

Cite this: *Med. Chem. Commun.*, 2016, 7, 2192

DOI: 10.1039/c6md90049f

www.rsc.org/medchemcomm

Correction: Design and microwave assisted synthesis of novel 2-phenyl/2-phenylethynyl-3-aryl thiophenes as potent antiproliferative agents

Rupinder Kaur Gill,^{abc} Ramandeep Kaur,^a Virender Kumar,^d Vivek Gupta,^e Gagandeep Singh^f and Jitender Bariwal^{*ag}

Correction for 'Design and microwave assisted synthesis of novel 2-phenyl/2-phenylethynyl-3-aryl thiophenes as potent antiproliferative agents' by Rupinder Kaur Gill *et al.*, *Med. Chem. Commun.*, 2016, 7, 1966–1972.

The authors regret the following errors in their paper: (1) The compound numbers shown below the structures in Table 1 should be corrected to show **10d** and **12d**, instead of **10a** and **12a**.

(2) On page 1967, section 2.1, first paragraph, when referring to optimization studies shown in Table 1 **10a** should be replaced by **10d** and **12a** should be replaced by **12d**, as follows:

Earlier, we had reported the efficient formation of biaryl moiety *via* Suzuki–Miyaura cross-coupling reaction under microwave irradiation conditions; using tetrakis(triphenylphosphane)palladium(0) $[\text{Pd}(\text{PPh}_3)_4]$ as a catalyst and Cs_2CO_3 as a base under MWI at 140 °C and 100 W for 10 min,²⁹ therefore, we have synthesized our targeted compound (4,5,6,7-tetrahydro-2-phenylbenzo[b]thiophen-3-yl)(phenyl)methanone **12d** by coupling of 2-iodo thiophene derivative **10d** with phenylboronic acid **11** *via* Suzuki–Miyaura cross-coupling reaction (Scheme 1) by following the same protocol as employed earlier; however, the yield obtained was very low (Table 1, entry 1). Further, the optimization of this reaction under MW irradiation was carried out using $\text{Pd}(\text{OAc})_2$ and $[\text{Pd}(\text{PPh}_3)_4]$ as catalysts and Cs_2CO_3 and K_2CO_3 as bases in order to increase the yield of target compounds. It was observed that the use of 5 mol% of $\text{Pd}(\text{PPh}_3)_4$ as a catalyst and 3.0 eq. of K_2CO_3 in $\text{DMF}-\text{H}_2\text{O}$ under microwave irradiation (100 W) for 20 min at 140 °C furnished the desired compound **12d** in 91% yield (Table 1, entry 3).

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India

^bI. K. Gujral Punjab Technical University, Kapurthala, Jalandhar-144 601, Punjab, India

^cDepartment of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar-143 005, Punjab, India

^dDepartment of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198 USA

^ePost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi-180 006, India

^fBio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar-143 005, Punjab, India

^gSatiate Research & Anatech Pvt. Ltd., HSIIDC, Barwala, Panchkula-134118, Haryana, India. E-mail: jitender.bariwal@gmail.com; Fax: +91 1636 239515; Tel: +91 1636 324200

