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Small-molecule binding sites to explore protein–
protein interactions in the cancer proteome†

David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef

The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding

sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze

RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate

with patient survival. Protein products of these genes were scanned for binding sites that possess shape

and physicochemical properties that can accommodate small-molecule probes or therapeutic agents

(druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction

sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of

binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the

same structure suggesting that many of these OTH cavities can be used for allosteric modulation of

enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1,

QPRT, and HSPA6) and PPI (CASC5, ZBTB32, and CSAD) binding sites on proteins that have been seldom

explored in cancer. We also found proteins that have been extensively studied in cancer that have not

been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3, and NNMT) and PPI

(HNF4A, MEF2B, and CBX2) binding sites. All binding sites were classified by the signaling pathways to

which the protein that harbors them belongs using KEGG. In addition, binding sites were mapped onto

structural protein–protein interaction networks to identify promising sites for drug discovery. Finally,

we identify pockets that harbor missense mutations previously identified from analysis of TCGA data. The

occurrence of mutations in these binding sites provides new opportunities to develop small-molecule

probes to explore their function in cancer.

Introduction

Cancer is a collection of more than 100 diseases that share a
number of characteristics as defined by Hanahan and Weinberg:1

self-sufficiency in growth signals, insensitivity to growth inhibitory
signals, evasion from programmed cell death (apoptosis), ability
to undergo limitless cycles of cell growth, sustained ability to be
supplied by blood (angiogenesis), and tissue invasion and spread
to other parts of the body (metastasis). Large-scale sequencing
studies of human tumors such as The Cancer Genome Atlas

project (TCGA) provide an opportunity to uncover the genetic
basis of the processes that drive cancer. Analysis of this
genomic data has revealed that the complex phenotypes that
define cancer are driven by tens of somatic mutations that
occur on proteins across the cellular network.2 Recent whole
genome sequencing studies have profiled the molecular signa-
tures of individual tumors, including ovarian,3 colorectal,4

breast,5 renal,6 and lung7,8 cancer, to identify underlying driver
mutations of each disease. Tumors were found to harbor tens
of mutations. Whole-genome gene expression profiling studies
have been instrumental not only in classifying tumors
and uncovering genetic alterations in cancer cells (mutations,
copy number, and rearrangements), but as a rich source of
potential targets in cancer.9,10 A growing list of three-
dimensional protein structures make it now possible to ration-
ally develop small-molecule probes to explore these targets.
Small-molecule probes can also provide leads for drug-discovery
validation.

TCGA is an ongoing effort that aims to catalog clinical
and molecular profiles of tumor samples from over 30 cancer
types to discover cancer-causing alterations in large cohorts
through integrated multi-platform analyses. The project aims
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to integrate the clinical and molecular profiles of at least
500 tumors for each disease and to determine its underlying
molecular mechanism. Multiple platforms capture the clinical,
pathological, genomic, epigenomic, transcriptomic, and pro-
teomic profiles of cancers in TCGA project. Among these
platforms, RNA-seq is a widely-used technology for the char-
acterization of mRNA expression. RNA-seq uses high-throughput
short reads that offer several distinct advantages over its array-
based predecessors. RNA-seq is not limited by a set of predeter-
mined probes seen in microarrays, and is superior in its ability
to identify low abundance transcripts, biological isoforms, and
genetic variants.11 RNA-seq was performed for both tumor and
normal tissue for each disease at TCGA. Comparison of tumor
and normal mRNA levels can be used to identify overexpressed
genes and their corresponding protein product that may con-
tribute to tumor formation, progression, and metastasis. Patient
information that accompanies the genomic data affords further
analyses to assess the correlation of mRNA levels with patient
outcome. Survival curves constructed by plotting patient
outcome with time can be used to generate metrics such as
hazard ratios and other coefficients to determine the correlation
between overexpression of individual genes and clinical out-
come. This analysis has been widely used in clinical trials, where
Kaplan–Meier survival curves are used to determine the time-to-
event differences between placebo and drug groups.12

Whether overexpressed genes contribute to the cancer
phenotype must be confirmed in follow-up studies in vitro
and in vivo, especially since studies have shown that there is
not always a direct correlation between the levels of gene
expression and the proteins that they encode.13–15 This is
typically accomplished using molecular biology approaches
such as RNAi16 or CRISPR/Cas917 technologies. A complemen-
tary approach is the use of small organic molecules that work
by binding to well-defined cavities or binding sites on the
surface of a protein and compete with the target’s ligands
either in an orthosteric or allosteric manner. Binding sites that
are located at enzyme active sites, protein–protein interfaces, or
known allosteric sites, have particular functional relevance.
Identification of binding sites is accomplished by analyzing
the three-dimensional structure of a protein. Several computa-
tional methods have been developed to scan the surface of
proteins for binding sites.18 Binding site detection algorithms,
such as CavBase,19 fpocket,20 and LIGSITECSC,21 often represent
the protein structure through the use of points on a three-
dimensional grid. Other algorithms, such as Q-SiteFinder,22

PocketFinder,23 and SiteHound,24 employ energy-based approaches
to calculate interaction potentials at points in the grid and cluster
favorable points together into binding sites. Finally, ensemble or
combinatorial algorithms, such as SiteMap25 and metaPocket,26

use a combination of geometric and energy-based methods to
identify potential binding sites.

Extensive data from TCGA combined with the exponentially
growing structural data at the Protein Data Bank (PDB) offers a
unique opportunity to identify protein structures of over-
expressed or clinically-relevant genes in cancer. These structures
can be used to scan for binding sites to develop chemical probes

and lead compounds for drug discovery. In addition to detecting
binding sites, algorithms have been developed to score these
binding sites based on whether they can accommodate a small
molecule. Both SiteMap and fpocket provide descriptors to
assess binding sites that are suitable for small-molecule ligands
based on the amino acid composition of the binding site and its
collective physicochemical properties. SiteMap uses the hydro-
phobicity and accessibility of a detected binding site to assess
how likely a small-molecule inhibitor will bind. It provides two
scores, SiteScore and DrugScore. The latter score goes beyond
just assessing a binding site for ligand binding. It measures
whether a binding site is druggable, or whether it possesses
similar properties to other binding sites that have led to
FDA-approved drugs. fpocket provides a measure called the
druggability score, which is a general logistical model based on
the local hydrophobic density of the binding site, as well as a
hydrophobicity and normalized polarity score. The discovery of
binding sites within structures that are encoded by overexpressed
genes with clinical relevance is highly significant as these binding
sites can be used to develop novel cancer therapeutics that are
likely to exhibit greater efficacy in humans.

In addition to druggability, the binding sites must be
functionally important to serve as targets for small molecules.
For example, binding sites located at enzyme active sites or at
the interface between a protein–protein complex are expected
to disrupt protein function. Protein kinases are one example of
an enzyme class with druggable binding sites that occur at the
enzyme active site.27 The ATP binding site of kinases is highly
druggable with a SiteMap SiteScore and DrugScore above 1.1.28

There are fewer small-molecule inhibitors of protein–protein
interactions, which is partly due to the lack of druggable
binding sites at protein–protein interfaces. The only examples of
PPI inhibitors that have shown in vivo efficacy, such as MDM2/p53
or BcL-xL, possess druggable binding sites (DrugScore of 0.92 and
0.82, respectively).29 Therefore, the identification of binding sites
that are considered druggable at protein–protein interaction
interfaces can provide new avenues to develop chemical probes
and cancer therapeutics. Finally, it is worth mentioning that
binding sites located outside an enzyme active site or protein–
protein interface can also be functionally relevant. These binding
sites may modulate protein function in an allosteric manner
through long-range interactions that involve dynamic changes
of the target protein.30–34 Allosteric inhibitors have been success-
fully used to inhibit kinase activity and in some cases, such as
AKT, have shown more promise than competitive inhibitors.

Here, we collect gene expression profiles for 10 cancer types
from TCGA and compare the expression profiles between cancer
and normal samples to identify genes that are overexpressed in
each cancer type. We search the Protein Data Bank for crystal
structures of the protein products of these genes. We scan the
surface of these proteins and identify binding sites. The func-
tional relevance of these binding sites is explored by classifying
them into known enzyme active sites, protein–protein inter-
action sites, or other sites that may lie outside of functional
sites. To further explore the biological outcome of small mole-
cules that bind to these binding sites, proteins harboring
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binding sites are further characterized in the context of a global
PPI network and cancer signaling pathways to gain insight into
the biological effect of binding at these binding sites. Patient
data is used to investigate the correlation of overexpressed
genes with clinical outcome. Our analysis uncovered new
unexplored and potentially druggable and clinically-relevant
protein targets. The study also provides new avenues for the
rational design of small-molecule probes for well-established
oncogenes. This is the first study that maps binding pockets
on three-dimensional structures of the PDB within the context
of cancer genomic data.

Results
Three-dimensional structures of proteins encoded by
differentially-expressed genes

We collected mRNA gene expression profiles of 10 cancer types
from TCGA: breast invasive carcinoma (BRCA), colon adeno-
carcinoma (COAD), glioblastoma multiforme (GBM), head-and-
neck squamous cell carcinoma (HNSC), kidney renal clear cell
carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), thyroid adenocarcinoma (THCA),
triple-negative breast cancer (TNBC), and uterine corpus endo-
metrioid carcinoma (UCEC). For each cancer type, we collected
the gene expression profiles of both normal and tumor samples
from RNA sequencing platforms using TCGA’s Level 3 data.
A search from among the 20 192 reference proteins using
UniProt35 identifiers led to 7044 proteins that are encoded by
TCGA overexpressed genes (Table 1 and Table S1, ESI†). For
each cancer type, we identified the number of overexpressed
genes with protein products having at least one high-resolution
crystal structure by mining the Protein Data Bank (PDB). A total
of 5069 unique protein chains on 2758 crystal structures from
the PDB mapped to at least one of the 7044 overexpressed
genes. In cases where more than one crystal structure was
identified for a protein, the computer program CD-HIT was
used to cluster the protein sequences of the crystal structures to
find a set of non-redundant representative structures for the
given protein. This resulted in 1624 unique crystal structures
of proteins encoding overexpressed genes. The total number of
proteins that encoded overexpressed genes ranged from 839 for
TNBC to 2096 for LUSC (Table 2). Overall, the percentage of
differentially-expressed genes with at least one crystal structure
spanning at least a portion of the gene sequence ranges from
20% in LUSC to 34% in GBM. Additionally, we introduce more

stringent cutoffs to distinguish between proteins that can act
as probes versus those that feature druggable binding sites by
increasing cutoffs of both the log2 fold change and the drugg-
ability property of a binding site. Using these increased cutoffs,
we identify 5218 overexpressed proteins in TCGA, with only 1218
having a high quality crystal structure at the PDB (Table 1).

Identification of binding sites on protein structures at the PDB

Using the three-dimensional structure of overexpressed genes
for each disease, we scanned their surfaces for binding sites
using the SiteMap computer program. SiteMap identifies bind-
ing sites by overlaying a three-dimensional grid around the
entire protein to determine the van der Waals energies at each
point of the grid (site point). By linking together site points on
the protein surface that are protected from the solvent, SiteMap
identifies potential binding sites on a protein surface. Each binding
site identified by SiteMap is evaluated based on its ability to bind a
ligand (SiteScore) and its druggability (DrugScore). Both SiteScore
and DrugScore use the weighted sums of the same parameters,
namely the (i) number of site points in the binding site;
(ii) enclosure score that is a measure of how open the binding
site is to solvents; and (iii) hydrophilic character of the binding
site (hydrophilic score). Unlike DrugScore, SiteScore limits the
impact of hydrophilicity in charged and highly polar sites.
A binding site with SiteScore and DrugScore of 0.8 is considered
to be able to fit a small molecule ligand. SiteScore and Drug-
Score values closer to 0.8 are considered ‘difficult’ to drug,
while binding sites with SiteScore and DrugScore closer to 1.1
are classified as highly ‘druggable’.28 In this work, we consider
a binding site with SiteScore and DrugScore values of 0.8 or
greater as able to be probed and a binding site with DrugScore
greater than 1.0 as druggable.

Among 1624 overexpressed proteins with at least one high-
resolution human crystal structure, 1044 (B64%) had at least
one binding site (Table 1). Similarly, among the 1218 highly
overexpressed proteins with crystal structures, 405 (B33%) had
at least one druggable binding site. For individual diseases,
roughly 30% of proteins with crystal structures corresponding
to highly overexpressed genes possessed at least one druggable
binding site (Table 2). For example, 51 proteins with a crystal
structure from among 211 in TNBC had a druggable binding site,
while 114 proteins with a crystal structure in LUAD were found
to have a binding site among 363. Generally, we found more
binding sites than proteins with crystal structures, suggesting
that although many of the proteins harbored more than one

Table 1 Structural coverage of TCGA and the human proteome

TCGA druggable binding sites
(log2 FC Z 2.0, DS Z 1.0)

TCGA binding sites
(log2 FC Z 1.5, DS Z 0.8) All proteins

Total number of proteins 5218 7044 20 192
Proteins with structure 1218 1624 4124
Proteins with druggable binding sites 405 1044 2607
Number of druggable binding sites 502 2214 5498

ENZ 126 434
PPI 55 231
OTH 331 1576
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binding site, a large portion might only act as probes rather than
druggable sites. An average of about 0.38 druggable binding sites
were identified per protein with crystal structures. For example, a
total of 145 druggable binding sites were identified on the 429
proteins with crystal structures corresponding to differentially-
expressed GBM genes. Among the most frequently overexpressed
proteins with druggable binding sites are the members of the
matrix metalloproteinases (MMPs) and protein kinases related to
cell signaling (Fig. S1, ESI†).

Classification of binding sites

To characterize the potential functional impact of each of these
binding sites, we classified each binding site by its functional
role based on its structural features and location on the protein
surface, particularly whether it corresponds to a catalytic site
or to a binding site located at a protein–protein interaction
interface. Using the proximity of known structural features and
the functional annotations of key residues, we characterize each
binding site on the protein structure of overexpressed genes
from TCGA into three groups: enzyme (ENZ), protein–protein
interaction (PPI), and other (OTH). Fig. S2 (ESI†) shows examples
of each of the three binding sites. For example, the ATP binding
site of a protein kinase is classified as enzyme (ENZ), while a
binding site at the interaction interface between two members
of the protein families CDKs and cyclins are classified as PPI.
All other binding sites are referred to as ‘‘other’’ (OTH). Within
the binding sites that we identified, there is a wide distribution
of binding site functions for each cancer type (Tables 1 and 2).
Overall, there are many more ‘OTH’ binding sites than ENZ and
PPI across all tumors. OTH binding sites constitute approxi-
mately 70% of the binding sites observed, while ENZ and PPI are
observed in about 20 and 10% of structures, respectively. Among
those binding sites that we classify as druggable, the distributions
are 25, 11, and 66% for the ENZ, PPI, and OTH binding sites,
respectively. OTH binding sites may correspond to uncharac-
terized enzyme active sites or may occur at PPI interfaces that
have not been characterized.

Cavities at enzyme active sites

Enzyme active site binding sites were identified by first map-
ping known catalytic residues from Catalytic Site Atlas (CSA)36

and UniProtKB35 onto the identified structures of each protein.

CSA identifies catalytic residues as those that are (i) directly
involved in a catalytic mechanism; (ii) alter the pKA of another
residue or water involved in the catalytic mechanism; (iii) stabilize a
transition or intermediary state; and/or (iv) activate a substrate.36

UniProt defines these residues as being directly involved in
catalysis.35 If one of the catalytic residues was within the binding
site, we classify the binding site as ENZ. In total, we identified
434 unique enzyme active site binding sites and 126 druggable
binding sites on proteins that are encoded by overexpressed
genes at TCGA (Table 1). The number of druggable ENZ binding
sites ranged from 10 for HNSC to 49 for LUSC. For example,
there were 34, 21, and 38 druggable enzyme binding sites for
GBM, TNBC and LUAD, respectively (Table 2). We further classify
enzymes by their catalytic function and distinguish between the
druggability of the binding site (Fig. S3, ESI†). We treat kinases
separately from the transferases. When kinases and transferases
are combined, they, along with the hydrolases, are the largest
group among the enzyme active site binding sites. There were 70,
91, 83, and 141 oxidoreductases, transferases, kinases, and hydro-
lases, respectively. Lyases, isomerases, and ligases, on the other
hand, were the least common among proteins with ENZ binding
sites (26, 16, and 9, respectively).

Cavities at protein–protein interaction interfaces

Despite the fact that protein–protein interactions play a crucial
role in a range of diseases including cancer, few successful PPI
inhibitors have been developed to date. This is attributed to
the fact that PPI interfaces are usually large and devoid of well-
defined binding cavities. Druggable binding sites that occur
at protein–protein interfaces could be used to develop small
molecules to disrupt the protein–protein interaction. PPI bind-
ing sites were identified by looking at the crystal structures with
protein complexes with respect to the representative structures
for a given protein. For each representative structure of a given
protein, we went back to our sequence-based clustering approach
in CD-HIT and identified the set of protein structures that shared
significant sequence identity with the representative structure.
We then aligned all the crystal structures from this alternative set
of structures back onto the representative structure. This super-
imposition resulted in the identification of PPI interfaces that
might not have appeared in the reference structure and their
positions with respect to the previously identified binding sites.

Table 2 Distribution of protein structures and druggable binding sites among cancer types (log2 FC Z 2.0, DS Z 1.0)

Cancer type Cancer name
Total number
of proteins

Proteins
with
structure

Proteins with
druggable
binding sites

Number of
druggable
binding sites

Binding site type

ENZ PPI OTH

BRCA Breast invasive carcinoma 1314 280 79 93 29 14 54
COAD Colon adenocarcinoma 971 187 47 64 15 8 45
GBM Glioblastoma multiforme 1168 429 161 145 34 13 99
HNSC Head and neck squamous cell carcinoma 697 128 28 34 10 4 21
KIRC Kidney renal clear cell carcinoma 1437 376 132 158 32 19 109
LUAD Lung adenocarcinoma 1780 363 114 169 38 15 117
LUSC Lung squamous cell carcinoma 2096 402 111 158 49 16 96
THCA Thyroid adenocarcinoma 888 207 65 103 27 7 72
TNBC Triple-negative breast carcinoma 839 211 51 64 21 10 38
UCEC Uterine corpous endometrioid carcinoma 1449 332 95 136 37 17 86

Paper Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 5
:3

9:
07

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6mb00231e


This journal is©The Royal Society of Chemistry 2016 Mol. BioSyst., 2016, 12, 3067--3087 | 3071

In total, we identified 231 unique binding sites located at
protein–protein interaction interfaces, of which only 55 were
druggable. As expected, there were significantly fewer binding
sites that occurred at PPI interfaces than any of the other
classes of binding sites. These ranged from 4 for HNSC to 19
for KIRC. For example, there were 13, 10, and 15 druggable PPI
binding sites identified for GBM, TNBC, and LUAD proteins,
respectively (Table 2).

Proteins with binding sites located at both enzyme active sites
and protein–protein interaction interfaces

While OTH binding sites were predominant among the differ-
ent cancer types, the ENZ and PPI binding sites give greater
insight into the binding site’s function. Interestingly, there are
proteins that contain binding sites that are classified as both
ENZ and PPI (Table 3). Of these 24 proteins, 10 have binding
sites that are druggable and are part of the enzyme active site
and a PPI interface. Among these are proteins that are impli-
cated in cancer progression and metastasis, such as CDA37

(Fig. 1A), MMP1438 and DDR1.39 In these cases, the binding site
at the catalytic site is also part of a PPI interface. Many of the
cases where the ENZ and PPI binding sites overlap correspond to
binding sites that occur at the active site of proteases. The
binding partner is usually a protease inhibitor, for example,
AGT and TIMP1 in ANPEP and MMP14, respectively. Generally,
these interactions may not be promising targets since proteolytic
activity may contribute to tumor invasion and metastasis.
However, the overexpression of protease inhibitors such as TIMPs
and serpins suggest that inhibition of proteases may oppose
growth and metastasis of a tumor.

Other proteins contain distinct enzyme and PPI binding
sites (Table 4). Of these 24 proteins, only ALOX12 and NR1L2
feature both druggable ENZ and PPI binding sites. These
proteins can be placed into two categories based whether or
not the binding sites are on the same protein domains. Some
have ENZ and PPI binding sites on the same domain such as
the decarboxylase GAD1, which has a catalytic site as well as a

Table 3 Proteins with binding site that is both ENZ and PPI

Symbol Name

Interaction partner

PDB Symbol Name

ANPEP Aminopeptidase N 4FYSC AGT Angiotensinogen
CDA Cytidine deaminase 1MQ0A CDA Cytidine deaminase
CTSV Cathepsin L2 3KFQCa CSTA Cystatin-A
DDR1 Epithelial discoidin domain-containing receptor 1 3ZOSA DDR1 Epithelial discoidin domain-containing receptor 1
DNM1 Dynamin-1 2X2ED DNM1 Dynamin-1
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 1ZNQRa GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GLA Alpha-galactosidase A 3HG3B GLA Alpha-galactosidase A
GSG2 Serine/threonine-protein kinase haspin 4OUCBa HIST2H3A Histone H3.2
HDC Histidine decarboxylase 4E1OEa HDC Histidine decarboxylase
HOGA1 4-Hydroxy-2-oxoglutarate aldolase, mitochondrial 3SO5Aa HOGA1 4-Hydroxy-2-oxoglutarate aldolase, mitochondrial
KIF3C Kinesin-like protein KIF3C 3B6VB KIF3C Kinesin-like protein KIF3C
MMP14 Matrix metalloproteinase-14 3MA2B TIMP1 Metalloproteinase inhibitor 1
PCSK9 Proprotein convertase subtilisin/kexin type 9 3BPSPa PCSK9 Proprotein convertase subtilisin/kexin type 9
PGC Gastricsin 1AVFQ PGC Gastricsin
PGD 6-Phosphogluconate dehydrogenase, decarboxylating 2KJVC PGD 6-Phosphogluconate dehydrogenase, decarboxylating
PKLR Pyruvate kinase PKLR 4IMAC PKLR Pyruvate kinase PKLR
PNLIPRP2 Pancreatic lipase-related protein 2 2PVSBa PNLIPRP2 Pancreatic lipase-related protein 2
PNP Purine nucleoside phosphorylase 4ECEEa PNP Purine nucleoside phosphorylase
REN Renin 3G72Aa REN Renin
RNASE2 Non-secretory ribonuclease 2BEXB RNH1 Ribonuclease inhibitor
RRM1 Ribonucleoside-diphosphate reductase large subunit 2HNCB RRM1 Ribonucleoside-diphosphate reductase large subunit
SEPT3 Neuronal-specific septin-3 3SOPB SEPT3 Neuronal-specific septin-3
TDO2 Tryptophan 2,3-dioxygenase 4PW8Ea TDO2 Tryptophan 2,3-dioxygenase
UCHL1 Ubiquitin carboxyl-terminal hydrolase isozyme L1 3IFWB UBC Polyubiquitin-C

a The identified binding site is druggable (DS Z 1.0)

Fig. 1 Examples of proteins with both ENZ and PPI binding sites. Proteins
are represented in cartoon format. The monomer structure with identified
binding sites is in white. SiteMap binding sites are shown as spheres, bound
ligands are shown as ball-and-sticks. (A) The homodimeric structure of
CDA (PDB: 1mq0.B) with a bound inhibitor at a binding site classified as
both ENZ and PPI. (B) The homodimeric structure of NAMPT (PDB: 4o0z.B)
with an ENZ (peach, bound inhibitor) and a PPI (blue) binding site on the
same domain. (C and D) The protein kinase (PDB: 2vwy.A) and ligand
binding domain (PDB: 2hle.A) of EPHB4 featuring an ENZ and a PPI binding
site on separate domains. The binding site on the protein kinase domain is
not shown as spheres, but is occupied by the bound inhibitor (green).
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PPI binding site at its homodimer interface. Another example is
the phosphoribosyltransferase NAMPT, which is implicated in
cancer metabolism,40 and has an ENZ binding site with an
inhibitor bound as well as a PPI binding site between the
homodimer structure (Fig. 1B). Other proteins have ENZ and
PPI binding sites on separate domains. For example, the serine/
threonine-protein kinase PLK1 has both an enzyme ATP binding
site on its protein kinase domain and a binding site at the PPI
interface at its POLO-box domain. Another similar example is the
receptor tyrosine kinase EPHB4, which has an enzyme ATP binding
site on its protein kinase domain (Fig. 1C) and a binding site at the
PPI interface with an ephrin ligand EFNB2 on its ligand binding
domain (Fig. 1D). These binding sites may be used to develop
allosteric modulators. Small molecules that bind to the PPI bind-
ing site may alter substrate binding to the active site. A small
molecule inhibitor of enzyme activity may affect the protein–
protein interaction of the protein.

Unclassified binding sites

Binding sites that were neither enzyme active sites nor located
at protein–protein interactions were classified as OTH. In total,
more than 1500 of these binding sites were identified on proteins
that are encoded by differentially-expressed genes. These binding
sites could potentially be either unassigned enzyme active sites,
part of structurally unresolved protein–protein interaction sites,
or allosteric sites. A binding site is considered allosteric only if it
occurs on a protein that has enzyme activity or that engages
other ligands at sites that are distant from the allosteric binding
site. Among the 782 proteins with OTH binding sites, 323 also
have at least one ENZ or PPI binding site. These binding sites

offer an opportunity to design allosteric small molecule mod-
ulators of enzyme activity or protein–protein interactions.
Allosteric regulation of enzyme activity has been successfully
achieved with small molecules in several systems.41 For example,
small-molecule kinase inhibitors have been developed to bind
to allosteric binding sites to inhibit the enzyme activity of the
protein kinase.42 More recently, small molecules that bind to an
allosteric binding site on the Ral GTPase was shown to modulate
the distal interaction with its effector protein.43

Many OTH binding sites occur on proteins with existing ENZ
and/or PPI binding sites, which may be potential allosteric sites
for protein inhibition. When the enzyme active site is well
characterized on a protein surface, additional binding sites
represent opportunities for allosteric inhibition of the protein’s
function. For example, the sulfotransferase SULT2B1 has four
binding sites on its protein surface (Fig. 2A). The ENZ binding
site is not shown on the figure but encompasses the adenosine
nucleotide. Three additional OTH binding sites were detected
on the surface of the protein and represent potential sites for
allosteric sites. Another example of a protein with both ENZ
and OTH binding sites is the protein kinase RET (Fig. 2B). In
this structure, a known inhibitor occupies the ENZ ATP binding
site, while an additional allosteric binding site is formed near
the aC helix. Similarly, there are proteins with both PPI and
OTH binding sites. One example is the PPI between CHN2 and
SLC9A1 (Fig. 2C), where an a-helix from SLC9A1 occupies two
PPI binding sites on CHN2. An additional potentially allosteric
OTH binding site is formed on the backside of CHN2. Another
example is the protein complex formed between PLAUR, PLAU,
and VTN (Fig. 2D). In this example, binding sites were found on

Table 4 Proteins with both ENZ and PPI binding sites

Symbol Name

Interaction partner

PDB Symbol Name

ACMSD 2-Amino-3-carboxymuconate-6-semialdehyde
decarboxylase

4IH3A ACMSD 2-Amino-3-carboxymuconate-6-semialdehyde
decarboxylase

ADH1C Alcohol dehydrogenase 1C 1HSOA ADH1C Alcohol dehydrogenase 1C
ALOX12 Arachidonate 12-lipoxygenase, 12S-type 3D3LBa ALOX12 Arachidonate 12-lipoxygenase, 12S-type
AOC1 Amiloride-sensitive amine oxidase [copper-containing] 3MPHB AOC1 Amiloride-sensitive amine oxidase [copper-containing]
BHMT Betaine-homocysteine S-methyltransferase 1 1LT7B BHMT Betaine-homocysteine S-methyltransferase 1
CTSE Cathepsin E 1TZSP CTSE Cathepsin E
DDC Aromatic-L-amino-acid decarboxylase 3RBFB DDC Aromatic-L-amino-acid decarboxylase
DDX39A ATP-dependent RNA helicase DDX39A 1T6NB DDX39A ATP-dependent RNA helicase DDX39A
EPHB2 Ephrin type-B receptor 2 2QBXD Antagonist peptide (Ephrin binding site)
EPHB4 Ephrin type-B receptor 4 2HLEB EFNB2 Ephrin-B2
GAD1 Glutamate decarboxylase 1 3VP6A GAD1 Glutamate decarboxylase 1
GPI Glucose-6-phosphate isomerase 1JIQB GPI Glucose-6-phosphate isomerase
HK2 Hexokinase-2 2NZTA HK2 Hexokinase-2
HMGCS2 Hydroxymethylglutaryl-CoA synthase, mitochondrial 2WYAD HMGCS2 Hydroxymethylglutaryl-CoA synthase, mitochondrial
NAMPT Nicotinamide phosphoribosyltransferase 4O0ZA NAMPT Nicotinamide phosphoribosyltransferase
NR1I2 Nuclear receptor subfamily 1 group I member 2 3CTBBa NR1I2 Nuclear receptor subfamily 1 group I member 2
NTRK1 High affinity nerve growth factor receptor 1WWWV NGF Beta-nerve growth factor
PLK1 Serine/threonine-protein kinase PLK1 1Q4KE Phosphopeptide
PYGL Glycogen phosphorylase, liver form 2ZB2B PYGL Glycogen phosphorylase, liver form
RHOC Rho-related GTP-binding protein RhoC 3KZ1A ARHGEF11 Rho guanine nucleotide exchange factor 11
SULT1C2 Sulfotransferase 1C2 3BFXA SULT1C2 Sulfotransferase 1C2
TH Tyrosine 3-monooxygenase 2XSNC TH Tyrosine 3-monooxygenase
TPH2 Tryptophan 5-hydroxylase 2 4VO6B TPH2 Tryptophan 5-hydroxylase 2
UPP1 Uridine phosphorylase 1 3EUFB UPP1 Uridine phosphorylase 1

a Both ENZ and PPI binding sites are druggable (DS Z 1.0).
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the monomer structure of the apo protein. After superimposi-
tion of additional crystal structures back onto the representa-
tive structure, two of the three detected binding sites were
classified as PPI. The two separate PPI binding sites occupy the
respective interfaces between PLAUR–PLAU and PLAUR–VTN. An
additional OTH binding site was also detected on the protein
surface and represents an allosteric site.

A search of protein–protein interaction networks to identify
OTH binding sites located at PPI interfaces

The majority of OTH binding sites occur on proteins with no
discernable ENZ or PPI binding sites. To determine whether
these binding sites could potentially be located at protein–
protein interaction interfaces, a database of predicted protein–
protein complexes known as PrePPI was explored.44 The PrePPI
method uses both structural and non-structural evidence to
predict whether two proteins form a complex. For complexes
predicted based on structural information, PrePPI super-
imposes monomeric crystal structures onto a reference complex
based on the structural similarities of the monomeric structures
with the two structures forming the interaction interface. This
model is then evaluated based on how well the individual
residues of the predicted interaction interface overlap with
the structural model. If the likelihood ratio of this structural
modeling is above a given cutoff, PrePPI provides the identifiers
of both the individual proteins and the reference structure for
further evaluation. For the 458 proteins that contained only
binding sites classified as OTH, we evaluated the structural

models given by PrePPI to determine whether or not OTH
binding sites overlapped with potential PPI interfaces. These
458 proteins are represented by 395 unique crystal structures
consisting of 806 binding sites of unknown function. Of these
806 OTH binding sites, 48 were on proteins without models
of structural complexes in PrePPI. Among the remaining 758
OTH binding sites, we identified 17 OTH binding sites on 13
proteins that are likely binding sites at protein–protein inter-
faces (Table 5). In each of these 17 cases, a previously classified
OTH binding site was predicted by PrePPI to be part of a
known protein–protein interaction interface, and perhaps
directly contributing to the PPI itself. It is interesting to note
that several of these predicted protein–protein interactions are
well-established despite the lack of a co-crystal structure: these
include the ANK1–ILK45 and CHN1–RAC146 interactions. In each
of these cases, there was a high degree of homology between
the structure containing the OTH binding site and the PrePPI
protein–protein complex to which it was superimposed. In most
cases, however, the protein containing the OTH binding site did
not show any homology with a protein in a PrePPI complex.
In these cases, the similarity between the interaction interfaces
of the two proteins and a model protein complex was used. The
NCS1–PPP3CA, LCN1–OVCH1, and ZBTB32–BCL6 interactions
are examples in which the interaction was uncharacterized in
both the literature and existing PPI databases. These three inter-
actions were predicted based on the structural complementarity
of both the interaction interface and the crystal structure.
Overall, we predict that approximately 2% of OTH binding sites
with unknown function to be part of a previously uncharacter-
ized PPI interface.

Cancer signaling pathways

Pathways reveal signaling transduction across a cascade of
proteins that elicit a variety of cell phenotypes. Individual
targets in these pathways are potential sites through which
small-molecule inhibition is expected to enhance or alter
the subsequent cell phenotype. Alteration of individual genes
within these signaling pathways lead to cancer related pro-
cesses such as cell growth and adhesion. We have identified 27
cancer related signaling pathways in KEGG47 and their respec-
tive proteins. Using the members in each of these signaling
pathways, we map binding sites onto these individual proteins.
We distinguish between binding sites with DrugScore greater
than 0.8 on proteins with log2 fold change greater than 1.5
(i.e., able to be probed) (Fig. 3A) and those with DrugScore greater
than 1.0 and log2 fold change greater than 2 (i.e., druggable
binding sites) (Fig. 3B). While some signaling pathways like the
cell cycle contained binding sites of all functional types, no
binding sites could be identified for the Hedgehog pathway
on differentially-expressed genes. To address cross-talk between
signaling pathways, binding sites were also evaluated as being
either unique to that signaling pathway or on proteins that occur
in multiple signaling pathways. In a majority of cancer signaling
pathways, there were more binding sites that occurred in multiple
signaling pathways than in a signaling pathway, revealing pro-
teins targets that are involved in multiple signaling processes.

Fig. 2 Examples of proteins with potentially allosteric OTH binding sites.
Proteins are represented in cartoon format. The monomer structure with
identified binding sites is in white. SiteMap binding sites are shown as
spheres, bound ligands are shown as ball-and-sticks. (A) SULT2B1 (PDB:
1q1q.A) with an ENZ binding site occupied by a nucleotide and three
additional OTH binding sites (green, blue, yellow). (B) RET (PDB: 2iiv.A) with
an ENZ binding site occupied by the bound inhibitor and an additional
OTH binding site (green). (C) CHP2 (PDB: 2bec.A) with two PPI binding
sites (green, blue) at the interface with SL9CA1 (PDB: 2bec.B) and an
additional OTH binding site (peach). (D) The superimposed structure of
PLAUR (PDB: 1ywh.M) with two PPI binding sites at the interfaces with VTN
(PDB: 3bt1.B, green) and PLAU (PDB: 3bt1.A, yellow) and an additional OTH
binding site (peach).
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Only the Citrate Cycle, HIF-1, and PPAR signaling pathways had
many more binding sites that were unique to the signaling
pathway itself than in multiple signaling pathways. In signaling
pathways such as focal adhesion and cytokine–cytokine receptor
interactions, almost all of the druggable binding sites belonged to
proteins that were involved in cross-talk across cancer signaling
pathways. Finally, signaling pathways such as the cell cycle and

Hippo pathways have an even mix of binding sites on unique
and overlapping proteins.

Correlation with patient survival for proteins encoded by
differentially-expressed genes

We collected patient survival data from TCGA clinical records
for each disease to identify the impact of gene expression on

Fig. 3 Binding sites in cancer related signaling pathways. Proteins with binding sites were mapped to 27 cancer related signaling pathways in KEGG.
Identified binding sites were divided based on whether the protein was exclusive to one signaling pathway or occurred in multiple signaling pathways. (A)
Identified binding sites had DrugScore greater than 0.8 on proteins with log2 fold change greater than 1.5. (B) Identified binding sites had DrugScore
greater than 1.0 and log2 fold change greater than 2.

Table 5 Proteins with potential PPI binding sites identified from search against PrePPI

Symbol Name Binding site

Predicted PPI

Model Symbol Name

AK3 GTP:AMP phosphotransferase AK3,
mitochondrial

1ZD8A2 2BWJ AK5 Adenylate kinase isoenzyme 5

ANK1 Ankyrin-1 1N11A3 2JAB ILK Integrin-linked protein kinase
CHN1 N-chimaerin 3CXLA3 1OW3 RAC1 Ras-related C3 botulinum toxin substrate 1
HOGA1 4-Hydroxy-2-oxoglutarate aldolase,

mitochondrial
3S5OA1a 3DAQ HOGA1 4-Hydroxy-2-oxoglutarate aldolase, mitochondrial

HPD 4-Hydroxyphenylpyruvate dioxygenase 3ISQA1a 1SQI HPDL 4-Hydroxyphenylpyruvate dioxygenase-like protein
HPD 4-Hydroxyphenylpyruvate dioxygenase 3ISQA5 1SQI HPDL 4-Hydroxyphenylpyruvate dioxygenase-like protein
LCN Lipocalin-1 3EYCA1a 2F91 OVCH1 Ovochymase-1
NCS1 Neuronal calcium sensor 1 1G8IB1 1AUI PPP3CA Serine/threonine-protein phosphatase 2B catalytic

subunit alpha isoform
NCS1 Neuronal calcium sensor 1 1G8IB2a 1AUI PPP3CA Serine/threonine-protein phosphatase 2B catalytic

subunit alpha isoform
RAP1GAP Rap1 GTPase-activating protein 1 1SRQA1 3BRW RAP1A Ras-related protein Rap-1A
RHCG Ammonium transporter Rh type C 3HD6A1 2NUU RHAG Ammonium transporter Rh type A
RHCG Ammonium transporter Rh type C 3HD6A4 2NUU RHAG Ammonium transporter Rh type A
RHCG Ammonium transporter Rh type C 3HD6A5 2NUU RHAG Ammonium transporter Rh type A
SHMT2 Serine hydroxymethyltransferase,

mitochondrial
3OU5A1 3GBX SHMT2 Serine hydroxymethyltransferase, mitochondrial

STXBP2 Syntaxin-binding protein 2 4CCAA2 3C98 STX1A Syntaxin-1A
THEM5 Acyl-coenzyme A thioesterase THEM5 4AE7A1 1Q4T THEM4 Acyl-coenzyme A thioesterase THEM4
ZBTB32 Zinc finger and BTB domain-containing

protein 32
3M5BB1 3BIM BCL6 B-cell lymphoma 6 protein

a The binding site is druggable (DS Z 1.0).
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overall survival of cancer patients. To determine the overall
survival rate, we first identified the date of death or date of the
last checkup for deceased and living patients, respectively. For
each differentially-expressed gene among the 10 diseases we
considered, the median expression value was used to divide
patient tumors into two groups, high and low expression. For a
given gene, we then paired a patient’s gene expression with
their survival outcome to build a Cox proportional hazards
regression model for differentially-expressed genes. The ratio of
the hazard rates between the high and low expression groups
are summarized by a metric known as the hazard ratio. The
hazard ratio derived from the regression model defines the
probability that an event will occur in the next time interval. In
this model, this time interval is made sufficiently small that the
hazard rate is considered instantaneous. Therefore, the hazard
ratio is used to describe the ratio between the hazard rates of
two groups, that is, the survival of patients expressing a gene at
high and low levels. In total, we identified 1343 differentially-
expressed genes across all 10 diseases with a hazard ratio above
1 and log2 fold change above 1.5. Among them, 202 contained
at least one binding site (Fig. 4A). Both KIRC (121 total) and
LUAD (57 total) had the most number of proteins that were
both overexpressed and correlated with patient outcome. There
were 45 druggable genes that were found to be both over-
expressed and correlated with patient outcome in more than

one cancer type. The most frequently occurring are MELK and
RRM2 in 4 separate cancers, while another 9 protein have
significant fold changes and hazard ratios in 3 cancers. The
binding sites on these 202 proteins show a wide distribution in
both their druggability and binding site type (Fig. 4B). Of the
601 unique binding sites on these proteins, 102 are ENZ, 46 are
PPI, 444 are OTH, and 9 are classified as both ENZ and PPI.
Both the SiteScore and DrugScore of the PPI binding sites have
upper limits of about 1.1 for both metrics, while there are many
ENZ and OTH binding sites that exceed this cutoff. Similarly,
we focused on the subset of the proteins that were highly
overexpressed and featured druggable binding sites. In total,
we identified 60 proteins with at least one druggable binding
site across 10 diseases with a log2 fold change greater than 2.0
and hazard ratio greater than 1.0 (Fig. 4D). Similarly, there are
far fewer binding sites among proteins that fit these criteria. Of
the 92 binding sites, 20 are ENZ, 6 are PPI, 65 are OTH, and 1 is
both ENZ and PPI (Fig. 4E).

Protein–protein interaction network

In addition to looking at differentially-expressed genes in the
context of their expression, we addressed their impact on the
global protein–protein interaction network. Networks have
been used to not only model biological relationships, such
as the relationship between drugs and diseases48 or genes

Fig. 4 Proteins with binding sites that are both overexpressed and correlate with patient outcome. (A) Fold change versus hazard ratio across all cancer
types on proteins with log2 FC Z 1.5, HR 4 1.0, and DrugScore 4 0.8. (B) SiteScore and DrugScore of binding sites by functional annotation for proteins
in A. (C) Degree versus betweenness centrality from PPI network for all proteins with log2 FC Z 1.5 and HR 4 1. Proteins are colored coded based on
whether there was a high quality crystal structure (blue), a crystal structure but no identifiable binding sites (orange), binding sites with DrugScore
between 0.8 and 1.0 (gray), and druggable binding site with DrugScore greater than 1.0 (yellow). (D) Fold change versus hazard ratio across all cancer
types on proteins with druggable binding sites with log2 FC Z 2.0, HR 4 1.0, and DrugScore 4 1.0. (E) SiteScore versus DrugScore of druggable binding
sites with log2 FC Z 2.0, HR 4 1.0, and DrugScore 4 1.0. (F) Degree versus betweenness centrality from PPI network for all proteins with log2 FC Z 2.0,
HR 4 1.0, and DrugScore 4 1.0.
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and diseases,49 to understand their underlying mechanisms,
but also to identify new drug targets by identifying the relation-
ships between a drug’s side effects50 or gene expression
profile.51 Using experimental data, a global protein–protein
interaction network was constructed from physical interactions
in humans by integrating data from seven major interaction
databases. This resulted in 203 068 non-redundant protein–
protein interactions. To address the robustness of the network,
we further filtered the interactions by only keeping those
interactions that appeared in at least two of the seven data-
bases. This resulted in a network with 38 164 non-redundant
protein–protein interactions. We then identified the network
properties of each protein within this network to measure
the centrality and essentiality of each protein to the overall
network. Among the topological properties of a given protein
are its degree, which describes the number of interactions that
are formed by that protein, and its betweenness centrality,
which describes the number of shortest paths that go through
the given protein. In a biological context, betweenness centrality
is a measure of the available paths that a signal can travel
through a given network.52 Thus, proteins with high between-
ness are thought to be essential to biological function and are
frequently targeted in drug discovery.53 For example, TP53 has a
betweenness centrality and degree of 4.1 � 10�2 and 236,
respectively, while EGFR is 2.3 � 10�2 and 181 for the same
properties. We examine the topological properties of all proteins
that are overexpressed (log2 FC Z 1.5) and whose expression
correlate with patient outcome (Fig. 4C). Of these 1343 proteins,
1001 (B75%) did not have a high quality crystal structure and an
additional 141 (B10%) had a structure but no binding sites. Of
the remaining proteins, 117 (9%) and 84 (6%) have binding sites
and druggable binding sites, respectively. When the differential-
expression cutoff is increased to 2 and the minimum DrugScore
is increased to 1.0, 60 proteins have at least one druggable
binding site (Fig. 4F). Among the proteins with the highest
centrality and degree are PLK1, KPNA2, AURKA, and AURKB.

New unexplored targets for the development of small-molecule
probes and cancer therapeutics

For each of the previously identified 60 targets, we integrate
their structural, genomic, biological, and clinical data to exam-
ine their druggability. We divide these targets into those that
are already established in cancer (Table 6) and those that are
uncommon or novel (Table 7) based on the number of citations
found in PubMed. Similarly, we analyzed the 202 proteins that
were identified using the lower cutoffs in fold change and
binding site DrugScore (Table S2, ESI†). We rank-ordered the
top targets for each cancer based on their interconnectivity in
the PPI network. Among these potential targets, we see a variety
of biological processes represented, including many involved
in the immune response, metabolism, homeostasis and cell
cycle. Similarly, some are well-studied in cancer but lack small-
molecule inhibitors, while others are have no co-crystallized
small-molecule inhibitors but inhibitors have been reported
in the literature. For example, the well-studied transcription
regulator TOP2A is altered in cancer cells resulting in chromosome

instability and is among the genes that are overexpressed and
correlate with survival, but has many topoisomerase-specific
inhibitors available.54 Other genes may act as markers for
cancer and indicate late progression into cancer or are vital
to the immune response against tumorigenesis. However, there
are many targets whose biology and lack of potential inhibitors
may prove to be interesting targets for future considerations.
We highlight examples of proteins with ENZ binding sites that
have seldom been considered in cancer and lack therapeutics
(e.g. PYCR1, QPRT, HSPA6), or are well-studied in cancer but
lack small-molecule inhibitors (e.g. PKMYT1, STEAP3, NNMT)
(Fig. S4, ESI†). Similarly, we highlight examples of proteins with
PPI binding sites that have not been previously targeted by
small-molecule inhibitors and are either seldom considered in
cancer (e.g. CASC5, ZBTB32, and CSAD), or are well-studied in
cancer but lack small-molecule inhibitors (e.g. HNF4A, MEF2B,
and CBX2) (Fig. S5 and Table S3, ESI†). OTH binding sites can
provide an avenue to modulate either enzymatic function or
protein–protein interactions of the target. Compounds that
bind to OTH sites could act either in an orthosteric manner if
the binding site happens to be the binding site of a substrate or
protein, or allosterically if the binding site is outside an enzyme
active site or protein binding site. Among the genes whose
overexpression strongly correlated with patient outcome and
that possessed an OTH binding site, several had never been
studied in cancer before nor do they have small-molecule
inhibitors either in the literature or in co-crystallized complexes.
We highlight four examples that span a variety of tumors: a
protein of unknown function FAM83A, a water channel AQP2, a
serine protease SERPIND1, and a protein associated with the
immune response TNFAIP8L2 (Fig. S6, ESI†).

Among these targets, 26 have been previously probed with
small-molecule ligands and X-ray crystallography (Table S4,
ESI†). Interestingly, many of these co-crystallized structures
occur at binding sites at or below our higher DrugScore cutoff
of 1.0, suggesting that a more stringent cutoff may discard
otherwise druggable binding sites. Additionally, we mapped
these druggable binding sites to conserved protein domains,
and find that these binding sites are mainly parts of the protein
kinase, serpin, kinesin, and peptidase domains (Table S5, ESI†).
When we consider only those without co-crystallized small-molecule
inhibitors, protein kinases and trypsin domains are removed.
The majority of binding sites across both targeted and
untargeted proteins are classified as OTH. In well-studied systems
where the active site is known, these OTH sites represent
opportunities for allosteric regulation.

We next looked at the secondary structure of residues that
compose the individual binding sites of these proteins across
their individual binding site annotations. By examining the
residues around a binding site, we generalized the type of
secondary structures that were used to construct the binding
site itself (Fig. S7, ESI†). The majority of binding sites identified
were a mixture of secondary structures or random coils among all
proteins with or without small molecule inhibitors. Combined,
these two secondary structures generally making up the large
majority of all binding sites in each binding site type. In each

Paper Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 5
:3

9:
07

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6mb00231e


This journal is©The Royal Society of Chemistry 2016 Mol. BioSyst., 2016, 12, 3067--3087 | 3077

T
ab

le
6

E
st

ab
lis

h
e

d
ca

n
ce

r
ta

rg
e

ts
w

it
h

d
ru

g
g

ab
le

b
in

d
in

g
si

te

Pr
ot

ei
n

N
et

w
or

k

Si
gn

al
in

g
pa

th
w

ay
s

C
an

ce
r

B
in

d
in

g
si

te

Sy
m

bo
l

N
am

e
D

eg
re

e
B

et
w

ee
n

n
es

s
(�

10
6
)

D
is

ea
se

FC
H

R
(9

5%
C

I)
Pu

bl
ic

at
io

n
s

St
ru

ct
u

re
A

ll
E

N
Z

PP
I

O
T

H

PL
K

1
Se

ri
n

e/
th

re
on

in
e-

pr
ot

ei
n

ki
n

as
e

PL
K

1
74

58
76

.7
C

el
l

cy
cl

e
B

R
C

A
3.

7
1.

8
(1

.2
–2

.7
)

77
6

2O
W

B
A

1a
1

0
0

K
IR

C
2.

3
2.

4
(1

.7
–3

.3
)

LU
A

D
3.

5
1.

8
(1

.2
–2

.6
)

C
D

C
20

C
el

l
d

iv
is

io
n

cy
cl

e
pr

ot
ei

n
20

h
om

ol
og

37
13

79
.5

C
el

l
cy

cl
e,

u
bi

qu
it

in
m

ed
ia

te
d

pr
ot

eo
ly

si
s

LU
A

D
4.

0
1.

6
(1

.1
–2

.3
)

29
6

4G
G

D
B

1
0

0
1

C
C

N
B

1
G

2/
m

it
ot

ic
-s

pe
ci

fi
c

cy
cl

in
-B

1
34

93
4.

3
C

el
l

cy
cl

e,
p5

3
B

R
C

A
2.

6
1.

6
(1

.1
–2

.3
)

22
14

2B
9R

B
1

0
0

1
LU

A
D

3.
0

1.
8

(1
.2

–2
.6

)
A

U
R

K
A

A
u

ro
ra

ki
n

as
e

A
28

16
84

.1
B

R
C

A
3.

2
1.

6
(1

.1
–2

.3
)

68
6

2J
4Z

B
1a

1
0

0
LU

A
D

2.
8

1.
5

(1
.0

–2
.1

)
M

A
D

2L
1

M
it

ot
ic

sp
in

d
le

as
se

m
bl

y
ch

ec
kp

oi
n

t
pr

ot
ei

n
M

A
D

2A
27

11
94

.3
C

el
l

cy
cl

e
LU

A
D

2.
7

1.
7

(1
.2

–2
.4

)
22

1
2V

64
F

1
0

1
0

A
U

R
K

B
A

u
ro

ra
ki

n
as

e
B

25
11

99
.7

K
IR

C
2.

9
2.

7
(1

.9
–3

.8
)

50
0

4A
F3

A
2a

1
0

1
LU

A
D

3.
8

1.
5

(1
.0

–2
.1

)
N

E
K

2
Se

ri
n

e/
th

re
on

in
e-

pr
ot

ei
n

ki
n

as
e

N
ek

2
21

60
6.

0
LU

A
D

3.
9

1.
8

(1
.2

–2
.6

)
11

5
2X

K
4A

1
0

0
1

B
U

B
1

M
it

ot
ic

ch
ec

kp
oi

n
ts

er
in

e/
th

re
on

in
e-

pr
ot

ei
n

ki
n

as
e

B
U

B
1

21
40

1.
1

B
R

C
A

3.
6

1.
6

(1
.1

–2
.4

)
39

7
4R

8Q
A

3
1

0
2

K
IR

C
2.

3
2.

1
(1

.5
–2

.9
)

LU
A

D
3.

0
1.

8
(1

.2
–2

.6
)

ZA
P7

0
T

yr
os

in
e-

pr
ot

ei
n

ki
n

as
e

ZA
P-

70
19

27
8.

3
R

as
K

IR
C

3.
2

1.
6

(1
.2

–2
.3

)
70

2
4K

2R
A

2
0

0
2

C
H

E
K

1
Se

ri
n

e/
th

re
on

in
e-

pr
ot

ei
n

ki
n

as
e

C
h

k1
18

58
0.

9
C

el
l

cy
cl

e,
p5

3
LU

A
D

2.
2

1.
5

(1
.0

–2
.1

)
77

2R
0U

A
1a

1
0

0
C

C
N

E
1

G
1/

S-
sp

ec
if

ic
cy

cl
in

-E
1

13
11

1.
8

C
el

l
cy

cl
e,

p5
3,

PI
3K

-A
kt

B
R

C
A

3.
0

2.
1

(1
.4

–3
.2

)
28

0
1W

98
B

1
0

1
0

LU
A

D
3.

5
1.

5
(1

.1
–2

.2
)

C
3

C
om

pl
em

en
t

C
3

9
11

91
.2

K
IR

C
3.

4
1.

5
(1

.1
–2

.0
)

34
68

2W
II

A
;2

W
II

B
6

0
2

4
F2

Pr
ot

h
ro

m
bi

n
9

44
3.

3
K

IR
C

3.
8

2.
5

(1
.8

–3
.4

)
33

38
4N

ZQ
A

1
0

0
1

T
F

Se
ro

tr
an

sf
er

ri
n

9
35

3.
3

H
IF

-1
K

IR
C

4.
4

2.
0

(1
.5

–2
.8

)
25

56
3V

8X
B

2
0

0
2

C
C

N
A

2
C

yc
li

n
-A

2
9

80
.6

C
el

l
cy

cl
e

K
IR

C
2.

1
2.

2
(1

.6
–3

.0
)

31
2

2B
PM

D
1

0
0

1
LU

A
D

3.
0

2.
1

(1
.4

–3
.0

)
H

N
F4

A
H

ep
at

oc
yt

e
n

u
cl

ea
r

fa
ct

or
4-

al
ph

a
9

55
.7

H
N

SC
2.

3
1.

4
(1

.0
–1

.9
)

17
3

4I
Q

R
E

1
0

0
1

C
T

LA
4

C
yt

ot
ox

ic
T

-ly
m

ph
oc

yt
e

pr
ot

ei
n

4
8

46
.5

K
IR

C
3.

0
1.

7
(1

.2
–2

.4
)

16
03

2X
44

D
1

0
0

1
T

T
K

D
u

al
sp

ec
if

ic
it

y
pr

ot
ei

n
ki

n
as

e
T

T
K

6
11

.2
C

el
l

cy
cl

e
B

R
C

A
3.

1
1.

5
(1

.0
–2

.3
)

15
5

2Z
M

D
A

1a
1

0
0

LU
A

D
3.

8
1.

7
(1

.2
–2

.5
)

A
LO

X
5

A
ra

ch
id

on
at

e
5-

li
po

xy
ge

n
as

e
5

26
8.

6
K

IR
C

2.
1

1.
7

(1
.2

–2
.3

)
40

3
3O

8Y
A

5
1

0
4

K
IF

11
K

in
es

in
-li

ke
pr

ot
ei

n
K

IF
11

4
0.

9
LU

A
D

2.
9

1.
6

(1
.1

–2
.3

)
14

4
4A

P0
A

1
1

0
0

IT
G

A
M

In
te

gr
in

al
ph

a-
M

3
16

06
.8

K
IR

C
2.

1
1.

4
(1

.0
–1

.9
)

12
06

4M
76

B
1

0
0

1
A

D
A

A
d

en
os

in
e

d
ea

m
in

as
e

3
50

.2
K

IR
C

2.
4

2.
1

(1
.5

–2
.9

)
18

38
3I

A
R

A
1

0
0

1
T

O
P2

A
D

N
A

to
po

is
om

er
as

e
2-

al
ph

a
3

13
.2

K
IR

C
2.

1
1.

7
(1

.3
–2

.4
)

36
7

4F
M

9A
3

0
0

3
LU

A
D

4.
1

1.
5

(1
.0

–2
.1

)
N

N
M

T
N

ic
ot

in
am

id
e

N
-m

et
h

yl
tr

an
sf

er
as

e
2

1.
8

K
IR

C
4.

0
1.

7
(1

.3
–2

.4
)

76
2I

IP
A

1
1

0
0

M
M

P9
M

at
ri

x
m

et
al

lo
pr

ot
ei

n
as

e-
9

2
0.

0
K

IR
C

4.
3

1.
8

(1
.3

–2
.5

)
62

30
1L

6J
A

1
1

0
0

IT
G

A
X

In
te

gr
in

al
ph

a-
X

1
0.

0
K

IR
C

3.
4

1.
5

(1
.1

–2
.1

)
73

3
4N

E
N

A
1

0
0

1
FA

B
P5

Fa
tt

y
ac

id
-b

in
d

in
g

pr
ot

ei
n

,
ep

id
er

m
al

1
0.

0
PP

A
R

K
IR

C
2.

1
1.

7
(1

.3
–2

.4
)

88
4L

K
PA

1
0

0
1

A
K

R
1B

10
A

ld
o-

ke
to

re
d

u
ct

as
e

fa
m

il
y

1
m

em
be

r
B

10
1

0.
0

K
IR

C
2.

8
2.

0
(1

.4
–2

.7
)

11
8

4J
II

X
1a

1
0

0
C

Y
P2

D
6

C
yt

oc
h

ro
m

e
P4

50
2D

6
0

0.
0

K
IR

C
2.

8
1.

7
(1

.2
–2

.3
)

91
5

3Q
M

4A
4a

0
0

4
M

M
P1

2
M

ac
ro

ph
ag

e
m

et
al

lo
el

as
ta

se
0

0.
0

K
IR

C
2.

9
1.

7
(1

.2
–2

.3
)

11
3

3B
A

0A
1

0
0

1

a
H

as
a

bi
n

d
in

g
si

te
th

at
h

as
a

co
-c

ry
st

al
li

ze
d

sm
al

l
m

ol
ec

u
le

in
h

ib
it

or
.

Molecular BioSystems Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 5
:3

9:
07

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6mb00231e


3078 | Mol. BioSyst., 2016, 12, 3067--3087 This journal is©The Royal Society of Chemistry 2016

T
ab

le
7

U
n

co
m

m
o

n
ca

n
ce

r
ta

rg
e

ts
w

it
h

d
ru

g
g

ab
le

b
in

d
in

g
si

te

Pr
ot

ei
n

N
et

w
or

k
C

an
ce

r
B

in
d

in
g

si
te

Sy
m

bo
l

N
am

e
D

eg
re

e
B

et
w

ee
n

n
es

s
(�

10
6
)

Si
gn

al
in

g
pa

th
w

ay
s

D
is

ea
se

FC
H

R
(9

5%
C

I)
Pu

bl
ic

at
io

n
s

St
ru

ct
u

re
A

ll
E

N
Z

PP
I

O
T

H

K
PN

A
2

Im
po

rt
in

su
bu

n
it

al
ph

a-
1

50
31

52
.3

B
R

C
A

2.
2

1.
8

(1
.2

–2
.7

)
55

4E
4V

B
1

0
0

1
LU

A
D

2.
0

1.
5

(1
.0

–2
.1

)
FB

P1
Fr

u
ct

os
e-

1,
6-

bi
sp

h
os

ph
at

as
e

1
16

82
0.

8
G

B
M

2.
6

1.
5

(1
.0

–2
.3

)
34

2F
H

Y
A

1
0

0
1

K
IF

23
K

in
es

in
-li

ke
pr

ot
ei

n
K

IF
23

10
61

.5
LU

A
D

2.
9

1.
6

(1
.1

–2
.4

)
25

3V
H

X
H

1
0

0
1

O
R

M
1

A
lp

h
a-

1-
ac

id
gl

yc
op

ro
te

in
1

7
59

.0
K

IR
C

6.
1

1.
4

(1
.0

–1
.9

)
25

3K
Q

0A
1

0
0

1
PT

PN
22

T
yr

os
in

e-
pr

ot
ei

n
ph

os
ph

at
as

e
n

on
-r

ec
ep

to
r

ty
pe

22
6

12
.7

K
IR

C
2.

2
1.

5
(1

.1
–2

.1
)

23
4J

51
B

1
0

0
1

E
PH

A
8

E
ph

ri
n

ty
pe

-A
re

ce
pt

or
8

5
99

.1
U

C
E

C
5.

4
4.

7
(1

.0
–2

1.
5)

14
3K

U
LB

1
1

0
0

E
R

O
1L

E
R

O
1-

li
ke

pr
ot

ei
n

al
ph

a
4

10
.7

LU
A

D
2.

2
1.

7
(1

.2
–2

.4
)

13
3A

H
Q

A
2

1
0

1
PK

M
Y

T
1

M
em

br
an

e-
as

so
ci

at
ed

ty
ro

si
n

e-
an

d
th

re
on

in
e-

sp
ec

if
ic

cd
c2

-i
n

h
ib

it
or

y
ki

n
as

e
4

6.
1

C
el

l
cy

cl
e

K
IR

C
2.

9
1.

9
(1

.4
–2

.7
)

14
3P

1A
A

1
1

0
0

T
D

O
2

T
ry

pt
op

h
an

2,
3-

d
io

xy
ge

n
as

e
3

40
3.

6
K

IR
C

2.
7

1.
5

(1
.1

–2
.1

)
52

4P
W

8F
1

1
1

0
G

C
K

R
G

lu
co

ki
n

as
e

re
gu

la
to

ry
pr

ot
ei

n
2

20
0.

8
K

IR
C

2.
9

2.
5

(1
.8

–3
.5

)
15

4O
LH

A
3

0
0

3
SE

R
PI

N
B

3
Se

rp
in

B
3

2
4.

6
LU

A
D

2.
2

1.
7

(1
.2

–2
.4

)
35

2Z
V

6A
3

0
0

3
A

D
A

M
T

S4
A

d
is

in
te

gr
in

an
d

m
et

al
lo

pr
ot

ei
n

as
e

w
it

h
th

ro
m

bo
sp

on
d

in
m

ot
if

s
4

2
2.

2
K

IR
C

2.
0

1.
6

(1
.2

–2
.2

)
18

2R
JP

C
1a

1
0

0

SE
R

PI
N

B
4

Se
rp

in
B

4
2

1.
7

LU
A

D
4.

0
1.

5
(1

.0
–2

.1
)

7
2Z

V
6A

3
0

0
3

U
C

E
C

5.
0

4.
6

(1
.2

–1
7.

1)
M

E
LK

M
at

er
n

al
em

br
yo

n
ic

le
u

ci
n

e
zi

pp
er

ki
n

as
e

1
0.

0
B

R
C

A
3.

9
1.

6
(1

.0
–2

.3
)

63
4U

M
U

A
2a

1
0

1
LU

A
D

2.
7

1.
7

(1
.2

–2
.3

)
K

IR
C

4.
0

1.
5

(1
.0

–2
.1

)
U

C
E

C
3.

9
3.

6
(0

.9
–3

.6
)

PL
C

B
2

1-
Ph

os
ph

at
id

yl
in

os
it

ol
4,

5-
bi

sp
h

os
ph

at
e

ph
os

ph
od

ie
st

er
as

e
be

ta
-2

1
0.

0
C

al
ci

u
m

,
W

n
t,

Ph
os

ph
at

id
yl

in
os

it
ol

K
IR

C
2.

2
1.

5
(1

.1
–2

.0
)

8
2Z

K
M

X
4

0
0

4

PC
K

1
Ph

os
ph

oe
n

ol
py

ru
va

te
ca

rb
ox

yk
in

as
e,

cy
to

so
li

c
[G

T
P]

1
0.

0
C

it
ra

te
,

PP
A

R
,

PI
3K

-A
kt

LU
A

D
3.

8
1.

5
(1

.0
–2

.1
)

15
2G

M
V

A
1

0
0

1

T
N

FA
IP

8L
2

T
u

m
or

n
ec

ro
si

s
fa

ct
or

al
ph

a-
in

d
u

ce
d

pr
ot

ei
n

8-
li

ke
pr

ot
ei

n
2

1
0.

0
K

IR
C

2.
4

1.
6

(1
.1

–2
.2

)
3

3F
4M

A
1

0
0

1

A
N

X
A

8L
2

A
n

n
ex

in
A

8-
li

ke
pr

ot
ei

n
2

0
0.

0
K

IR
C

2.
1

1.
7

(1
.3

–2
.4

)
0

1W
45

B
1

0
0

1
G

SG
2

Se
ri

n
e/

th
re

on
in

e-
pr

ot
ei

n
ki

n
as

e
h

as
pi

n
0

0.
0

B
R

C
A

2.
0

1.
6

(1
.1

–2
.4

)
5

3D
LZ

A
1a

1
1

0
R

N
A

SE
T

2
R

ib
on

uc
le

as
e

T
2

0
0.

0
K

IR
C

3.
2

1.
9

(1
.3

–2
.6

)
27

3T
0O

A
1

0
0

1
N

C
F1

C
Pu

ta
ti

ve
n

eu
tr

op
h

il
cy

to
so

l
fa

ct
or

1C
0

0.
0

G
B

M
2.

5
1.

8
(1

.2
–2

.7
)

0
1N

G
2A

;
1K

Q
6A

2
0

2
0

X
D

H
X

an
th

in
e

d
eh

yd
ro

ge
n

as
e/

ox
id

as
e

0
0.

0
K

IR
C

2.
2

1.
5

(1
.0

–2
.1

)
34

2E
1Q

D
9

1
0

8
LU

A
D

4.
5

1.
9

(1
.4

–2
.7

)
C

H
I3

L2
C

h
it

in
as

e-
3-

li
ke

pr
ot

ei
n

2
0

0.
0

G
B

M
4.

8
1.

9
(1

.3
–2

.9
)

5
4P

8X
A

1
0

0
1

K
IR

C
2.

5
2.

0
(1

.5
–2

.8
)

A
LD

H
1L

1
C

yt
os

ol
ic

10
-f

or
m

yl
te

tr
ah

yd
ro

fo
la

te
d

eh
yd

ro
ge

n
as

e
0

0.
0

LU
SC

2.
5

1.
4

(1
.0

–1
.9

)
23

2C
FI

A
1

1
0

0

A
K

R
1D

1
3-

O
xo

-5
-b

et
a-

st
er

oi
d

4-
d

eh
yd

ro
ge

n
as

e
0

0.
0

K
IR

C
4.

5
1.

6
(1

.2
–2

.2
)

5
3U

ZW
B

1
1

0
0

SE
R

PI
N

D
1

H
ep

ar
in

co
fa

ct
or

2
0

0.
0

K
IR

C
3.

8
1.

6
(1

.2
–2

.2
)

5
1J

M
O

A
2

0
0

2
T

C
N

1
T

ra
n

sc
ob

al
am

in
-1

0
0.

0
LU

A
D

6.
9

1.
5

(1
.0

–2
.1

)
10

4K
K

JA
1

0
0

1
PA

R
P1

5
Po

ly
[A

D
P-

ri
bo

se
]

po
ly

m
er

as
e

15
0

0.
0

K
IR

C
3.

1
1.

5
(1

.1
–2

.1
)

5
3G

E
Y

A
1a

1
0

0

a
H

as
a

bi
n

d
in

g
si

te
th

at
h

as
a

co
-c

ry
st

al
li

ze
d

sm
al

l
m

ol
ec

u
le

in
h

ib
it

or
.

Paper Molecular BioSystems

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 5
:3

9:
07

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6mb00231e


This journal is©The Royal Society of Chemistry 2016 Mol. BioSyst., 2016, 12, 3067--3087 | 3079

case, the least frequently observed secondary structure among
these binding sites were the helix-like (i.e. a-helix, 310 helix, or
p-helix) and sheet-like structures (i.e. beta bridges and beta
bulges). We then examined the secondary structures of the
residues of the binding partner inside PPI binding sites. About
27 and 46% of the residues of the binding partners in the
binding site were coil-like and helical (a-helix, 310 helix, or p-
helix), respectively. Only 10% of the binding sites were char-
acterized by strand-like structures (b-sheet or b-bridge). The
remaining PPI binding sites were a combination of these.

Missense mutations on protein structures

A set of somatic mutations were obtained from a recent study
from TCGA’s Pan-Cancer initiative.55 We identified missense
mutations from this study onto patients in 7 of 10 diseases and
mapped these to protein structures. We classified these muta-
tions as being (i) adjacent to a binding site; (ii) elsewhere on the
protein surface; or (iii) buried in the interior of the protein
(Fig. 5A). We find that the majority of these missense mutations
are found on the surface of proteins but not within a predicted
binding site. The frequency of mutations occurring in the
interior of a protein is higher than the frequency of mutations
that occur at binding sites. We explored some of the proteins
with mutations occurring most frequently in the binding site
(Fig. 5B). They include well-known genes that have been

previously reported to be heavily mutated in cancer such as
PIK3CA,56 SI,57 and PTEN.58 On the most commonly mutated
target, PIK3CA, mutation rates are approximately five-fold less
at the binding site than the entire protein. Also, among the top
targets is BRAF, which features the common V600E mutation,
and has been used for the rational design of small-molecule
inhibitors of the mutant protein.59–61

We matched these proteins with missense mutations with
their gene expression levels and correlation with patient out-
come. We find 29 binding sites on 26 proteins that are (i)
overexpressed (log2 fold change Z2); (ii) correlate with patient
outcome (hazard ratio 41); and (iii) have a missense mutation
adjacent to a binding site in a given disease (Table 8). These 29
binding sites include 9 ENZ, 3 PPI, and 17 OTH pockets. Among
these mutations adjacent to binding sites is the W167L muta-
tion on the PPI interface between MAD2L1 and MAD1L1 in
LUAD (Fig. 5C). This interaction is part of the spindle assembly
checkpoint in the cell cycle.62 Considering the significant
reduction in contact area upon replacing tryptophan with
leucine, and the fact that tryptophan residues tend to often
occur at protein–protein interaction interfaces, we expect that
this mutation may impair the protein–protein interaction.
Another mutation is the R121P mutation adjacent to the
DNA-binding OTH binding site on EXO1 in LUAD (Fig. 5D).
The DNA-binding protein is also involved in DNA repair during

Fig. 5 Proteins with missense mutations. (A) Missense mutations were mapped to patients in 7 of 10 diseases (COAD, THCA, and UCEC not included).
Individual mutations were mapped to the protein structure and classified as being adjacent to the binding site, elsewhere on the protein surface, or buried
in the interior of the protein structure. (B) Percentage of samples with missense mutations adjacent to a binding site in a given disease, showing the top
20 proteins rank-order using the sum of frequencies. (C) The W167L (green stick) mutation on the PPI interface between MAD2L1 (white) and MAD1L1
(cyan) is shown in cartoon (PDB ID: 1GO4). The PPI binding site is shown as transparent spheres. (D) The R121P (green stick) mutation adjacent to the
DNA-binding OTH site (tan, transparent spheres) on EXO1 (white cartoon) (PDB ID: 3QEB). DNA in the binding site from the crystal structure is also shown
as cartoon. (E) The counts of missense mutations at the amino acid level divided classified as being adjacent to the binding site, elsewhere on the surface
of the protein, or buried in the protein interior. The original amino acid is listed row-wise and the subsequent mutation is listed column-wise.
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cell cycle regulation.63 Unlike the previous mutation, arginine
contains a positively charged group while proline is a neutral
non-polar amino acid.

We examined the mutation rates of individual amino acids
by looking at the wild-type and mutated amino acids as a result
of a mutation at each of the three locations on the protein
(Fig. 5E). We find differences in the relative frequencies of
specific point mutations between each location. For example,
mutations to alanine is less favored in the pocket or on the
surface of the protein than it is in the interior, especially at
charged or polar groups. Among the most common mutations
in the binding site and on the surface is from lysine to glutamic
acid, which occurs at a much lower frequency in the interior of
the protein.

Discussion

The sequencing of the genome of human tumors has provided
access to an unprecedented number of new opportunities
for the development of cancer therapeutics. While biological
methods such as siRNA or CRIPSR/Cas9 methods are useful tools
to explore the role of potential targets, chemical tools provide a
complementary approach to interrogate new targets. Small mole-
cules do not affect the expression of the target thereby causing
little disruption to the signaling networks. In addition, small
molecules have significantly greater precision as they can be

designed to binding to a single cavity within a protein and
modulate the function of the protein by disruption of protein–
protein interactions or enzyme activity. Small molecules can work
either in an orthosteric manner if they directly interfere with the
binding of a protein or a substrate. They can also work in an
allosteric manner by binding to cavities located outside protein–
protein and protein–substrate binding interfaces and modulating
the conformation and dynamics of the target.

For small molecules to engage their targets with high affinity,
a well-defined cavity that possesses suitable shape and physico-
chemical properties. The lack of such cavities is partly respon-
sible for the difficulty in developing small-molecule therapeutic
agents that bind directly to highly promising cancer targets
such as mutated RAS GTPase or transcription factors such as
c-MYC. Conversely, the success of kinases as oncology targets
can be attributed to the well-defined ATP-binding site. Using
binding sites of kinases and other druggable targets, several
algorithms have been developed to predict the druggable
nature of a binding site using the three-dimensional structure
of the protein that harbors them.64 Among them, SiteScore
and DrugScore, which have been developed using data from
binding sites occupied by approved drugs.25,28 Druggable sites,
the highly conserved nature of the ATP-binding site has been the
main impediment in the development of kinase drugs. Developing
highly selective kinase inhibitors is notoriously difficult, although
some successes have been reported. Identifying novel targets
with unique druggable binding sites located on potential cancer

Table 8 Mutations in binding site on overexpressed and clinically relevant genes

Symbol Name Cancer type Mutation Pocket Type

ADH1C Alcohol dehydrogenase 1C LUAD G205C 1HSZA1 ENZ
ADORA2A Adenosine receptor A2a BRCA R293P 3VG9A5 PPI
C3 Complement C3 KIRC C873Y 2WIIB4 OTH
CA6 Carbonic anhydrase 6 LUSC H113Q 3FE4A1 ENZ
CCNA2 Cyclin-A2 LUAD L341F 2BPMD1 OTH
CCNE1 G1/S-specific cyclin-E1 BRCA A338T 1W98B2 OTH
CHEK1 Serine/threonine-protein kinase Chk1 LUAD V46A 2R0UA1 ENZ
CYP2A6 Cytochrome P450 2A6 LUAD V306I 2PG6B1 OTH
CYP2D6 Cytochrome P450 2D6 KIRC L213P 3QM4A1 OTH
EXO1 Exonuclease 1 LUAD R121P 3QEBZ1 OTH
F2 Prothrombin KIRC R543L 4NZQA3 OTH
KIF15 Kinesin-like protein KIF15 LUSC G41A 4BN2C2 OTH
KIFC1 Kinesin-like protein KIFC1 LUAD G568W 2REPA1 ENZ
MAD2L1 Mitotic spindle assembly checkpoint protein MAD2A LUAD W167L 2V64F1 PPI
MELK Maternal embryonic leucine zipper kinase BRCA Q115R 4UMUA2 OTH

LUAD V271A 4UMUA2 OTH
NEK2 Serine/threonine-protein kinase Nek2 LUAD R140L 2XK4A1 ENZ
PCK1 Phosphoenolpyruvate carboxykinase, cytosolic [GTP] LUAD R137H 2GMVA3 OTH

A287S 2GMVA1 ENZ
G289W

PSPH Phosphoserine phosphatase LUSC M52T 1L8OA1 ENZ
RHCG Ammonium transporter Rh type C LUAD Q107H 3HD6A1 PPI
RRM2 Ribonucleoside-diphosphate reductase subunit M2 LUAD E207Q 2UW2A2 OTH
SERPINB3 Serpin B3 LUAD A45T 2ZV6A3 OTH
SERPINB4 Serpin B4 LUAD S33N 2ZV6A2 OTH
SULT4A1 Sulfotransferase 4A1 KIRC M80R 1ZD1A1 ENZ
TOP2A DNA topoisomerase 2-alpha LUAD E712V 4FM9A4 OTH

R736L 4FM9A7 OTH
TTK Dual specificity protein kinase TTK LUAD C604F 2ZMDA1 ENZ

BRCA G666E 2ZMDA1 ENZ
XDH Xanthine dehydrogenase/oxidase LUAD C43F 2E1QD3 OTH

N461T 2E1QD8 OTH
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targets may lead to cancer therapeutics with greater efficacy and
lower toxicity.

Here, in an effort to facilitate the chemical probing of new
targets in cancer, we explore RNA-seq data of 10 tumor types at
TCGA to identify unique and druggable binding sites on proteins
encoded by protein products of overexpressed genes. The large-
scale effort of TCGA to sequence the genome of tumors from
more than 30 cancers provides an unprecedented opportunity to
uncover new targets for the development of cancer therapeutics.
We identified genes whose mRNA levels are overexpressed in
tumors compared with normal tissue. Patient data provided by
TCGA was used to further narrow the list of targets to genes
whose overexpression correlates strongly with patient survival.
This was accomplished by constructing survival curves and
evaluating a hazard ratio for each overexpressed gene. Genes
with hazard ratio of 1 or greater where considered to correlate
with worse patient survival. For each of the 10 diseases that we
have considered in this work, we identified protein products of
genes whose mRNA levels are differentially-expressed that
strongly correlate with patient survival. Additionally, we explored
these targets in the context of cancer related signaling pathways
and the protein–protein interaction network.

The exponentially growing list of three-dimensional struc-
tures of proteins prompted us to search the PDB to identify
structures for protein products of up-regulated genes that we
identified. We used a stringent threshold for these scores to
ensure that small molecules that bind to the druggable binding
sites have the potential to be developed into therapeutic agents.
Among all up-regulated genes we found that 23% of their
protein products had a structure at the PDB. Among the
1218 proteins with structures, 405 (33%) had druggable bind-
ing sites. A similar ratio was found among individual diseases.
For example, 51 proteins with a crystal structure from among
211 in TNBC had a druggable binding site, while 114 proteins
with a crystal structure in LUAD were found to have a binding
site among a total of 363. When overexpressed genes are further
filtered by hazard ratio, a total of 54 proteins that possess
druggable binding sites and 65 possessed binding sites are
identified among 1344 differentially-expressed genes. There
were 15 druggable proteins that are present in multiple tumor
types. The most frequently-occurring were MELK in 4 tumors.

The presence of a binding site is not sufficient to serve as a
suitable target site for chemical probe development and drug
discovery. The binding site must possess functional relevance.
Its position must be located at a site such that the binding
of a small molecule will impair the function of the protein
harboring the binding site. For example, small molecules that
bind to a binding site located at an enzyme active site or protein–
protein interface will disrupt enzyme activity or protein–protein
interactions and thereby impair the function of the target
protein. Binding sites located outside an enzyme active site or
protein–protein interface, may or may not modulate the activity of
a protein. We classified all binding sites into enzyme active sites,
protein–protein interaction sites, or other sites with yet unknown
function that may provide an opportunity to modulate protein
function through an allosteric mechanism.

Many of the enzyme active sites occur on well-established
oncology targets or have been inhibited by small molecules.
However, there were several examples of enzymes whose func-
tion was explored in cancer but were never targeted with
small molecules; these include PKMYT1, STEAP3, and NNMT.
There were also several druggable active site binding sites that
occurred on enzymes that have seldom been considered in
cancer, such as PYCR1, HSPA6, and QPRT. We identified several
proteins whose overexpression correlate with patient outcome
that occurred at protein–protein interfaces. This discovery is
highly significant as protein–protein interactions have been
historically challenging due to the lack of well-defined binding
sites at protein–protein interfaces.65,66 Protein–protein interfaces
can offer an opportunity to develop highly selective compounds
since many of these interfaces are structurally unique. Among all
differentially-expressed proteins with binding sites, 18% have
binding sites that occurred at protein–protein interfaces. For the
proteins encoded by genes that correlate with patient survival,
we identified 28 binding sites (7 druggable) on 25 proteins that
occurred at protein–protein interfaces. Among these proteins, 13
have been studied in cancer. Examples include MEF2B, HNF4A,
and CBX2. The remaining 15 proteins have seldom been studied
in cancer, such as CASC5 and ZBTB32. Interestingly, several
protein structures possess both PPI and ENZ binding sites
either on the same domain (e.g. GAD1, NAMPT, and NR1I2) or
on different domains (e.g. EPHB2, PLK1, and NTRK1). Small
molecules that bind to a binding site on these proteins may
serve as allosteric modulator of PPI interactions.

We found that the majority of binding sites were not located
either at an enzyme active site or protein–protein interaction
site. We refer to these binding sites as other (OTH). Of the 601
unique binding sites on the 202 proteins encoded by genes
whose overexpression correlates with patient survival, 102 are
ENZ, 46 are PPI, 444 are OTH, and 9 have been classified as
both ENZ and PPI. It is likely that many of these OTH binding
sites occur at protein–protein interfaces. To explore this possi-
bility, we searched protein–protein interaction databases such
as PrePPI for binding partners. Among 759 OTH binding sites
located on overexpressed proteins, we identified 17 candidates
that have the potential to be located at PPI interfaces. Examples
of these proteins include ANK1, CHN1, and NCS1. While OTH
binding sites that occur at enzyme active sites or protein–
protein interaction sites can be used to develop probes that
directly modulates the function of the target harboring these
binding sites, the remaining OTH binding sites can provide an
opportunity to modulate receptors through an allosteric
mechanism.31,67 Whether a small molecule that binds to a
binding site will allosterically modulate enzyme function or a
PPI interaction is difficult to predict. Small molecules can serve
as positive or negative allosteric regulators.34,68,69 These OTH
binding sites can also be used for the development of small
molecules that can be attached to probes for proteasome
degradation.70

Finally, we mapped mutations that were previously identi-
fied at TCGA55 onto the three-dimensional structure of proteins
that are encoded by overexpressed genes that correlate with
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patient outcome. A recent study explored the role of mutations
on tumorigenesis71 and more recently using a structural
genomics based approach.72,73 Our work complements these
studies by identifying druggable binding pockets and classify-
ing pockets into whether they occur at enzyme active sites or
protein–protein interaction sites. Mutations that occur within
these pockets are expected to have direct consequences to the
function of a protein. These pockets could provide promising
targets for the development of small-molecule therapeutic
agents. Interestingly, several mutations occurred in enzyme
active sites. These mutations may either enhance or inhibit
enzyme activity. Most of the enzyme mutations appear to
involve dramatic changes in physico-chemical properties such
as H113Q, G568W, R140L, M80R for CA6, KIFC1, NEK2, and
SULT4A1. Others involved subtler mutations such as V46A,
A287S, and M52T for CHEK1, PCK1, and PSPH, respectively.
Since we have focused on proteins that are expected to be
overexpressed, it is likely that these mutations will further
enhance the activity of these enzymes. Three mutations
were identified to occur at protein–protein interfaces, R293P,
W167L, and Q107H, which correspond to ADORA2A, MAD2L1,
and RHCG, respectively. The first two may have disruptive effects
considering that proline residues tend to disrupt secondary
structures and tryptophan residues are generally believed
to tighten protein–protein interactions. The overwhelming
majority occurred at OTH binding sites. These mutations pro-
vide an opportunity to validate the importance of these pockets.
It suggests that these pockets may be located at unknown
active sites or protein–protein interfaces. Considering that
many of these OTH pockets occur on enzymes, it is more likely
that they may be located at a protein–protein interface and
could be useful targets for the disruption of protein–protein
interactions.

Materials and methods
Gene expression

Level 3 gene expression data expressed using RNA-seq (RNASeq
Version 2) technology for ten cancer types was retrieved from
The Cancer Genome Atlas (TCGA). Triple-negative breast cancer
(TNBC) patients were identified from a subset of patients in
BRCA by filtering clinical records for breast cancer patients who
were negative for estrogen receptor (ER), progesterone receptor
(PR), and Her2/neu. The gene expression data was used to build a
matrix of read counts for each sample against each mapped gene.
Only samples with designations of either the primary solid tumor
or the solid tissue normal were kept in this matrix. Differential
expression analyses between cancer and normal samples in the
RNA-seq expression profiles were conducted using default para-
meters in the edgeR74 package in R.75 Differentially-expressed
(overexpressed) genes were defined as those genes with p o 0.001
and Q o 0.05. Two log2 fold changes of Z2.0 and Z1.5 were used
to filtered genes for further analysis. Gene symbols provided
by TCGA were mapped to their respective UniProt IDs using
UniProt’s mapping tool (http://www.uniprot.org/mapping/).

Protein structures

An annotated set of 20 192 reference human protein identifiers
was retrieved from UniProtKB/SwissProt.35 The FASTA
sequences were retrieved for each of these proteins and used
to identify structures in the RCSB Protein Data Bank (PDB).76

Each FASTA sequence was queried against the pdbaa dataset
using BLASTP (protein–protein BLAST v2.2.25+).77 To limit the
search to protein structures that possess significant sequence
identity and coverage to the query sequence, only structures with
E-value o10�5, 490% sequence identity, and PDB sequence
coverage 480% were kept. We then identified the experimental
methodology, taxonomy of the identified protein chain, and the
structural resolution if the structure was from X-ray diffraction.
Previously identified structures were then filtered for only crystal
structures from human proteins with a resolution better than
3 Å. To reduce the number of redundant structures identified
by BLASTP and generate a representative set of crystal structures
associated with each protein, CD-HIT (v4.6.1)78 was used with
default parameters to cluster the FASTA sequences of the PDB
structures identified for each of the proteins. Only cluster
centers identified by CD-HIT were used to locate binding sites
on the structures for the protein. In total, 4124 proteins had at
least one crystal structure that met all of these criteria.

Binding site identification

Identification of druggable binding sites on the crystal struc-
tures was carried out using the Schrödinger Software Suite. For
each cluster identified by CD-HIT, the cluster centers (i.e. the
representative structures) were used to identify binding sites.
Structures were first retrieved from PDB and binding partners
were removed to identify the monomeric representative struc-
tures. All other heteroatoms, including solvent molecules and
bound ligands, were removed. Selenomethonine residues were
converted to methonines. These preprocessed PDB monomeric
structures were then processed using the Protein Preparation
Wizard workflow. Missing side chains and loops were added
with the Prime79 module. Disulfide bonds were added and
each crystal structure was protonated using PROPKA at pH 7.0.
Binding sites were identified using the SiteMap25 module in
Schrödinger on the processed structure. Up to 10 binding sites
were kept, while all other parameters were left default. Only
binding sites28 with SiteScore and DrugScore above 0.8 were
kept. The average coordinates of the SiteMap spheres were used
to identify the centroid of the binding site. Druggable binding
sites were distinguished as those with a DrugScore above 1.0.
In total, we identified 5498 binding sites on 2607 proteins.

Binding site annotation

PyMOL80 scripts were generated to create individual sessions
for each protein with druggable binding sites. The unprocessed
protein structure, including all bound ligands and other non-
solvent molecules was overlaid back atop the crystal structure.
In addition, all redundant structures from the CD-HIT clustering
were added and aligned back to the druggable protein. The location
of enzymatic binding residues were retrieved from UniProt35
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and Catalytic Site Atlas36 and highlighted on the processed
protein structures.

Each binding site identified by SiteMap was visually
inspected and manually annotated to determine its functional
role in the protein. If an enzymatic residue was in contact with
the SiteMap spheres, or if an enzymatic molecule or inhibitor
occupied the space of the spheres, the binding site was labeled
‘enzymatic’ (ENZ). If the binding site was at a protein–protein
interaction (PPI) interface on the original structure or on any of
the aligned structures, the binding site was labeled ‘PPI’.
Otherwise, if the binding site was neither enzymatic nor part
of the interaction interface, it was labeled ‘Other’ (OTH).
Binding sites of the recognition site of human leukocyte anti-
gens (HLAs) and heme cofactor binding site of Cytochrome
P450s were labeled ‘Other’.

Secondary structures for each of the binding sites and their
interaction partners were retrieved from DSSP.81 The secondary
structure of each residue of a crystal structure are classified into
helix, sheet, or coil in DSSP. The number of residues falling into
each category was retrieved for the residues within 5 Å of the
binding site. If there is at least a 60% consensus in the secondary
structures for these residues, it was assigned into that category.
Otherwise, the binding site was considered mixed.

Survival analysis

Kaplan–Meier curves were built using the survival82 package
in R.75 For each disease, each patient’s time to last follow-up or
time to death was collected from the clinical data depending on
whether or not the patient was deceased. A patient’s overall
survival was paired with their respective log2 CPM and for
diseases using RNA-seq. Expression levels for each gene was
separated into ‘high expression’ and ‘low expression’ groups
using the median expression of the gene across all patients for a
given disease. A Cox proportional hazards regression model was
fitted to the survival profile to determine the hazard ratio (HR) of
each gene. Genes were filtered using p o 0.05 and HR 4 1.0.

Signaling pathway

27 cancer related signaling pathways were collected from
KEGG.47 Individual proteins within each of these pathways
were collected and mapped to their respective UniProt IDs
using the REST API in KEGG. Any protein that could not be
mapped to a UniProt entry from the reference protein identi-
fiers was filtered out.

Protein–protein interaction network

A protein–protein interaction network was constructed using
the NetworkX83 module in Python by retrieving human PPI data
with experimental evidence from seven major interaction data-
bases: Biomolecular Interaction Network Database (BIND),84

BioGRID,85 Database of Interacting Proteins (DIP),86 Human
Protein Reference Database (HPRD),87 IntAct,88 Molecular
INTeraction database (MINT),89 and Reactome.90 Only those
interactions with at least two occurrences among the seven
databases were kept. The resulting network featured 9665
nodes and 38 164 edges.

Missense mutations

Mutations were obtained from a recent study by Kandoth
and coworkers.55 The work identified somatic variants
from 12 cancers as part of TCGA’s Pan-Cancer initiative. We
only use missense mutation data as other mutations result in
the insertion or deletion of amino acids from the protein
sequence, which would be very difficult to model onto the
three-dimensional structure of the protein. Mutations were
mapped using the sample ID barcode provided by TCGA to
match patients with both mutation and gene expression data.
The data for three diseases were not used since THCA was not
included in the original study, while COAD and UCEC had low
numbers of patient samples with matched gene expression
data. Genes were mapped from Ensembl Transcript IDs to
UniProt IDs using UniProt’s mapping tool. For each protein,
the subsequent amino acid position on the protein sequence
was mapped to the protein structure using the pairwise func-
tion in BLASTP. Each mutation was then classified by minimiz-
ing the Euclidean distance from the corresponding alpha
carbon of the mutated residue to the site points (grid spheres)
of each binding site on the protein structure. In addition, the
solvent-accessible surface area (SASA) of the mutated residue
was calculated using NACCESS.91 We used the SASA and
distance to the closest binding site to classify each mutation as
being (i) adjacent to a binding site; (ii) elsewhere on the protein
surface; or (iii) buried in the interior of the protein. If the
distance between the mutation and the closest binding site was
less than 4 Å, the mutation was classified as being adjacent to
the binding pocket. Otherwise, if the SASA of the mutated
residue was greater than 10 Å2, the mutation was classified as
being on the surface of the protein. If the mutation did not fit
into either of these criteria, it was classified as located in the
interior of the protein.
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