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From linked open data to molecular interaction:
studying selectivity trends for ligands of the
human serotonin and dopamine transporter†‡

Barbara Zdrazil,§* Eva Hellsberg,§ Michael Viereck and Gerhard F. Ecker

Retrieval of congeneric and consistent SAR data sets for protein targets of interest is still a laborious task to

do if no appropriate in-house data set is available. However, combining integrated open data sources (such

as the Open PHACTS Discovery Platform) with workflow tools now offers the possibility of querying across

multiple domains and tailoring the search to the given research question. Starting from two phylogeneti-

cally related protein targets of interest (the human serotonin and dopamine transporters), the whole chem-

ical compound space was explored by implementing a scaffold-based clustering of compounds possessing

biological measurements for both targets. In addition, potential hERG blocking liabilities were included. The

workflow allowed studying the selectivity trends of scaffold series, identifying potentially harmful com-

pound series, and performing SAR, docking studies and molecular dynamics (MD) simulations for a consis-

tent data set of 56 cathinones. This delivered useful insights into driving determinants for hDAT selectivity

over hSERT. With respect to the scaffold-based analyses it should be noted that the cathinone data set

could be retrieved only when Murcko scaffold analyses were combined with similarity searches such as a

common substructure search.

Introduction

With the public availability of large data sources such as
ChEMBL1 and the Open PHACTS Discovery Platform,2 re-
trieval of data sets for certain protein targets of interest mea-
sured under consistent assay conditions is no longer a time-
consuming process. Especially the use of workflow engines
such as KNIME3 or Pipeline Pilot4 allows the submission of
complex queries and enables simultaneous searching for sev-
eral targets. This has recently been demonstrated for two ABC
transporters, where the use of the Open PHACTS API deliv-
ered useful data sets for subsequent classification models.5

However, extracting data sets suitable for QSAR studies still
remains a challenge due to the special requirements needed
for performing quantitative data analyses.6 These include,
among others, the demand for a homologous series of com-
pounds measured under comparable assay conditions. In or-
der to assess the capabilities of the Open PHACTS Discovery
Platform for providing such data sets, two representatives of

the solute carrier (SLC) family were selected for a proof-of-
concept study.

Solute carriers represent the largest group of transporters
in the human genome, containing more than 400 representa-
tives.7 This includes several prominent and important drug
targets, such as the human sodium-dependent serotonin
transporter (serotonin transporter or hSERT) and the human
sodium-dependent dopamine transporter (dopamine trans-
porter or hDAT).

These transporters belong to the solute carrier 6 (SLC6)
gene family, also referred to as the neurotransmitter sodium
symporter (NSS) family or as Na+/Cl−-dependent transporters.

Numerous compound classes have been identified to
interact with these transporters, and they are used in thera-
peutic settings or abused as illicit drugs.8,9 The therapeutic
spectrum includes inter alia tricyclic antidepressants, selective
serotonin reuptake inhibitors (SSRIs) and stimulant agents,
whereas MDMA (3,4-methylendioxymethamphetamine), co-
caine and the methamphetamines are prominent representa-
tives of the abusive range, though admittedly the borders blur
between treatment and malpractice.10,11 The activation of dopa-
mine receptors in certain brain regions plays an important role
in causing addiction. Addictive drugs elevate the dopamine
levels in these regions, making it more available to the recep-
tors – for example by interfering with the reuptake by the do-
pamine transporter.12 However, drugs interacting with hDAT in
a therapeutic setting do not cause abusive effects. Serotonin
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and its pathways are not involved in the reward system and
therefore cause no addiction. The potential to cause an addic-
tive tendency or not is an important piece of information to
keep in mind for a meaningful selectivity profiling.

A quite prominent group of illicit drugs is the class of
cathinones. They are sold as bath salts, research chemicals or
plant food to avoid detection by authorities.13 Following the
report of European drug monitoring in 2015, 450 new psycho-
active substances were traced by the European warning sys-
tem (EWS) with 31 new synthetic cathinones amongst
them.14 Out of these representatives, mephedrone and
methylenedioxypyrovalerone are among the most prevalent
cathinones.15,16 Structure–activity relationship (SAR) studies
as well as docking of selected cathinones into protein homol-
ogy models of hDAT and hSERT revealed the first insights
into the molecular basis of transporter selectivity.15,17,18

Following the aim of this study, we explored the whole
chemical space of hSERT/hDAT interacting compounds in
the open domain and analysed the results with respect to
scaffolds appearing to be selective for either hSERT or hDAT.
Subsequently, a data set of 56 cathinone analogues measured
on both transporters was extracted and used for ligand- and
structure-based modelling studies. This led to further in-
sights into the molecular features that drive transporter
selectivity.

Results and discussion
Data retrieval and analyses

Semantically integrated data sources such as the Open
PHACTS Discovery Platform2 are a powerful tool to conduct

complex queries in the life sciences domain.19 In analogy to
a recent study on a set of ABC transporters,5 chemical com-
pound bioactivity data for human SERT and DAT were re-
trieved from the Open PHACTS Discovery Platform by utiliz-
ing a KNIME workflow (Fig. 1).3

From the beginning, data retrieval was restricted to the ac-
tivity endpoints IC50, and Ki. After filtering for ‘single pro-
tein’ targets and preprocessing, 5405 bioactivities for hSERT,
and 3783 bioactivities for hDAT remained (9188 data points
in total: 4698 IC50, 4490 Ki values). By creating an overlap ma-
trix via mapping ChEMBL compound IDs, 4563 unique com-
pounds were retained (2671 for IC50 only).

Being aware that mixing activity data from different assays
with endpoint IC50 introduces noise/uncertainty to the analy-
sis, an investigation on intra- and intervariability in different
pIC50 and pKi measurements for hSERT and hDAT was
performed. Correlating pIC50 to pKi values (intervariabilities)
from duplicate measurements led to an R2 of 0.62 for hSERT
(385 compounds) and 0.75 for hDAT (360 compounds). These
values are in the same range as intravariabilities of pKi and
pIC50 values if the maximum and minimum values of multi-
ple measurements are correlated (pKi correlation: R

2 = 0.74
for hSERT, R2 = 0.69 for hDAT; pIC50 correlation: R2 = 0.61
for hSERT, R2 = 0.76 for hDAT). Thus, we can assume that
the size of error gained from mixing different assay outcomes
in our setup is in the same range as the error introduced by
multiple measurements of the same compound–target pair.

For a global scaffold analysis of the hSERT/hDAT chemical
space present in the Open PHACTS Discovery Platform, we
thus kept both bioactivity endpoints (IC50 and Ki) but filtered
out entries without measurements on both transporters. This

Fig. 1 Schematic depiction of the KNIME workflow for data retrieval, filtering, processing and analyses.
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led to a total number of 2460 unique compounds with me-
dian and mean activity labels assigned.

Cut-offs for separating actives from inactives (and
assigning the respective label 1/0) were tailored to the specific
protein (hSERT/hDAT) and activity endpoint (Ki/IC50). Known
drugs included in the data sets were ranked according to
their bioactivity values for that target (for IC50 and Ki values
separately). The drug with the lowest bioactivity which is still
recognized as being pharmacologically active on hSERT or
hDAT in DrugBank20 (Version 4.5) was used as a reference
and its bioactivity served as a tailored cut-off for that target
and endpoint. Thus, in the case of hSERT, sibutramine (Ki =
1.11 μM; IC50 = 2.09 μM), and in the case of hDAT, modafinil
(Ki = 1.46 μM; IC50 = 1.83 μM), were selected as a reference.

For the purpose of showing the selectivity profiles of the
2460 unique compounds in a heat map representation, in-
stances with a median activity label of 0.5 (meaning that they
were found active/inactive in different measurements or as-
says) were removed from the data set, leading to a matrix of
2353 compounds (Fig. 2). As can be seen from the heat map,
more than half of the compounds are active on both hSERT
and hDAT (1197) in the low μmolar or submicromolar range,
and the smallest proportion of compounds (251) is the one
showing selectivity for hDAT over hSERT, whereas hSERT se-
lectives are clearly overrepresented (528 compounds). This
might be due to the fact that SSRIs (selective serotonin reup-
take inhibitors) represent a prominent class of antidepres-
sant drugs. Further evidence for this selectivity bias can be
retrieved by analysing the selectivity profiles of drugs within
this heat map: eighteen hSERT-selective versus eight hDAT-
selective marketed drugs are present, with a large portion of
antidepressants in the hSERT-selective cluster.

Subsequently, Bemis–Murcko scaffolds for the 2460
unique compounds were computed as part of the KNIME
workflow. Strikingly, clustering the data set by scaffolds led
to a total of 798 unique scaffolds with 745 of those scaffold
clusters comprising less than ten member compounds. The
high number of different scaffolds most probably is due to

the fact that the generation of scaffolds according to Bemis
and Murcko distinguishes between different stereoisomers.
Furthermore, it is not possible to treat certain heteroatoms
as optional. Thus, a medicinal chemistry perspective is cer-
tainly needed for drawing conclusions from such clustering.

Aiming to identify hSERT/hDAT-selective scaffolds versus
promiscuous ones among the higher populated 53 scaffolds
(with at least ten member compounds), the mean values (be-
tween 0 and 1) of activity labels (0/1) of respective member
compounds were analysed. A mean value below or equal to
0.4 points to a trend towards inactivity within the scaffold se-
ries, a value above or equal to 0.6 towards activity, whereas
mean activity labels closer to 0 for inactives, or vice versa
closer to 1 for actives, are pointing towards more pronounced
trends within a scaffold cluster. This led to four rather hDAT-
selective scaffolds, 10 rather hSERT-selective scaffolds, and
24 scaffolds with a pronounced activity on both transporters
(Fig. 3, 4 and S1, ESI‡). The remaining 15 scaffolds are either
inactive on both hSERT and hDAT (5 scaffolds), or no clear
activity trend can be deduced among the member com-
pounds (displaying a mean value of assigned activity labels
for hSERT or hDAT of around 0.5; 10 scaffolds).

Regarding the final selection of hSERT- and hDAT-
selective scaffold series (Fig. 3 and 4), some scaffolds appear
structurally very similar. For instance, the only difference be-
tween scaffolds 12 and 13 (Fig. 4) is the position of the sulfur
atom in the thiophene ring. Also, mean bioactivity labels of
these two scaffolds reflect equivalent selectivity trends
(Fig. 4), which suggests that also SAR trends might be coher-
ent. It needs a medicinal chemist's experience to inspect
such similar scaffold clusters in more detail and decide
whether the compound series could be merged due to the ex-
istence of a common substructure required for the interac-
tion with the target protein.

Surprisingly, although many more rather hSERT-selective
scaffolds versus hDAT-selective scaffolds were found (4 vs. 10
scaffolds), the reason for this imbalance is not the existence
of antidepressants within these scaffold clusters, as was the
case when all individual compounds in the heat map were ex-
amined (Fig. 2). On the contrary, we could not find any

Fig. 2 Heat map reflecting the selectivity profile of 2353 unique
compounds with bioactivity measurements (IC50 and Ki) for human
SERT and DAT in binary representation. Red bars, active; blue bars,
inactive.

Fig. 3 Four rather hDAT-selective scaffold clusters (considering IC50

and Ki) with counts of unique compounds within this cluster and mean
values of activity labels of their member compounds: lower left
(hSERT), lower right (hDAT); representative drugs contained in these
scaffold clusters are mentioned if available; molecules are depicted
without hydrogens.
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marketed drug within the 10 hSERT-selective scaffold series
(Fig. 4). For hDAT, at least one scaffold series contains a drug
(methylphenidate in scaffold 2, Fig. 3).

Where are the drugs?

Thus, a thorough analysis of the distribution of drugs within
the data set was performed in order to additionally identify
scaffolds which already proved to be important from a drug-
discovery perspective. The total number of drugs in the whole
data set with annotations for both hSERT and hDAT (2460
compounds) is 54 (sd file available in the ESI,‡ File S2).
These drugs can be assigned to 39 (out of 798) scaffolds.
Strikingly, 23 out of these 39 drug-containing scaffold clus-
ters appear as singletons in our analyses, which suggests that
along with these drugs there were no proper SAR series pub-
lished. However, 18 out of these 23 scaffolds are composed
of at least 3 rings and in general are quite complex. Still,
some of the scaffolds are structurally very similar (e.g. ketoco-
nazole and terconazole), which indicates that the scaffold ex-
traction algorithm does not allow identification of the SAR
series. Grouping the remaining 16 drug-containing scaffolds
(with more than one member compound) by rather hSERT-
selective, hDAT-selective and promiscuous scaffolds, we again
found a larger proportion of hSERT-selective scaffolds over
hDAT (3 vs. 1 scaffold), with a greater number of drugs in to-

tal for hSERT selectives (10 drugs versus 1). However, hSERT-
selective scaffolds appear rather sparsely populated with less
than ten unique compounds per cluster (Fig. 5), whereas the
single drug-containing hDAT-selective scaffold 2-benzylpiperidine
(scaffold 2 in Fig. 3) is composed of 24 compounds with just
one annotated drug (methylphenidate). Such compound series,
comprising a common scaffold, a clear selectivity trend, and be-
ing populated by at least one drug, are ideal starting points for
further SAR studies (see ‘The cathinone use case’ section). In
contrast, the rather hSERT-selective drug-containing scaffolds
(scaffolds 15–17, Fig. 5) comprise a very low number of respec-
tive member compounds (3–6) with 50–100% of their com-
pounds being annotated drugs. Within these clusters, the tricy-
clic antidepressants (TCAs) imipramine, clomipramine, and
desipramine are located, as well as antidepressants of the selec-
tive serotonin reuptake inhibitor (SSRI) class (e.g. fluoxetine)
and of the serotonin–norepinephrine reuptake inhibitor (SNRI)
class (e.g. venlafaxine). It seems rather surprising that these
well-known drug classes would not show up in congeneric SAR
series (with at least a few member compounds), which reflects
the communities' synthetic efforts and interest in a certain drug
class. We therefore performed a substructure search, looking
for the four drug-containing SERT-selective scaffold types. For
this search, scaffolds from Fig. 5 were further refined if a com-
mon substructure bigger than the Murcko ring system was
contained within the scaffold series (e.g. by adding an amino-
ethyl side chain in the case of scaffold 15 and a dimethyl-
aminomethyl side chain in the case of scaffold 16). As expected,
additional compounds could be retrieved from the hSERT/hDAT
data set. Surprisingly, for scaffold 17 (imipramine-type scaffold)
only one additional compound could be found showing moder-
ate activity on hSERT. These tricyclic antidepressants and deriv-
atives were not in the focus of synthetic efforts within the last
decade and therefore do not show up with the same prevalence
in the MedChem literature extracted from ChEMBL as is the
case for SSRI- and SNRI-like compounds. A survey on the preva-
lence of imipramine- and fluoxetine-reporting publications in
ChEMBL revealed that fluoxetine was reported 3 times more

Fig. 4 Ten rather hSERT-selective scaffold clusters (considering IC50

and Ki) with counts of unique compounds within this cluster and mean
values of activity labels of their member compounds: lower left
(hSERT), lower right (hDAT); molecules are depicted without
hydrogens.

Fig. 5 Drug-containing hSERT-selective scaffolds (considering IC50

and Ki) with counts of unique compounds within this cluster, and mean
values of activity labels of their member compounds: lower left
(hSERT), lower right (hDAT); representative drugs contained in these
scaffold clusters are mentioned; molecules are depicted without
hydrogens.
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often since 1993. ChEMBL basically covers publications
reporting on SAR series (where imipramine and fluoxetine
bioactivities would have been reported also). Therefore, these
numbers are somewhat representative of the amount of ana-
logues in these publications. An equivalent search in
SciFinder21 with publications going back to the 1980s sup-
ports these findings, showing a ten-year shift in peaks of
fluoxetine- versus imipramine-containing publications (see Fig.
S3, ESI‡). However, also regarding SSRI- and SNRI-like com-
pounds, these analogues show up in diverse Murcko scaffold
clusters within our data set depending on the presence of ad-
ditional rings. For scaffold 16, five additional compounds
could be retrieved. For scaffold 15, even 170 extra compounds
appeared with various different Murcko scaffolds still
possessing the same common substructure. Moreover, one
should not forget that these substructure searches were
performed on the data set with measurements for both trans-
porters only. Repeating the same analysis on the bigger data
set before the removal of compounds with missing measure-
ments for one of the two proteins, even more compound ana-
logues were detected (data not shown).

Finally, inspecting the five promiscuous drug-containing
scaffold series (possessing mean activity labels ≥0.6 for both
hSERT and hDAT), one additional marketed antidepressant
belonging to the class of SSRIs was detected: sertraline. It be-
longs to a rather big scaffold cluster of 48 compounds (see
Fig. S1, ESI‡), and although potent activity on hDAT has been
reported for the whole compound series, according to
DrugBank20 the pharmacological action on hDAT is ‘un-
known’. The remaining four scaffolds include, e.g. the drugs
sibutramine and mazindol, with pharmacological effects and
side effects similar to those of amphetamines. Both are clas-
sified as anorectics; however, mazindol is not marketed for
use in the treatment of obesity and sibutramine was with-
drawn from the market in 2010 due to severe cardiovascular
(CV) side effects. Recently, these sibutramine-induced CV ad-
verse events have been attributed to hERG (human ether-à-
go-go-related gene) channel inhibition.22 HERG encodes
channels responsible for the cardiac rapid delayed rectifier
potassium current. Blocking hERG by small molecules and
drugs is related to QT interval prolongation and cardiac ar-
rhythmia (torsades de pointes, TdP). Consequently, in drug-
discovery projects compounds are commonly screened in the
early phases against hERG in order to avoid such potential
side effects.23

Flagging blockers of the hERG potassium channel

In this context, it appears interesting to investigate the poten-
tial of extracted scaffold series to inhibit the hERG channel
by flagging single compounds within a series if an inhibitory
effect was measured (<10 μM). Although it is hard to assess
if the ability to interact with hERG is rather induced by a spe-
cific scaffold or by a certain side chain (or a combination of
both), in some cases such serial trends have been reported,
e.g. for some tricyclic antidepressants.24

In a separate workflow, we therefore included pharmacol-
ogy data on hERG for the 2460 unique compounds (with both
hSERT and hDAT measurements). For hDAT selective scaffold
series we did not get any alert on hERG inhibition, within
hSERT selective scaffold series, however, some hERG blockers
could be identified (9 out of 13 compounds belonging to the
scaffold series 15–17, Fig. 5). This is in so far alarming as
many of the approved drugs are also hERG inhibitors. Out of
54 drugs with measurements for both hSERT and hDAT, we
identified 19 drugs with a potential liability due to hERG
blockage; six out of these are marketed antidepressants. In
addition, it was reported previously that a 30-fold safety mar-
gin between the effective therapeutic free plasma concentra-
tion and hERG IC50 should be met in order to prevent QT
interval prolongation.25,26 These studies revealed that indeed
some marketed antidepressants (e.g. amitryptiline, citalopram,
imipramine, fluoxetine) might be associated with QT interval
prolongation and TdP.

Using the information on hERG blocking liabilities pro-
vided by the workflow, potentially harmful compound series
can be identified at an early stage in the drug discovery pipe-
line if data on hERG inhibition is available in the open do-
main. For the assessment of the risk of dTP, however, an ad-
ditional literature survey or in vitro/in vivo studies are needed
in individual cases.

Although it is not in the focus of the underlying investiga-
tion to study other potential off-target effects (e.g. interaction
with GPCRs, ABC transporters, etc.), the workflow provides
the flexibility to include any target pharmacology desired in
the context of the use case of interest.

The cathinone use case

Our studies point to the fact that Murcko scaffold analyses
have to be always interpreted with caution, as certain struc-
turally very similar scaffolds (possessing a common substruc-
ture) could fall into different scaffold clusters and would
therefore sometimes be filtered out if strict counts of mem-
ber compounds serve as filtering criteria. This is, e.g., the
case for the hDAT-selective scaffold 1 (Fig. 3), which clearly
relates to the group of cathinones, a subclass of amphet-
amines currently comprising popular illicit drugs with a ris-
ing trend of consumption.

Filtering the initial data set retrieved by the KNIME
workflow for IC50 bioactivity endpoints created an overlap
matrix of 2671 unique compounds, with 1290 compounds
having measurements for both transporters. A substructure
search with the cathinone structure (= benzoylethanamine)
as input led to a final cathinone data set of 56 unique com-
pounds (an sd file of the cathinone data set can be found in
the ESI,‡ File S4), reported essentially in three different
publications.27–29 Just two compounds, pyrovalerone
(CHEMBL201960) and bupropion (CHEMBL894), have been
reported in other additional articles.30–33 Having a closer look
at these 56 cathinones, one essentially captures four different
scaffold types (Fig. 6). They are all showing the cathinone
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substructure, either possessing an aliphatic side chain (fall-
ing into the large benzene cluster), a cyclopentane substitu-
ent on the amine group, or having the amine as part of a
five- or six-membered saturated ring (pyrrolidine or piperi-
dine). This again outlines the drawback of a scaffold defini-
tion based primarily on the number of rings, as obviously all
four compound series belong to what a medicinal chemist
would label as a cathinone-like structure.

SAR analysis

Although, activity values for the 56 cathinones were retrieved
from three different publications,27–29 assay parameters were
identical. Therefore, these IC50 measurements could be com-
bined into one data set suitable for SAR studies. As the publi-
cations were mainly aiming at investigating hDAT, around
50% of the compounds just show >10 μM or >100 μM for
hSERT. Thus, quantitative statements linking structural fea-
tures to transporter selectivity need to be taken cautiously.
The main structural variations comprise the substituent of
the nitrogen atom, the substituents at the aromatic ring, as
well as some modifications at the Cα to the carbonyl group.
As already outlined in a previous study, a pyrrolidine ring at
the nitrogen atom strongly favours hDAT selectivity.15 Com-
pounds with t-butyl and piperidine substituents show analo-
gous behavior. Also the substituent in the α-position to the
carbonyl group seems to contribute, with larger groups fos-
tering hDAT selectivity.34 However, in most of the cases trans-
porter selectivity is achieved by rendering the compounds
less active or inactive at hSERT rather than improving hDAT
binding. To further analyse this, we performed multiple lin-
ear regression on this data set with hDAT pIC50 values as well
as selectivity as dependent variables. As the main purpose of
this study was to get further evidence on SAR trends ob-
served, we just used a very limited set of descriptors. These
comprise the overall van der Waals volume (vdw-vol), the par-
tition coefficient (log P (o/w)) and molar refractivity (mr) of
the compounds, the van der Waals volume of the substituent
at the Cα-atom to the carbonyl group (vdw-vol-Cα), the van
der Waals volume of the substituent at the nitrogen atom
(vdw-vol-N) as well as substituent constants for the substitu-
ents at the aromatic ring (π-arom, mr-arom, σm and σp) and
indicator variables for meta (Im) and para substitutions (Ip).
The analysis was performed using StatPlus for Mac, starting
with all variables and performing a backward descriptor se-

lection until all regression coefficients showed 95% confi-
dence. The following equation was obtained for hDAT pIC50

(eqn. (1)):

hDAT pIC50 = 7.01 − 0.63 logP + 0.03 vdw-vol-Cα + 0.91 π-arom
n = 51, r2 = 0.56 (1)

Using the logĲIC50_SERT/IC50_DAT) as the dependent variable
(corresponding to log selectivity), the qualitative trends
discussed above could be further strengthened (eqn. (2)),
whereby para-σ was borderline with respect to significance:

Log selectivity = 30.3 − 7.05 mr + 0.12 vdw-vol-N + 0.15 vdw-
vol-Cα + 0.69 mr-arom − 0.97σp

n = 25, r2 = 0.56 (2)

Both equations point towards a significant influence of the
substituent at the Cα-atom to the carbonyl group on the
hDAT activity as well as on hDAT over hSERT selectivity of
the compounds. This is e.g. exemplified by compound
CHEMBL202409 (File S4, ESI‡), which has an isobutyl moiety
in this position and shows a 345-fold selectivity for hDAT.

Molecular docking

As outlined above, both SAR studies as well as multiple linear
regression analysis point towards a role of the Cα-substituent
for hDAT over hSERT selectivity of cathinones. We thus se-
lected a set of compounds, which show variation in this posi-
tion, for docking studies into protein homology models of the
two transporters.15 As seen in Fig. 7, all six compounds are
rather inactive at hSERT (considering a cut-off of 1–2 μM),
while at hDAT they are all active (showing bioactivities in the
range of 31 nM to 440 nM). While previous modelling studies
focused on the substitutions at the aromatic ring and at the
cationic nitrogen,15,18,35,36 the compounds chosen in this
study are supposed to provide information about the role of
the Cα-substituent.

In order to derive potential structure-based hypotheses for
hDAT over hSERT selectivity of cathinones, we docked these
six cathinones (Fig. 7) into homology models of hDAT and
hSERT. The central binding site of the biogenic monoamine
transporters is divided into the three subsites A, B and C.37

All of the monoamine transporter crystal structures in the
PDB (14 of dDAT, 12 of LeuBAT and 5 of hSERT) comprise
the same orientations of their co-crystallized ligands: the cat-
ionic nitrogens reaching into subsite A and the aromatic moi-
eties pointing towards subsite B or C of the central binding
cavity. Further, the influence of Phe76 in hDAT and Tyr95 in
hSERT on an appropriate transport rate is well known from
mutational studies.10,38–40 In Fig. 8, a selection of four PDB
structures (4XP9, 4XPA, 5I6X, 4MM4) is depicted in order to
demonstrate this common orientation and the vicinity to the
mentioned amino acids. The structures were selected in a
way (a) as to represent each crystallized monoamine trans-
porter and (b) because they have been co-crystallized with

Fig. 6 Four different scaffold types in the cathinone data set in
Murcko representation (except for the very left scaffold which would
be benzene in Murcko representation); hydrogens are not depicted.
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ligands. D-Amphetamine and 3,4-dichlorophenethylamine
were chosen due to the structural similarity to the cathinone
series under investigation. Paroxetine was selected once be-
cause the co-crystallized ligand of 4MM4 was used for the

homology model of hSERT, and a second time in 5IX6 be-
cause it has the highest resolution in the very recently re-
leased hSERT crystals.41 A previous docking study by Sakloth
et al.36 shows the same orientation and vicinities of
p-substituted cathinones. Resulting from these observations,
the cationic nitrogen in the cathinones was restrained to be
placed within 2–4 Å to the backbone of the carbonyl oxygen
of Phe76 in hDAT and Tyr95 in hSERT in the actual docking
study, as published already by Saha et al.15

Following our common scaffold clustering method,42–44

we obtained five different clusters in hDAT composed of a to-
tal of 103 poses. The co-crystallized structures of LeuBAT45

and dDAT46 show that the aromatic moiety of the ligands is
primarily placed in the B-site and to a much lesser extent also
in the C-site. Two of the dDAT structures are co-crystallized
with methamphetamine (4XP6) and D-amphetamine (4XP9),
which are structurally similar to the cathinones. Both com-
pounds show a methyl group in the Cα-position which points
to the center of the binding site. Based on these experimental
findings, we selected the clusters 1 (38 poses) and 2 (34
poses) (Fig. S5, ESI‡) for further analysis, as in these clusters
the aromatic moieties protrude into the B- and C-site, respec-
tively (Fig. 8). Additionally, these clusters contain the major-
ity of the retrieved poses. Clusters 3 (13 poses) and 4 (9
poses) are remarkably smaller and there is no experimental
evidence for these placements. Cluster 5 (9 poses) is similar
to cluster 2 with the aromatic moiety pointing into the C-site,
but the orientation of the carbonyl oxygen and the Cα-
substituent is diametrically opposed.

In cluster 1 (Fig. S5, ESI‡), all six compounds are present,
with the aromatic moieties reaching into the B-site and the
cationic nitrogens being close to the carbonyl oxygen of
Phe76. However, the latter is due to the constraint set during
pose generation (see Methods). The majority of Cα substitu-
ents points to the center of the binding site, where the most
space is provided (Fig. 9, upper left). However, in a small
number of poses the Cα substituent is turned towards Asp79,
Tyr156 and Val152, which might lead to a spatial hindrance
as the relevant six poses are showing steric clashes with these
amino acids. Additionally, in 19 poses an H-bond interaction
between the cationic nitrogen and Asp98 could be observed.

In cluster 2 (Fig. S5, ESI‡), the aromatic moieties are located
in the C-site and the majority of the Cα substituents are facing
towards Asp79, Val152, Tyr156 and Ser422 (Fig. 9, upper right),
which leads to 19 clashing poses (of 34 in total). Further, in
cluster 5, which shows the same orientation of the aromatic
ring, the Cα substituents have similar problems with Tyr156
and Ser422, as eight out of nine poses show steric clashes.

In hSERT, the results look quite similar
(Fig. 9, bottom left and right), which might be expected con-
sidering the high sequence identity between the two proteins
in the binding site. Here we obtained 65 different poses in
four separate clusters. The pattern of distribution is highly
comparable to the one observed in hDAT: cluster 1 (Fig. S6,
ESI‡) includes 31 poses with the aromatic moieties reaching
into the B-site. However, in contrast to hDAT, no H-bonds

Fig. 7 Selected compounds for the docking study. The activity values
represent the measured IC50 results from the literature.27–29 If multiple
measurements were available, we considered the lowest IC50.

Fig. 8 Central binding site (side view) of PDB 4XP9 (grey, dDAT with
D-amphetamine), 4XPA (grey, dDAT with 3,4-dichlorophenethylamine),
4MM4 (light blue, LeuBAT with paroxetine) and 5I6X (mint, hSERT with
paroxetine), pointing out the vicinity of the cationic nitrogen to the
carbonyl oxygen of Tyr95 (hSERT), Phe43 (dDAT) and Tyr21 (LeuBAT),
respectively. The marked distance of 2.93 Å is measured in 4MM4.
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with the cationic nitrogen are found. Cluster 2 (Fig. S6,
ESI‡) comprises 22 poses with the aromatic ring positioned
in the C-site and a high number of steric clashes with
Asp98, Tyr176 and Ser438 due to the Cα substituents. Clus-
ter 3 (9 poses) and 4 (3 poses) are remarkably smaller and
located like their counterparts in hDAT.

Both the average glide score of all reported poses (−6,2 in
hDAT vs. −5,6 in hSERT) as well as the overall number of
poses (103 in hDAT vs. 65 in hSERT) point towards
favourable binding of the compounds to hDAT and thus

emphasize hDAT over hSERT selectivity. Furthermore, in
cluster 1 of hDAT, H-bonds are formed between the cat-
ionic nitrogen of the ligand and the protein, which is not
the case in hSERT. However, no clear rationale for hDAT
over hSERT selectivity with respect to the role of the Cα

substituent could be derived. The majority of poses show
the aromatic moiety of cathinones with a bulkier Cα-
substituent preferentially located in the B-site, with the Cα

substituent pointing towards the center of the binding site.
Nevertheless, a considerable amount of poses also have the

Fig. 9 Docking poses of compound 3 (CHEMBL566208) in hDAT (top) and hSERT (bottom). In both proteins, the aromatic moiety reaches into the
B-site (left; corresponds to cluster 1) and in the C-site (right; corresponds to cluster 2). In the C-site, steric clashes with the Cα substituent are visi-
ble (dashed orange lines). An H-bond is only found in hDAT if the aromatic moiety reaches into the B-site (top left, dashed blue lines).
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aromatic moiety positioned in the C-site with the Cα-
substituent pointing towards Asp79, Val152, Tyr156 and
Ser422 in hDAT and towards Asp98, Tyr176 and Ser438 in
hSERT, where this leads to a considerable amount of clashes
in both proteins.

Nevertheless, a considerable amount of poses also have
the aromatic moiety positioned in the C-site with the Cα sub-
stituent pointing towards Asp79, Val152, Tyr156 and Ser422
in hDAT and towards Asp98, Tyr176 and Ser438 in hSERT,
where this leads to a considerable amount of clashes in both
proteins.

It is well known that subtle changes in ligand structure
could lead to major reorientations in the binding mode,
which recently has also been hypothesized for a series of
3,4-methylenedioxyamphetamine analogs and their binding
to hDAT and hSERT.18 Briefly, two binding modes could
be observed in docking studies. While the unsubstituted
MDA and the N-methyl derivative MDMA preferentially
showed one binding mode and the N,N,N,-
trimethylammonium analog MDTMA exclusively exhibited a
different binding mode, the N,N-dimethyl derivative
MDDMA could alternate between the two binding modes.
It is tempting to speculate that also in the case of the Cα-
substituted compounds two binding modes could simulta-
neously occur, with the one showing less steric clashes be-
ing preferred in hDAT.

Molecular dynamics

In order to assess the stability of the docking poses obtained,
20 ns molecular dynamics simulations were performed for
compound 3 (Fig. 9). As reflected by protein backbone and li-
gand RMSD plots over the whole simulation time (20 ns), all
four complexes (Fig. 9) converged after approximately 10
nanoseconds of unrestrained simulation (with a maximum
backbone fluctuation of 4.5 Å from the starting structure, File
S7, ESI‡). In addition, the protein secondary structure ele-
ment analysis reveals a perfect stability over the whole simu-
lation time (File S7, ESI‡). The ligand remains in its initial
binding pocket in all four simulations. In three of the simula-
tions, the aromatic moiety stays within its initial subsite (B
or C). In the hSERT simulation starting with the aromatic
moiety in subsite C, a switch to subsite B after 12 ns was
observed.

Overall, the simulations are showing more stable interac-
tions with the ligand in hDAT than in hSERT (File S7, ESI‡).
Phe76 in hDAT and Tyr95 in hSERT, which are located at
equivalent positions in both proteins (Fig. 8), are showing in-
teractions with the cationic nitrogen of the ligand, providing
further justification for the restraint in the docking study.
Stable pi–pi stacking interactions of the aromatic moiety with
Tyr156 in hDAT and Tyr176 in hSERT (Fig. 9) can be observed
in both proteins, therefore supporting the preference of the
aromatic moiety being located in subsite B. This observation
is in line with a more pronounced prevalence of cluster 1 in
the docking study.

Taken together, the findings from molecular modelling
studies support the experimentally observed selectivity of se-
lected cathinones for hDAT over hSERT.

Summary and conclusions

Integrated open data sources combined with workflow tools
such as KNIME or Pipeline Pilot are very powerful for
conducting complex queries in order to create consistent data
sets for further analysis. However, postprocessing of the data
by e.g. scaffold clustering using the popular method of
Bemis–Murcko requires careful analysis and the expertise of
a medicinal chemist. As the Bemis–Murcko scaffolds are
based on rings connected by linkers, common substructures
which define a certain SAR series might be split over differ-
ent Murcko scaffolds. In our cathinone use case, the ana-
logues were spread over four different scaffolds (identified by
an alternative substructure search). Combining them allows
creation of a data set of 56 compounds, the largest one
analysed so far. SAR and docking studies as well as molecular
dynamics simulations point towards a significant influence
of the substituent at the Cα-atom to the carbonyl group on
the hDAT activity as well as on hDAT over hSERT selectivity.

The workflow used in this study to retrieve and process
the data can be adapted to other protein targets and use
cases. Additionally, it could be expanded in order to reflect
the selectivity profile for a whole protein family or include
off-targets of interest, for example. The two workflows (with
and without hERG annotations included) are freely available
from myExperiment (http://www.myexperiment.org/).

In the search for congeneric SAR series, we advise combin-
ing scaffold-based clustering methods with similarity
searches (e.g. a common substructure search). Handling the
processed data with caution, the methodology provides a use-
ful way of exploring data if common substructures of com-
pound series are less/not defined.

Methods
Workflow for data collection and data mining

Bioactivity data for the human serotonin transporter, dopa-
mine transporter, and hERG potassium channel was collected
from the Open PHACTS Discovery Platform by using its con-
venient API (version 1.5) in conjunction with specialized OPS-
KNIME nodes (version 1.1.0).47 All further data filtering, pre-
processing, and analyses were done in a single KNIME (ver-
sion 2.11) workflow, which is fully flexible to be adopted to
other protein targets and openly available from
myExperiment (www.myexperiment.org).

The workflows consist of the following steps:
Retrieving pharmacology data from the open domain and

endpoint filtering. The ‘Target Pharmacology: List’ API call
was used to retrieve pharmacology data from ChEMBL_201

for the protein targets under study by including a filter for
the ‘activity_types’ (activity endpoints) ‘IC50’ and ‘Ki’ as well
as for the ‘activity_unit’ ‘nanomolar’. Upstream, input was
given by providing the Uniform Resource Identifier (URIs) for

MedChemComm Research Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ly
 2

01
6.

 D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 3
:2

2:
39

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://www.myexperiment.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6md00207b


1828 | Med. Chem. Commun., 2016, 7, 1819–1831 This journal is © The Royal Society of Chemistry 2016

the UniProt IDs of hSERT (P31645), hDAT (Q01959), and
hERG (Q12809) in the form of a table. The pharmacology out-
put was then preprocessed to exclude records with
unspecified compound activity, and with activity values
greater than 108 (to avoid potential data errors). Further, ac-
tivity values (for IC50 and Ki endpoints) were transformed
into their negative logarithmic molar values (‘-logActivity
values [molar]’). The same activity endpoints are available as
‘pCHEMBL values’ from the ChEMBL database, but in addi-
tion we also kept values with a relation different from ‘= ’.
Bioactivity values were also transferred into binary represen-
tation (active: 1, inactive: 0) by setting a cut-off value for sepa-
rating actives from inactives. This cut-off was tailored to the
specific target and bioactivity endpoint (Ki/IC50): in the case
of hSERT, sibutramine (Ki = 1.11 μM; IC50 = 2.09 μM), and in
the case of hDAT, modafinil (Ki = 1.46 μM; IC50 = 1.83 μM)
was selected as a reference and the listed bioactivities served
as cut-offs. In the case of hERG we labelled all compounds
with an IC50 or Ki below 10 μM as potential hERG blockers
according to a study by Doddareddy et al.48 In addition we
inspected the ratio between the bioactivity for the primary
target (hSERT or hDAT) and hERG for all drugs in the data
set with measured hERG activity. Precise bioactivity values
were always retained to be able to adjust the activity
label(s) (0/1) in individual cases where bioactivities were
close to the cutoff or due to a ‘>’ relation sign, which
should be considered inactive although appearing active in
our workflow.

Retrieving drug annotations. Annotations to known drugs
and the preferred compound names of annotated drugs were
retrieved from ChEMBL by utilizing the ‘ChEMBLdb Connec-
tor Input’ node in KNIME with input from the whole initial
data set after preprocessing.

Splitting into two workflow strands. After data retrieval,
filtering and preprocessing, two parallel workflow strands
served for the extraction of a cathinone data set from a sub-
set with IC50 endpoints as well as for a scaffold analysis on
the whole data set (endpoints IC50 and Ki). The filtering for
the IC50 subset was done by a simple ‘Row Filter’. The subse-
quent ‘pivoting’ and filtering steps were done in parallel and
independent for each of the workflow strands.

Creating overlap representations of pharmacology data
and filtering. A pivot table was generated to display bioactiv-
ities of compounds against the two targets using the
‘Pivoting’ node in KNIME grouping rows by ChEMBL com-
pound IDs and columns by ‘Target name’. If multiple activity
values are given for the same compound–target pair, the me-
dian of those values was retained for the sake of visualization
and classification, but preserving the list of all activity labels
as well as the list of all precise bioactivity values assigned to
a compound–target pair. Next, the data sets were filtered in
order to keep only compounds with bioactivity measurements
for both targets by using the ‘Numeric Row Splitter’ node.

Retrieving the cathinone data set. A substructure search
for benzoylethanamine (= cathinone) was performed on the
IC50 subset by using the ‘Substructure Search Node’ in the

CDK module. Grouping by PubMed IDs served for getting in-
formed about relevant literature sources.

Heat map representation. Starting from the larger data set
with IC50 and Ki activity endpoints, compounds with contra-
dictory activity classifications (if median activity labels of
compounds = 0.5 for one/both of the transporters) have been
removed for the sake of visualization. The resulting heat
maps were visualized with the ‘HeatMap (JFreeChart)’ node
in KNIME.

Scaffold analyses. Bemis–Murcko scaffolds of the com-
pounds were retrieved by the node ‘RDKit Find Murcko Scaf-
folds’. Subsequently, compounds were grouped by their scaf-
folds. For analyzing scaffolds in the cathinone subset all
scaffolds with more than one member compound were kept.
For the whole data set, scaffold clusters with at least 10
unique compounds were kept for further analyses. Next, scaf-
folds with a preferential activity for one of the two targets
and those showing activity on both targets (by evaluating
their mean activity labels) were identified.

Performing a substructure search for various antidepres-
sants. A substructure search for common substructures of
antidepressants as retrieved after Murcko analysis was
performed for three different scaffolds, which appeared as
hSERT selective and drug-containing in our workflow. The
‘Substructure Search Node’ in the CDK module was used in
order to look for additional compounds with the defined
common substructure in the whole hSERT/hDAT data set
(with IC50 and Ki endpoints).

SAR analysis

In order to get first insights into the molecular features trig-
gering hDAT over hSERT selectivity of cathinones, a classical
Hansch analysis using descriptors of lipophilicity, size, polar-
izability and electronic properties was performed. Van der
Waals volume (vdw-vol), partition coefficient (logP (o/w)),
and the molar refractivity of the compounds were calculated
in MOE (molecular operating environment).49 The sigma
Hammett constant was used as electronic parameter, and the
respective values were picked from a table.50 To retrieve phys-
icochemical parameters such as vdw-vol, logP (o/w), molar re-
fractivity (mr), for individual substituents, we implemented
an incremental approach using MOE. Briefly, the difference
of the vdw-vol of two molecules which differ only in one posi-
tion, e.g. a para-substituent on the aromatic ring, was used to
calculate the incremental vdw-vol of this substituent. This
allowed generation of a data matrix of substituent constants
for all R-groups outlined in Fig. 10. Finally, we added two in-
dicator variables displaying the presence or absence of a

Fig. 10 Common scaffold of the cathinones.
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meta or para substituent on the aromatic ring. The SAR anal-
ysis was conducted in StatPlus for MAC using the linear re-
gression function.

Molecular docking study

For docking of a selected set of compounds the software
package Glide 6.8 was used.51 Protein homology models for
hSERT and hDAT in the outward facing conformation were
taken from Saha et al., 2015.15 As both visual inspection of
the data as well as QSAR studies revealed an influence of the
substituent at the alpha position to the carbonyl group, six
compounds (compound 1–6, Fig. 7) reflecting variations in
this position (methyl-, ethyl-, propyl- and isobutyl-residues)
were used for docking. Compounds were used in their pro-
tonated form reflecting their interactions in the binding
pocket45,52,53 and in S-configuration due to higher activity
reported.17 The proteins were prepared with Schrödinger
Suite 2015-3 Protein Preparation Wizard; Epik version 3.354

and in hDAT a water molecule was removed from the binding
site. The center of the receptor grid is nortriptyline, which is
co-crystallized in the template (PDB 4M48) for hDAT and par-
oxetine because of the higher affinity in hSERT. The template
for the hSERT model is also PDB 4M48 due to its higher reso-
lution, but the paroxetine ligand was used from PDB 4MM4,
placed into the model by a structural alignment of the Cα-
atoms, and the resulting complex was protonated and energy
minimized in MOE.49 Furthermore, as the antidepressant
ligands in the crystal structures45 show an analogy in the pos-
itive partial charge density of the cationic nitrogen, in the
cathinones it was forced to be placed within 2–4 Å to the
backbone of the carbonyl oxygen of Phe76 in hDAT and
Tyr95 in hSERT.15 For the output, the number of poses was
limited to 100 per ligand.

To analyse the results, the poses were clustered with the
support of two in-house scripts: the RMSD matrix of the com-
mon scaffold was calculated with a MOE script49 and the
clusters with an R script at a defined maximal distance of 3 Å
within one cluster.55 The underlying algorithm is a hierarchi-
cal clustering on a set of dissimilarities and techniques to an-
alyse it.

Molecular dynamics simulations

The MD study was performed by using the Schrödinger soft-
ware with the Maestro suite (version 10.256) for visualization
and Desmond (version 4.257) for the MD simulation. The four
complexes gained from the docking study were prepared with
the Protein Preparation Wizard.58 The force field used was
OPLS2005, SPC was chosen as the solvent model and POPC
(300K) as the membrane model. The system was placed in a
box (using periodic boundary conditions) and neutralized
with counter ions at a salt concentration of 0.15 M. Energy
minimization was accomplished using a hybrid method of
the steepest descent and the limited memory Broyden–
Fletcher–Goldfarb–Shanno (LBFGS) algorithms. The maxi-
mum number of iterations was set to 2000, the convergence

threshold for the gradient in units to kcal mol−1 Å−1 to 1. The
simulation was conducted for 20 ns in total with recording
intervals of 1.2 ps for the energy and 4.8 ps for the trajectory.
The relaxation of the system before the simulation was
performed using the standard protocol (NVT ensemble with
Brownian dynamics at 10K with short time steps and solute
non-hydrogen atoms restrained, NVT ensemble using
Berendsen thermostat, NPT ensemble using a Berendsen
thermostat and a Berendsen barostat). To analyze the results,
the simulation event analysis as well as the simulation inter-
action diagrams incorporated in Desmond were generated
and evaluated.
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