branch between two nodes to
the Euclidean distance between these nodes (cf. eqn (4)). Thus,
the geometric branch tortuosity measures the crookedness of a
branch of the medial axis network. A point-like tracer would

travel on this path when keeping an equal distance from the
surrounding silica walls. An average branch tortuosity of 1.18
(with a standard deviation of r0.04) was found for all four silica
monoliths, reflecting rather straight pathways (cf. Table 2). In an
earlier study of eight silica monoliths, comprising five samples

Fig. 8 Schematic overview of geodesic distance extraction. (A) Corner-cut representation of the reconstructed macropore space of a silica monolith
(white – silica skeleton). The starting point of the propagation is indicated. (B) The geodesic distances in the map for the entire reconstructed volume are
color-coded from deep blue (short distances) to deep red (long distances). (C) Flat view of the faces of the cut-out corner. Geodesic distances are radially
homogeneous around the center point, indicating a highly isotropic structure.

Fig. 9 Geodesic distances plotted against the corresponding Euclidean distances as determined in the reconstructed macropore space. The global
geometric tortuosity is represented by the slope of a corresponding linear fit (cf. eqn (5)). The four silica monoliths share a global geometric tortuosity
value of 1.09. The consistently small standard deviation of the linear fits demonstrates the high isotropy of the monolithic structures.
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with mmacro o 1 mm and three samples with mmacro =
2.48–7.20 mm, average branch tortuosities between 1.23 and
1.19 were found for monoliths with supra-mm macropores and
slightly higher values between 1.24 and 1.28 for the monoliths
with sub-mm macropores.43 Judging from the available experi-
mental data, the branch tortuosity is a relatively stable para-
meter in silica monoliths and rather insensitive to the average
macropore size.

Fig. 10 illustrates why the global geometric tortuosity
determined from geodesic distance propagation is a bit smaller
than the average geometric branch tortuosity obtained by
MAA. The geodesic distance refers to the shortest possible
route from point A to B in the void space, which may involve
touches with the solid–void border, whereas a branch of
the medial axis sticks to the middle of the road in going from
point A to B.

Any geometric tortuosity value must be smaller than a
tortuosity value related to actual mass transport. Solute mole-
cules diffusing through the macropore space, for example, will
experience more obstruction than expected from the geometric
tortuosity values, not only because Brownian (erratic) motion
leads solute molecules to deviate from the ideal route, but also
because solute molecules are sensitive to constrictions in their
diffusive path. Diffusive tortuosity values can be derived by
numerical simulations in the reconstructed macropore space.
With a random-walk particle-tracking approach and an idea-
lized representation of solute molecules as point-like tracers,
diffusive tortuosities of 1.37, 1.38, and 1.47 were found for first-
and second-generation silica monoliths with external porosities
of eext = 0.73, 0.72, and 0.68, respectively.47,50 The geometric
tortuosity should thus be considered as the lower bound for any
type of mass-transport related tortuosity.87

4 Conclusions

Morphological analysis based on physical reconstruction has
become a powerful way to obtain accurate information about
the properties of random porous materials. We used physical
reconstruction by confocal laser scanning microscopy to evalu-
ate the macropore space topology of four silica monoliths. We
applied and compared different approaches to quantify the
pore connectivity, the pore and pore throat coordination, and
the geometric tortuosity. Medial axis analysis of the macropore
space yielded a branch-node network with a typical and average
connectivity of three branches per node and an average geo-
metric branch tortuosity of 1.18. The maximum inscribed spheres
approach provided a compartmentalized representation of the
macropore space in which individual pores are delimited by pore
throats. More than 70% of pores have between five and fifteen
neighbors, yielding an average pore coordination number
between ten and eleven; a small fraction of pores (o10%) has
fairly large coordination numbers (up to 35). The pore coordi-
nation data show each pore as a possible starting point from
which most of the surrounding pores are accessible through
hydrodynamic flow. The pores are reached via throats of much
lower coordination. More than 50% of throats coordinate three
pores, B40% of pores coordinate two pores, and less than 10%
coordinate four pores. The average pore throat coordination
number of 2.7 in the compartmentalized representation of the
macropore space agrees well with the average pore (branch)
connectivity of 3.1 determined by medial axis analysis. Calcu-
lating the geodesic distance between the center point and every
void voxel within a reconstructed volume via a propagation
algorithm yielded a global geometric tortuosity value of 1.09 for
all silica monoliths. The low geometric tortuosity values reflect
a very open macropore space that provides little obstruction to
percolation. The geometric tortuosity values reflect the ideal
route rather than the actual route that a solute molecule could
take and should thus be considered as a lower bound for the
diffusive (or any other mass-transport related) tortuosity. Our
collected data set reveals that the four samples, whose average
geometrical properties (macropore size and skeleton thickness)
according to chord length distribution analysis increase by a
factor of two over the set, have nonetheless highly similar
topological properties (within statistical error). This observation
may imply that the geometrical properties of silica monoliths
can be varied over a relatively large range without impacting
their topological properties.

Overall, we accomplished a comprehensive topological analysis
of a non-granular, disordered porous medium, solely based on its
physical reconstruction. The different analysis methods described
in this work are universally applicable to porous materials,
irrespective of their structure, the synthetic route by which they
were prepared, and the imaging method used for their recon-
struction, provided that the investigated structural features
are adequately resolved. In particular, the maximum inscribed
spheres approach-based compartmentalization of the open
macropore space into individual pores and pore throats pro-
vides a tool to analyze the pore space of non-granular materials

Fig. 10 Schematic illustration of the different lengths generated by the
methods used in this work: medial axis branch length di (aqua), geodesic
distance dgeo (red), and Euclidean distance dEuclid (green). Because the
medial axis path di between points A and B is longer than the geodesic
distance dgeo, the average branch tortuosity value determined by MAA is
larger than the global geometric tortuosity.
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in the same manner as the pore space of granular materials.
The received data could be used to construct new or update
existing pore network models for the interpretation of physi-
sorption and intrusion data and for simulations of application-
relevant transport phenomena in silica monoliths.
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39 T. Müllner, A. Zankel, Y. Lv, F. Svec, A. Höltzel and
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86 S. Khirevich, A. Höltzel, A. Daneyko, A. Seidel-Morgenstern

and U. Tallarek, J. Chromatogr. A, 2011, 1218, 6489–6497.
87 B. Ghanbarian, A. G. Hunt, R. P. Ewing and M. Sahimi, Soil

Sci. Soc. Am. J., 2013, 77, 1461–1477.
88 L. Shen and Z. Chen, Chem. Eng. Sci., 2007, 62, 3748–3755.
89 M. Letellier, V. Fierro, A. Pizzi and A. Celzard, Carbon, 2014,

80, 193–202.

NJC Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
D

ec
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 1

/2
8/

20
26

 9
:4

0:
52

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5nj02814k



