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Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed

to provide computational platforms to guide metabolic engineering experiments and explore fundamental

questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within

the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas

reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities,

serves as an ideal model organism to investigate the interplay between gene function and phylogenetic

affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled

with transcriptomics studies on a metabolic network that we have reconstructed for C. reinhardtii, we show

that network connectivity has a significant concordance with the co-conservation of genes; however,

a distinction between topological and functional relationships is observable within the network. Dynamic and

static modes of co-conservation were defined and observed in a subset of gene-pairs across the network

topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled

reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our

results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to

minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for

functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii’s network in

dealing with varied environmental challenges that the species may face. The defined evolutionary constraints

within the network, which identify important pairings of genes in metabolism, may offer guidance on

synthetic biology approaches to optimize the production of desirable metabolites.

Introduction

Cells carry out and regulate their metabolism through an
extended network of biochemical reactions. Ecological niches,
environmental conditions, and the genetic make-up of organisms
impact the organization of metabolic networks.1–5 While
morphological complexity of life has increased during evolu-
tion, shared metabolic pathways as well as conserved catalysts
are readily observable within the different lineages.6–8 Random
events such as gene duplication and recombination may contri-
bute to the emergence of new enzymes within pathways6,9 and
the expansion of metabolic pathways into functional modules.9,10

However, the conservation, topological positions, and functional
roles of newly-emerged enzymes across metabolic networks
are not determined by chance alone.6,11–13 For instance, in
prokaryotes, a set of non-random, essential, and ancient proteins
seem to carry out core metabolic activities.6,14 The expansion of
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metabolic pathways takes place by addition of homologous
enzymes that topologically act in the vicinity of the ancestral
ones.9,11 Furthermore, the essential cores of metabolic networks
contain most of the structural diversities of the associated genes
with respect to fold representation.6 The expanded networks are
found to display scale-free network characteristics in all three
domains of life,12 where highly connected enzymes evolve more
slowly.15–17 Other studies have shown that, in yeast, the phylo-
genetic distributions of conditionally essential genes are likely to
be more restricted.18 These observations point to the multiplicity
of selective pressures and constraints on the evolution of meta-
bolic enzymes.

How might the sequence spaces of enzymes be explored by
evolution? The idea of adaptive landscapes in evolution was
first introduced in the 1930s to conceptualize the evolvability
potential of organisms.19 This concept was further developed
into coevolution and the dependency of fitness landscapes was
mathematically modeled, e.g., using the NK model, describing
the changes in the ruggedness of the landscape with respect to
dependency on the function of other genes.20–25 In broad
terms, the linkage between phylogenetic affiliations and their
functional groupings26,27 can be viewed as a consequence of linked
fitness landscapes which may be detectable from co-conservation
of genes.

In recent years, reconstruction of genome-scale metabolic
networks has elucidated the fundamental aspects of metabolic
network formation and evolution.1,5,6 Extensive work has been done
on studying the architecture of metabolic networks, linking topo-
logy, evolution and function of metabolic enzymes. Von Mering
et al.28 have shown that a large portion of metabolic enzymes cluster
together in a modular fashion within metabolic networks. Such
findings have been further corroborated by Zhao et al.29 where they
identified a core–periphery modular organization of the network
within which the peripheral modules show a more cohesive
coevolution as compared to the core pathways. Kanehisa et al.30

have further ascertained the latter finding where they suggested
that the core metabolic pathways might have evolved in an
individualized fashion, whereas the peripheral or extensions
were driven by modular sets of enzymes and reactions.

The evolutionary dynamics of metabolic genes are not
characterized in C. reinhardtii and still not fully resolved in
any eukaryote, particularly with respect to the relationship with
distant lineages. We addressed this gap here by extending the
information content of a genome-scale metabolic network that
we recently reconstructed.31 We defined evolutionary affinities
of the network with 13 major eukaryotic lineages representing
most if not all major eukaryotic lineages, some of which reside
very distant to C. reinhardtii. We looked at the evolutionary
dynamics of gene pairs by distinguishing highly conserved pairs
with those that are conserved in a subset of lineages. This
information was then integrated with topological and metabolic
analyses in conjunction with gene expression data to determine if
there is concordance between evolutionary affinities, expression,
and functional constraints within the C. reinhardtii network.
Furthermore, we carried out interolog analysis to assess the
rewiring of the metabolic networks in yeast and Arabidopsis.

Materials and methods
Evolutionary affinity assignments

Evolutionary conservation was assigned by comparing the trans-
lated sequence of C. reinhardtii metabolic ORFs with the annotated
whole proteomes of the available fully sequenced genomes from
13 lineages representing major eukaryotic lineages (Tables S1,
S2 and Method S1, ESI†).

Network transformation

To transform the investigated metabolic network into a protein-
centric one, gene-reaction-metabolite association information
of the network was used to generate the corresponding protein-
centric network. Two enzymes were connected with an edge
either if they are co-enzymes or if they have substrate–product
relationship (Fig. S1, ESI†). For instance, an edge was extended
from enzyme E1 to enzyme E2 if a product of a reaction catalyzed
by E1 is a substrate of a reaction catalyzed by E2. The following
metabolites were excluded in this construction as currency meta-
bolites: H+, H2O, ATP, Pi, ADP, CoA, NAD, NADH, NADP, NADPH,
PPi, O2, AMP, CO2 and NH4.

Co-conservation analyses

To evaluate the evolutionary dynamics between gene products,
we first constructed a profile for each gene in the network. The
profile for each gene is a vector with a row and 13 values (one for
each of the 13 eukaryotic lineages). ‘‘1’’ in the column indicates
conservation, while ‘‘0’’ indicates non-conservation. Thus, the
profile is a representation of gene conservation/non-conservation
status in each of the 13 eukaryotic lineages (Table S3, ESI†). We
calculated mutual information (MI), Euclidean distance (ED),
and profile similarity definition (PD) for each gene profile pairs
(Method S2, ESI†). We then randomized profiles and evaluated
MI and PD for 1000 random trials and identified statistically
significant MI and PD values.

Functional (GO enrichment) analyses of dynamic and static
sub-networks

Over-representation of GO terms in gene sets was determined
by using the Biological Networks Gene Ontology tool (BiNGO)
(http://www.psb.ugent.be/cbd/papers/BiNGO/).32 BiNGO retrieves
the relevant GO annotation and then tests for significance using
the hypergeometric test. This tool was used to identify functional
enrichment of genes identified through various performed
analyses. The enrichment score represents the degree of enrich-
ment (P-values) calculated from hypergeometric distribution,
which determines the significance (P o 0.05) of overrepresented
term enrichment within a list of genes present in iRC1080, the
C. reinhardtii metabolic network used in this study. Correction
for multiple testing was not performed.

Synthetic interaction analysis

The maximum in silico growth rate for all possible double-gene
deletion combinations in the network (more than 500 000 pairs)
was predicted using COBRA Toolbox v.2 under two different
conditions of dark and autotrophic light growth. The COBRA
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toolbox (COBRA = Constraint-Based Reconstruction and Analysis)
is a comprehensive collection of tools developed for in silico model-
based analysis and reconstruction of metabolic networks.33,34 To
simulate growth under dark with acetate (or ‘‘DA’’), light flux was
set to zero and an acetate uptake of up to 10 mmol gDW

�1 h�1 was
permitted to provide a source of energy and carbon. The wild-type
maximum growth rate was 0.7 mmol gDW

�1 h�1. Simulation of
growth under light with no acetate (or ‘‘LNA’’) was achieved
by setting the acetate intake flux to zero and light flux to
646 mmol gDW

�1 h�1. These parameters resulted in a biomass
productivity of 0.3 mmol gDW

�1 h�1 for wild-type autotrophic
metabolism. The value obtained for each double-gene deletion
was divided by the wild-type growth rate under both conditions
to get the growth rate ratio for each in silico deletion mutant.
We only considered the deletion pairs in which the decrease in
the metabolic output was greater in the double deletion com-
pared to the sum of the respective single deletions. We classified
double deletions that result in zero growth as synthetic lethal
and those that reduce the metabolic output as ‘‘synthetic sick’’.
We note that the number of synthetic sick interactions under DA
conditions was more than those under LNA in some categories
including (100–80)%, (40–20)% and (20–0)%. We did not look at
positive synthetic interactions. We note that although there may
be limitations in the predictive capabilities of this type of
modelling,35 the generated predictions have been validated
experimentally in many different cases.36

Statistical analyses of double-gene deletions

To check the normality of the profile distance distribution within
the synthetically interacting gene sets, we performed Kolmogorov–
Smirnov (KS) tests to measure the maximum absolute difference
between our data and standard normal distribution. The standard
normal distribution was obtained from profile distances between
all the 1086 genes in the network (Method S3, ESI†). Hypergeo-
metric distribution is a measure of the probability that describes
the number of successes in a sequence of n draws from a finite
population without replacement. In our analysis, we performed
hypergeometric tests on the profile distance data of the syn-
thetic interactions genes. The following values were chosen:
41, o2, Z2, 4+3. The tests provide a statistical measure to
examine if the synthetic interaction distances are enriched for
larger than random network values or not (Method S4, ESI†).

Coupled reaction set analysis

The 2190 reactions of iRC1080 were classified randomly into
20 sets of 100 reactions. iRC1080 is a re-constructed genome
scale metabolic network model that accounts for 1080 genes,
2190 reactions and 1086 unique metabolites. It includes
83 subsystems distributed across 10 cellular compartments.31

The solution space was constrained for growth under LNA or DA.
The correlated sets of reactions (or co-sets) were obtained using
an extension script to the COBRA Toolbox. Genes associated
with the co-sets were identified using the findgenesfromReaction
function in the COBRA Toolbox. The profile distance of all
possible gene pairs between correlated reactions in each co-set
was calculated and presented; a hypergeometric test was carried

out to evaluate enrichment for short or long evolutionary profile
distances was carried out as described in the Synthetic inter-
action section. The co-sets with only one pair of genes were not
considered in this analysis.

C. reinhardtii strain growth and RNA isolation

C. reinhardtii (strain CC-503) was grown as described before.37,38

Briefly, the cells were grown at room temperature (22–25 1C)
either in the dark with acetate as a carbon source in Tris-acetate-
phosphate (TAP) medium or under continuous white light (with a
photosynthetic photon flux of 60 mmol m�2 s�1) without acetate in
Tris-phosphate (TP) medium containing 100 mg l�1 carbenicillin.
C. reinhardtii cells were harvested at the mid-log phase by centri-
fugation at 2000 rpm (650 g) for 10 min. Total RNA was isolated
from pelleted cells using the TRIzol reagent (Invitrogen). The
isolated RNA was treated with 0.08 U ml�1 RNase-free DNase I
enzyme (Ambion) to remove any residual cellular DNA. The
integrity and quality of the RNA were assessed uisng an Agilent
2100 Bioanalyzer (Agilent) and an RNA Pico 6000 kit according to
the manufacturer’s instruction. RNA samples with RNA integrity
number (RIN) values greater than 7.5 were used in subsequent
transcriptome sequencing as described below.

Transcriptome sequencing and gene expression analyses

Transcriptome libraries were constructed using the Roche cDNA
Rapid Library protocol; reagents were obtained from 454 Life
Sciences Corp., Roche (New York, NY). Briefly, polyadenylated
fractions of isolated RNAs were enriched through two rounds of
oligo dT selection and the obtained RNAs were fragmented
through metal-catalyzed cleavage. The first and second strand
cDNA syntheses were carried out according to the Roche recom-
mended protocol. Briefly, polyadenylated fractions of isolated
RNAs were enriched through two rounds of oligo dT selection
and the obtained RNAs were fragmented through metal-
catalyzed cleavage. The first and second strand cDNA syntheses
were carried out according to the Roche recommended protocol.
The obtained cDNAs were used as input materials for a Roche GS
Rapid Library Preparation kit to generate libraries suitable for
454 FLX sequencing. The resulting libraries were purified and
clonally amplified in emulsion PCR reactions in the presence of
library binding beads according to the manufacturer’s instruc-
tion (454 Life Sciences Corp., Roche). After amplification and
disruption of emulsions, the beads carrying the amplified DNA
library were recovered and enriched. The sequencing was per-
formed on a Roche 454 Genome Sequencer Instrument using GS
FLX Titanium Sequencing chemistry (XLR70) for 200 flow cycles.
Base calling and other primary data processing were done using
the GS FLX v2.3 software. Two full runs were carried out for each
growth condition, providing technical replicates for each condi-
tion. Each run produced between 1.11 and 1.35 million reads
with average read lengths ranging from 306 (�112) to 392 (�126)
bases. The obtained reads were mapped to a complete set of
annotated ORF encoding proteins with metabolic functions
using the gsMapper (v2.3) software tool.39 This set of reference
sequences consisted of approximately B2000 sequences derived
from Augustus 5 annotation of JGI v4.0 assembly of the genome.
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A minimum overlap length of 40 nt and minimum overlap
identity of 90% were used to align the reads. The total number of
aligned reads to this reference set was used in RPKM calcula-
tions according to Mortazavi et al.40 Differential gene expression
was assessed using NOIseq (http://bioinfo.cipf.es/noiseq/doku.
php?id=start) using default parameters of the software.41

The raw reads for each library were deposited in the NCBI
BioSample database and they are accessible through Sequence
Read Archive (SRA) accession number SRP065253.

Results
Transformed metabolic network and evolutionary affinities
of genes

Metabolic network models describe functional and topological
connectivity between metabolites, reactions, and their associated
genes. We previously reported a genome-scale reconstruction of
the C. reinhardtii metabolic network.31 The network provides a
global map of C. reinhardtii metabolic circuitry, including full
connectivity between metabolites, genes, and associated reac-
tions. The reconstructed network, iRC1080, accounts for the
function of over a thousand genes, as many unique metabolites,
and twice as many reactions. The network spans 83 metabolic
subsystems in 10 cellular compartments. iRC1080 is an experi-
mentally validated model of C. reinhardtii’s metabolism capable
of predicting genome-wide metabolic fluxes. This network, as in
all reconstructed functional metabolic networks, is a metabolite-
centric network where nodes represent metabolites, and links
(or edges) between the nodes are associated with reactions. Each
reaction is typically associated with one or more gene products;
multiple reactions may also be associated with a single gene or
metabolite. A transformation of this network to a gene-centric
network, where nodes correspond to gene products and edges
represent metabolites (or links between enzyme complexes) was
needed for our analyses.42 Following the removal of currency
metabolites, we used the gene-reaction-metabolite associations
described in the network to carry out this transformation
(Fig. S1, ESI†). The resulting network (Fig. S2, ESI†) consists of
11 094 edges (connections) between 1086 metabolic gene pro-
ducts, with an average connectivity of B21 and a clustering
coefficient of 0.57. The network has 14 connected components;
1040 of the 1081 nodes reside in its largest component. We note
that the average degree and clustering coefficient of the network
are higher than a typical protein–protein interaction network,
alluding to a high interconnectivity of metabolic genes and
pathways in the network.

We extended the information content of iRC1080 by defining
the evolutionary affinities (i.e., sequence similarity) of genes in
the C. reinhardtii network (Table S1, ESI†) with protein-coding
genes of major eukaryotic lineages. We interrogated over 250
annotated genomes spanning 13 eukaryotic lineages (Table S2,
ESI†) with BLAST and clustered the obtained high scoring hits to
assign the affinities (Fig. 1 and Table S3, ESI†). The highest
number of affinities is assigned to Viridiplantae (green plants)
with Stramenopiles (or heterokonts, which include diatoms,

golden, and brown algae) and Metazoa (animals) occupying
the next two largest groups. Members of Diplomonadida, which
do not possess true mitochondria, have the lowest number of
affinities assigned. Interestingly, Choanoflagellida, a group of
flagellates closely related to animals have a significantly lower
number of assigned affinities compared to animals.43 We note
that approximately 200 genes in the network remain unassigned
to any eukaryotic lineage (other than C. reinhardtii or potentially
to other green alga), as their affinities fall below our set thres-
hold of P o 0.001. These genes are likely to have homology to
cyanobacteria and other prokaryotes, while a subset may be
Chlamydomonas-specific.

Evolutionary concordances of gene pairs

The obtained conservation information was used to define an
evolutionary profile vector for each protein sequence in the
network. Each vector carries a 0 or 1 for each of the 13 lineages;
therefore, the vector describes the evolutionary affinities of the
gene (see Methods) in a format amenable to quantitative analyses.
Phylogenetic correspondence has been used to identify and assign
functions to genes and their pathways.26,27,44 Here, we defined
and integrated phylogenetic information with independently
derived functional gene assignments and network topology to
empirically link network connectivity with evolutionary affinities.
Entropy analyses with respect to evolutionary conservation of
genes in the network was carried out by defining a mutual
information index, MI,45 for all directly connected gene pairs in
the network. We generated 1000 random networks by rando-
mizing affinity profile vectors while maintaining the network
properties intact and then carried out MI analysis on the
random profile networks. Based on the randomization results,
a mutual information index value of B0.3 or higher occurs at
the probability of P o 0.001 (Fig. 1B). We used this MI value as
our threshold for identifying co-conserved pairs. We observed
908 pairs of genes in the network with MI values equal or
higher than this threshold (Table S4, ESI†). Four hundred and
fifty five genes (nodes) constitute this group. These results
show that co-conservation of a significant number of genes
(42%) in the network (i.e., 455 out of 1081) is linked to their
placements in the network. We consider these as dynamically
co-conserved genes because they share a similar vector profile,
but may not be conserved across all 13 interrogated lineages.

Universally conserved gene pairs have low MI values and
cannot be detected as statistically significant pairs (P o 0.001)
while they are clearly evolutionarily constrained. We examined
the co-occurrence of highly conserved gene pairs in the network
by calculating evolutionary profile distances for each neighboring
pair in the network and compared them to randomized network
distances. At the normalized distance threshold value of 0.1,
occurrences of pairs with 0.1 or lower profile distances become
statistically significant relative to random networks (P o 0.001)
(Fig. 1C). With this threshold, 775 pairs comprised of 223 gene
products (21% of genes in the network) can be detected (Table S5,
ESI†). Because these gene pairs have similar profiles that are
conserved across most or all of the 13 lineages, we refer to these
as statically co-conserved pairs.
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Fig. 1 Evolutionary affinities and co-conservation of genes in the network. (A) Phylogenetic affinities of genes in the network are shown as the fraction of total for
each of the 13 eukaryotic lineages explored. The list of the genes and the lineages are provided in Tables S1 and S2 (ESI†), respectively. (B) Comparison of
distribution of mutually informative pairs between the real and randomized networks. Mutual information of neighboring genes (nodes) in the network is a
measure of dynamic co-conservation (see Methods). The y-axis is in the natural log scale; plots in green and red represent the real and random networks,
respectively. At the mutual information index value of 0.3, the difference between gene pairs in the random networks and the real network becomes statistically
significant (P = 0.001); this value (i.e., 0.3) was used to identify mutually informative pairs. Four hundred and fifty five genes form 908 gene pairs in the network with
index values of 0.3 or higher. (C) Comparison of distribution of number of pairs and evolutionary profile distances between the real and randomized networks (see
Methods). Evolutionary profile distances are a measure of co-conservation; only the gene pairs that are conserved in at least 50% of the lineages were included.
The plots in green and red represent evolutionary profile distance values of gene pairs in the real and random networks, respectively. The y-axis is in the natural log
scale. Profile distances of 0.1 or less (dotted vertical line) display statistically significant differences between the real and random networks, these gene pairs are
referred to as statically co-conserved pairs. Two hundred and twenty three genes form 775 such pairs in the real network. All values have been normalized to the
maximum value and represented in the graph. (D and E) Mutual information and evolutionary profile distance in randomized networks. Based on randomization of
the network threshold, the values for the mutual information index and evolutionary profile distance were set. For every pair of genes in the network, if the mutual
information index values were higher than or the profile distance values were less than the set thresholds, those pairs were considered dynamically or statistically
co-conserved gene pairs, respectively. (D) The real network (red square) has the highest number of high MI pairs compared to all randomized network (P r 0.001).
(E) The number of gene pairs with low PD values in the real network (red square) is significantly higher than the randomized network (P o 0.001).
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We further corroborated the mutual information and evolu-
tionary profile distance analyses by randomizing the network
structure (while maintaining the affinity vectors intact) and
investigated how many dynamic or static pairs occur in the
random networks. The randomized networks in both cases show
a statistically significant lower number (P r 0.001) of dynamic and
static co-conserved pairs relative to the real network (Fig. 1D and E)
indicating that the occurrences of these pairs (at the threshold
value used) are not random.

Two sub-networks were reconstructed to examine connecti-
vities within the dynamic and static groups (Fig. 2A and B); the
gene pairs not assigned as being dynamic or static are not
included in these sub-networks. GO term enrichment of the static
(low evolutionary profile distance pairs) and dynamic (high MI)
pairs showed a number of overlapping terms; however, most terms
were enriched uniquely in the dynamic and static networks;
‘‘calcium ion binding’’ was the only term that was shared between
the two sub-networks (Fig. 3A and B and Fig. S3, ESI†). GO terms
that were exclusively enriched within the static pairs included
nucleotide kinase activity and oxidoreductase activity, acting on
sulphur group of donors. On the other hand, galactosidase activity
and intramolecular oxidoreductase activity (transposing CQC
bonds) were enriched within the dynamic pairs (Fig. S3, ESI†).
These results demonstrate that there is considerable segregation
between the two sub-networks both topologically and functionally.

The dynamic network is fragmented and displays more varied
conservation. It consists of 89 connected components, many of
which consist of isolated bi- or tri-gene groups; its largest con-
nected component consists of 171 genes. The static sub-network
is smaller (223 genes) but less fragmented compared to the
dynamic sub-network – it encompasses 14 connected components

in contrast to 89 components of the dynamic sub-network and its
nodes have a higher average degree (6.95 vs. 3.99). The static sub-
network is nearly universally conserved.

Hubs, or highly connected nodes in biological networks,
often carry important or essential functions.46 To investigate if
the hubs in the transformed network show segregation with
respect to their co-conservation, we identified highly connected
nodes (Table S6, ESI†) and then classified them as dynamic or
static on the basis of their interaction with their partnering nodes.
We found that hubs with dynamically evolving partners have little
overlap with statically evolving hubs (Fig. 3B), which suggests a
functional distinction between the two types of hubs. Indeed, the
distinction between the two hub types can be observed in the
metabolic processes they are involved in; many of the dynamic
hubs are involved in photosynthesis or lipid metabolism, whereas
the low evolutionary profile distance hubs are involved in central
metabolism but not photosynthesis (Tables S7 and S8, ESI†).

Taking the five most connected hubs as examples, four of the
five are exclusively dynamic and one is a dual static and dynamic
hub (Fig. 3C and Fig. S4, ESI†). The four dynamic hubs encode
ferredoxins and are involved in photosynthesis or other meta-
bolic processes such as lipid metabolism. These four hubs have
distinct affinities including the following lineages: fungi, Alveo-
lata, Rhodophyta, Stramenopiles, and Viridiplantae. Several dis-
tinct ferredoxins are known to be differentially expressed under a
variety of specialized conditions.47 For example, in C. reinhardtii,
FDX3 has been shown to be involved in nitrogen assimilation,
FD4 in glycolysis and response to reactive oxygen species, and
FDX5 in hydrogenase maturation under anoxic conditions.
Both FDX1 and FDX2 serve as the primary electron donor for
NADPH and H2 production, however the electron transfer speed of

Fig. 2 Dynamically and statically co-conserved pairs in the network. (A) A subnetwork based on the identified dynamic pairs was reconstructed to
highlight the connectivity between dynamically co-conserved pairs; non-dynamic nodes were not included in this network. The indicated numbers
designate regions of the network described in the text and Fig. S6 (ESI†). The color of the nodes represents their degree (blue highest, dark-red lowest);
the size of the nodes corresponds to the clustering coefficient of the nodes. (B) A subnetwork based on the statically co-conserved gene pairs was
reconstructed to highlight the connectivity of these genes; non-static genes are not included in this network.
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FDX2 is less than half as fast as that of FDX2,47 so C. reinhardtii is
capable of modulating the speed of NADPH and H2 production by
differentially expressing these FDXs. Environmental condition
variability would have a strong impact on the differential expres-
sion and most likely evolutionary maintenance of C. reinhardtii’s
ferredoxins. The fifth hub in this group encodes an acyl-carrier
protein (ACP2), which is involved in lipid metabolism. The encod-
ing gene is conserved across all lineages except for Diplomonadida.
There are only three other dual hubs in the network; these encode
CYC1 (cytochrome c), a CYC1 paralog, and EamA transporter.
Overall, our results support the hypothesis that the dynamic hubs
have emerged to fulfill the metabolic fitness of the species under
specialized or specific conditions with shared constraints. On the
other hand, static hubs are not determinants of specialized meta-
bolic functions, rather they perform universally shared functions.

Dynamic and static metabolic interologs in yeast and
Arabidopsis

Conservation of interactions among orthologs was described by
Walhout et al.48 in the context of protein–protein interactions

and was later shown to be observable at statistically significant
rates.49 We thus investigated the extent to which the identified
dynamic and static pairs occur in yeast and Arabidopsis following
the transformation of their metabolic networks to gene-centric
ones based on their GO terms (Method S5, ESI†). For these
analyses, we required the ortholog pairs (i.e., interologs) to be
directly linked with each other in their respective networks as
their counterparts were in the C. reinhardtii network. We com-
pared the interologs of C. reinhardtii/A. thaliana and C. reinhardtii/
S. cerevisiae for the identified static and dynamic pairs. From 908
dynamic pairs, we identified 343 and 66 ortholog pairs in
A. thaliana and S. cerevisiae, respectively. From 775 static pairs,
427 and 87 ortholog pairs in A. thaliana and S. cerevisiae were
identified, respectively. The identified orthologs were then mapped
to A. thaliana and S. cerevisiae networks to examine if they form
interologs. For the dynamic pairs, 142 interologs (41.4%) in
A. thaliana and 18 interologs (27%) in S. cerevisiae could be
identified within their respective networks. We found 203 (47.5%)
and 45 pairs (51.7%) in A. thaliana and S. cerevisiae occurring as
static interologs, respectively. The level of metabolic interologs

Fig. 3 Gene ontology (GO) term analysis of dynamically and statically co-conserved pairs and their hubs in the network. Uniqueness of GO terms for the
dynamic and static sub-networks and their associated enrichment P-values are shown for biological process (A) and molecular function (B) ontologies.
For each set, over representation probabilities were determined using the C. reinhardtii metabolic network as a reference (see also Fig. S3, ESI†).
No overlap is observed between the dynamic and static GO terms at any significance level in biological process ontologies, while an overlap of a single
term is detected for molecular function in (B). (C) The hubs in the network (defined as nodes forming the top 20% of highly connected genes) that
show evidence of dynamic and static co-conservation are shown in the network (linked respectively with green and red edges) and reported in the
Venn diagram. The blue circle marks five of the most connected hubs in the network.
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that our analyses detect is comparable to protein–protein
interaction interologs.49

To examine if the dynamic and static interologs are distin-
guishable with respect to function, we carried out GO enrich-
ment analyses for the identified interologs. The interolog
analysis (Fig. 4 and Fig. S5, ESI†) showed that for the static
pairs, many enriched GO terms overlap between C. reinhardtii/
A. thaliana and C. reinhardtii/S. cerevisiae; and for dynamic pairs,
none of the significantly enriched GO terms overlap. For example,
a GO term uniquely enriched in the dynamic interologs of
C. reinhardtii/A. thaliana but not in C. reinhardtii/S. cerevisiae is
the cGMP biosynthetic process. In Chlamydomonas, nitric oxide
(NO)-dependent guanylate cyclases (GCs) mediate nitrogen-
assimilatory signalling by forming cGMP from GTP in the
presence of extracellular ammonium.50 The presence of these
interologs in C. reinhardtii/A. thaliana but not in C. reinhardtii/
S. cerevisiae indicates dynamic evolution of these components of
the nitrogen assimilation signalling pathway in plants but not
in yeast50 which is consistent with dynamic pairs being involved
in specialized functions. Altogether, these results indicate that
while some rewiring of metabolic functions have occurred dur-
ing evolution, a significant level of conservation has persisted,
which in turn attests to a persistence of selective pressure in the
course of evolution. As expected, less rewiring is observed in
static pairs, particularly in yeast, which is consistent with the
centrality of static pairs in the network.

Differential functional enrichment in dynamic and
static sub-networks

Highly connected regions of the network, or network modules,
often mark biological complexes with genes involved in related
functions. We used a network module detection algorithm,
MCODE,51 to define highly connected regions of the two sub-
networks. MCODE detected 41 modules for dynamically
co-conserved gene pairs, ranking each defined module. The top
5 sub-networks identified based on the MCODE scores are shown
in Fig. S6 (ESI†). The highest score was 19.263 with 20 nodes and
183 edges and the lowest score was 3 with 3 nodes and 3 edges
(a significant result has a score of greater than 1). We explored the
enrichment under GO terms (biological process) for these top 5
modules using BiNGO.32 GO categories were analyzed for enrich-
ment in the top 5 sub-networks with a P-value less than 0.05. The
detected processes included the carboxylic acid metabolic process,
oxidative phosphorylation, cobalamin metabolic process, tetra-
hydrobiopterin metabolic process and fatty acid oxidation. The
hypergeometric test was used to determine GO annotation over-
represented amongst each cluster (Table S9, ESI†).

For statically co-conserved gene pairs, MCODE lists 21 sub-
networks with the highest score of 12.211 (20 nodes and 116
edges) and the lowest score of 2.667 (4 nodes and 4 edges). The
top GO terms (biological process) found were lipid glycosylation,
glycoside metabolic process and cofactor metabolic process.

There was only one significantly enriched GO term (lipid
modification) with overlap between the top five modules of
dynamically and statically co-conserved pairs. This indicates
that (1) the dynamic and static networks are modular, (2) the

largest modules have distinct and non-overlapping functions,
and (3) the largest dynamic modules are enriched in specialized
functions, while the static modules are involved in more general
metabolic functions.

Gene expression and evolutionary affinity dynamics

We hypothesized that there will be detectable relationships
between evolutionary and temporal dynamics such that genes
and modules up regulated by light would display distinct evolu-
tionary dynamics not observed in dark-induced genes. To
explore this hypothesis, we grew C. reinhardtii under light with
no organic carbon source and in complete darkness with acetate
as a source of energy and then carried out transcriptome analysis
of their respective messenger RNAs. These conditions roughly
correspond to autotrophic metabolism (as in higher plants)
and aerobic heterotrophic metabolism, respectively. Following
normalization, we were able to detect metabolic transcripts that
were differentially up regulated under light and dark (Fig. 5A, B,
Table S10 and Fig. S7, ESI†). By mapping temporal expression
information to the dynamic and static gene pairs, we found
a significantly higher number of dynamic pairs in the light
induced group than the dark induced genes (Fig. 5C). In con-
trast, we found that the static pairs were enriched under the
dark conditions. Comparing significant changes in expression
with predicted fluxes (Fig. S8 and Method S6, ESI†) showed that
almost half of the active reactions (329 out of 750 reactions) are
concurrent with the flux needed. Among 329 reactions, 87 were
up regulated and 242 were down regulated based on their trans-
cription. We identified the metabolic subsystems and their
locations for flux-expression correlated up- and down-regulated
genes. Among 242 down-regulated genes, the largest group of
90 genes was in the glycerolipid metabolism subsystem and
115 genes were from the Cytosol compartment. For up regulated
genes, the highest group of 9 was in the fatty acid biosynthesis
subsystem and 28 genes were located in the cytosol as shown in
Fig. S9 and Table S11, ESI†.

Synthetic interactions and evolutionary profile distances

To investigate if there are non-topological relationships
between gene function and evolutionary profile distance, evolu-
tionary profile distances between synthetically interacting
genes in the network can be investigated. Unlike yeast in which
double gene deletion studies can be done experimentally, such
experiments in C. reinhardtii are not presently feasible. There-
fore, we carried out in silico double-gene deletions using our
reconstructed model (iRC1080) under simulated dark and light
conditions (over 500 000 double deletions under each con-
dition, Fig. 5A, Tables S12 and S13, ESI†) and predicted the
resulting biomass yields accordingly. We further binned the inter-
actions according to the resulting level of biomass reduction
(Fig. S10, ESI†) and calculated their pairwise evolutionary
profile distances. The pairwise profile distances (Euclidean
distances) between synthetically interacting genes showed a
range of values and in many cases values of above 1, indicating
that the genes that are involved in the interactions have distinct
evolutionary affinities.
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We carried out the Kolmogorov–Smirnov (KS) test for measur-
ing the maximum absolute difference between our data and the

standard normal distribution with the null hypothesis being that
the distances between the interacting pairs follow that of random

Fig. 4 Gene ontology (GO) analysis of dynamic and static pairs of C. reinhardtii interologs with S. cerevisiae and A. thaliana. GO terms (biological process) of
dynamically co-conserved interologs of C. reinhardtii/A. thaliana, and those of C. reinhardtii/S. cerevisiae are shown in (A) and (B); similarly, GO terms of
statically co-conserved interologs of C. reinhardtii/A. thaliana, and those of C. reinhardtii/S. cerevisiae are shown in (C) and (D). For each set, enrichment
analysis of terms was carried out using the C. reinhardtii metabolic network as reference (see Methods). Table heatmaps were used to visualize the top 20 GO
terms based on obtained enrichment P-values. Heatmaps of A and C were sorted based on lowest C. reinhardtii/A. thaliana GO term P-values and heatmaps
B and D were sorted based on C. reinhardtii/S. cerevisiae GO term P-values. Ath: A. thaliana, Sce: S. cerevisiae, NP: not present.
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interactions in the network. The standard normal distribution
was obtained from evolutionary profile distances between all
1086 genes in the network. As illustrated in Table S14 (ESI†),
the KS test revealed that the synthetic interaction distribu-
tion is not a standard normal distribution. A significant differ-
ence was observed between the random pairs in the network
and the synthetic interaction profile distances under both
light and dark simulated biomass production. These results
show that the evolutionary affinities of the genes involved in
the synthetic interactions under both conditions of growth in
light with no acetate (LNA) and in the dark with acetate (DA)
differ from the overall pairwise distance distributions of the
network.

To test if the interacting pairs are enriched for short or long
evolutionary profile distances as compared to random pairs in
the network, we performed hypergeometric tests for enrich-
ment of distances greater than or equal to 1, 2 and 3 for both
light with no acetate or LNA and dark with acetate or DA con-
ditions. We observed that under LNA conditions, synthetic
interactions with values greater than 2 are significantly
enriched; in contrast, under DA conditions, interactions with
profile distances of less than 1 and 2 show a significant
enrichment (Fig. 6B and Table S15, ESI†). GO term enrichment
analysis was carried out on each of the different bins under
both growth conditions and major results are found in Table S16
(ESI†). The lists of double-gene knockouts under two different
conditions; DA and LNA, were used to create the gene interaction
networks using Cytoscape and compare the selected KEGG
pathways for each condition (Fig. S11A and B, ESI†). The KEGG
pathway enrichment between two conditions (light and dark) for
synthetic lethal conditions shows the enrichment of a number of

pathways common between the two conditions (Fig. S12, ESI†).
As an example, synthetic interactions in the KEGG pathway are
shown in Fig. S13–S17 (ESI†).

Coupled reactions and evolutionary profile distances

Coupled or correlated sets (co-sets) of reactions are the reac-
tions that function together in the metabolic process.52,53 The
biological significance of these linked reactions has been
observed. For instance in the case of genetic disorders, muta-
tions in correlated reactions can often lead to the same disease
phenotype.54 The 2190 reactions of iRC1080 were classified
randomly into 20 sets with 100 reactions each, the solution space
for each 100 was explored and constrained for growth under LNA
or DA. The co-sets were obtained using COBRA Toolbox func-
tions (Tables S17 and S18, ESI†).

We identified the genes associated with the reactions in the
co-sets and calculated the evolutionary profile distances of all
possible gene pairs between reactions (we note that some
reactions are associated with multiple genes and some reac-
tions have no associated genes) (Fig. 6C). As in synthetic pairs
(described in the previous section), we observed many of the
distances to be greater than 1, indicating different phylogenetic
profiles among the genes. A hypergeometric test was carried out
in relation to the random evolutionary profile distances of the
whole network (all possible gene combinations in the network).
The co-sets with only one pair of genes were not considered in this
analysis. The test revealed the statistical significance of distance
values of less than 2 and values of 3 or greater (Tables S19
and S20, ESI†). The enrichment probabilities become more
significant with distances of less than one, or 3 or greater.
These analyses indicate that the enrichments of co-sets are

Fig. 5 Temporal dynamics and co-conservation. (A) Identification of light and dark up regulated genes using NOISeq. RNAs isolated in cells grown in the
dark with acetate as an energy source or in light with no acetate were subjected to transcriptome sequencing. There are 299 light condition and 211 dark
condition genes that are significantly up regulated. About half of the genes in the network could be identified as being up regulated under one of the two
conditions (genes not displaying significant differential regulation are not shown in the figure). (B) Light and dark gene pairs mapped to the network. The
network representation visually shows that up regulated genes in light tend to form independent units or modules in the network, while dark up regulated
genes tend to be positioned centrally in the network, connecting modules. (C) Temporal dynamics and co-conservation. Light and dark up regulated
genes were plotted for gene pairs in each of the co-conservation groups (i.e., dynamic and static). The light up regulated gene pairs tend to be dynamic,
while dark up regulated gene pairs are more static; the statistical significances for differences between the occurrences of dynamic and static pairs with
respect to light–dark regulation are indicated.
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bipartite relative to random network distances, with over-
representation of both short and long distances within the sets.

Discussion

Genes in metabolic networks tend to be well-conserved,55 how-
ever their co-conservation dynamics are not well understood.
Through our analyses on a model organism that can be consid-
ered complex with respect to its phylogenetic affinities, we find
metabolic genes to display distinct dynamics with respect to their
conservation, network topologies, and functional relationships.

A significant percentage of the genes in the network were
identified as being involved in either a dynamic or static co-
conservation. The herein described detection of dynamic and
static pairs in the network, their non-random segregation at the
network level, and their expression dynamics, provide evidence
for constraints embedded in the evolution of metabolic networks.
This in turn provides evidence for conservation of selective
constraints between eukaryotic species in different lineages for
some node-pairs in the network. However, while the occurrences
of co-conserved pairs are statistically significant, the majority of
gene-pairs in the network do not display statistically significant
co-conservation, indicating a lack of uniformity in detectable

Fig. 6 Evolutionary profile affinity distances and functional analysis of the C. reinhardtii network. (A–C) Double gene deletion analyses were carried out
under light with no acetate or dark with acetate to define synthetically interacting pairs, the identified pairs were then binned according to the severity of
their effects on predicted biomass production. The bins represent strict inequalities for the upper bounds. (A) Heat maps that represent the shared and
unique synthetic interaction gene pairs under LNA and DA. Shared pairs are the pairs that are shared between lethal and sick under light with no acetate
or dark with acetate. Unique pairs are pairs that are unique for lethal or sick under LNA or DA conditions. The color gradient from yellow to blue
corresponds to the evolutionary profile distances between the pairs from 0 to 4. (B) Hypergeometric tests were done for enrichment of indicated
distances for binned synthetically interacting pairs under LNA or DA conditions. (C) The results of hypergeometric tests are shown for enrichment of
different evolutionary profile distances found in each co-set under LNA and DA conditions. The blue line above the x-axis marks the 0.05 probability
threshold for statistical significance.
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co-conservation relationships in the network. This may also
reflect major instances of discontinuity in functional interactions
between genes across phylogeny.56–58

The presence of non co-conserved pairs in the network,
which constitute the majority of pairs, implies that functional
constraints for these genes are not shared between C. reinhardtii
and the explored lineages in the context of the studied metabolic
network, at least not in the context of neighboring gene-pairs in the
network in a consistent manner. This fluidity in co-conservation,
which we also observe in functional analyses of the network, in turn
suggests that rewiring of metabolic pathways may be a significant
contributing force behind evolutionary adaptations as recent data
have suggested being the case in genetic interaction and transcrip-
tion networks.59,60

Our analyses identify most network hubs as either dynamic
or static with very few having characteristics of both. This is a
consequence of the topological segregation of dynamic and
static pairs. As we have demonstrated, this segregation is also
manifested with respect to both regulation, as judged on the
basis of enrichment under light and dark growth conditions
(Fig. 5C), and with respect to function as indicated on the basis
of differential enrichments of GO terms. With respect to the
latter, we note that this differential enrichment is observable at
the level of the entire subnetwork (Fig. 3A and B and Fig. S3,
ESI†) as well as at the module level (Fig. S6 and Table S9, ESI†).
Taken together, the observed topological, temporal, and func-
tional segregation of the static and dynamic pairs and hubs
suggests that these segregated organizations may provide adap-
tive values in varying evolutionary niches. In biological terms, the
different ferredoxins that form major hubs in the network are
expected not to be interchangeable as they may have different
redox potentials.61 As we have illustrated, these proteins have
different evolutionary affinities and mostly demonstrate dynamic
co-conservation, which likely reflect different biochemical
requirements in species belonging to different lineages. Taking
into account the crucial functions of ferredoxins and their
involvements in large sets of reactions and pathways,62 selective
pressures in maintaining the optimal redox potential can be
expected for a specific set of ferredoxins in each lineage. This and
other similar hypotheses fall in line with what Fang et al., 2013
set forth in terms of gene co-expression and evolution.63 They
concluded that selective pressure acts on the relationship
between genes rather than on individual genes, which may
further explain the maintaining of a set of ferredoxins within
the C. reinhardtii metabolic network.

Our analyses show a range of evolutionary profile distances for
genes in coupled reaction sets as well as those with predicted
synthetic interactions, which as in our topological analyses, point
to fluctuations in co-conservation within the network despite a
shared or related function. Synthetic pairs identified under
‘‘dark’’ metabolism are enriched for pairs with (Euclidean)
distances of 1 or less in their phylogenetic profiles, indicating
that these gene pairs have very similar phylogenetic profiles.
Gene pairs showing synthetic interactions under light growth
are enriched in distant values of 2 or greater and less than 1,
the former indicates distant evolutionary profile distances

despite a related function in the network. Genes in the co-sets
show a similar bimodal enrichment with some extremes observ-
able, that is, some co-sets are enriched with less than 1 and
some are enriched for values of equal or greater than 3.

Notably, co-sets under both dark and light conditions, and with
a range of profile distances are shown to be involved in purine
catabolism, N-glycan biosynthesis, and fatty acid biosynthesis.
Importantly, the N-glycan biosynthesis pathway involves an inter-
section of light and dark relevant co-sets with long and short
profile distances, respectively (Note S1, ESI†). Furthermore,
synthetic lethal interactions link N-glycan metabolism and
fructose and mannose metabolism (profile distance of 3.6),
and the pentose-phosphate pathway with the biosynthesis of
steroids (profile distance of 0) under light conditions. As for
dark condition interactions, amino acid synthesis and nitrogen
metabolism are observed to interact with a profile distance of
3.4 (Note S2, ESI†).

It is to be noted that correlated reactions as well as synthetic
interactions can be distant in the network topologically (a few
examples are shown in Fig. S13–S17, ESI†). Therefore, enrich-
ment for large evolutionary profile distances may coincide with
distant placements in the network. As such, the C. reinhardtii
network can be hypothesized to have assembled by evolutionary
adaptive processes in such a way that evolutionary rigidity
(exemplified as statically co-conserved pairs and short distances
in synthetic and co-set pairs) and plasticity (exemplified by
dynamically co-conserved pairs and long distances in synthetic
and co-set pairs) are segregated. The need for such plasticity
may be evident at the physiological level with the recent
observation that a wide range of metabolites can be utilized by
C. reinhardtii as nitrogen sources, including di- and tripeptides as
well as a number of D-amino acids.64 Moreover, when buffering of
pathways is required, the network architecture makes use of
genes with dissimilar phylogenetic profiles. These findings pro-
vide an alternative and a wider perspective on metabolic network
architecture and evolution.
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