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Introduction

Visualizing the localization and trafficking of proteins in living
systems is the key to understand protein functions in their
native environment. Tracking and visualization by fluorescence
microscopy require methods that allow the site-specific labelling
of a protein of interest (POI). Established almost 20 years ago,"
the genetic fusion of a POI to an autofluorescent protein such
as the green fluorescent protein (GFP) revolutionized protein
imaging. The fusion of POIs with engineered, self-modifying
enzymes such as SNAP-> CLIP-,> TMP-*’ or Halo-tags® signifi-
cantly extended the scope to customized labelling by enabling
the use of reporter units with unique spectroscopic signatures.
Enzyme-based tags provide high specificity and enable fast
labelling reactions, which is an advantage when fast biological
processes ought to be analysed in time-lapse experiments. Yet,
the fusion of enzymes brings along a massive increase in size
(18-33 kDa). This can perturb protein trafficking and may impair
protein-protein interaction networks that rely on clustering. To
avoid potential interference with protein localization and protein
function, major efforts are spent to decrease the tag size. The
smallest tags currently accessible are provided by the incorpora-
tion of unnatural amino acids (UAA) by amber stop codon or
related technologies.”® In addition, the ligand-directed protein
labelling or traceless affinity labelling is independent of any
tag.”'® However, the establishment and incorporation of UAA in
mammalian cells still is very challenging and the traceless
affinity labelling requires a POI with a native binding pocket
as well as the exact knowledge of the binding site and ligand.
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molecules and (i) peptide—peptide interactions and enables site-specific protein visualization to investigate

Peptide-based recognition tags offer an attractive alternative
for protein labelling. The genetic fusion of peptide-tags is
straightforward, the size of 0.6-6 kDa is considerably small
and a variety of labelling chemistries allow the introduction of
virtually arbitrary reporter groups.

Peptide-tag based labelling methods are multifaceted and
can be categorised into three classes: (i) enzyme mediated
labelling, (ii) metal ion- or small molecule-dependent labelling
and (iii) labelling based on peptide-peptide interactions. We
will discuss the characteristics of the different approaches
with respect to specificity, speed, stability, tag size, toxicity
and versatility. Applications as well as shortcomings will be
explained. The review covers the literature until 2015 and
particularly emphasizes the most recent and most frequently
used developments. Additional information can be taken from
other comprehensive reviews.''

Peptide-tag based labelling by
enzymes — mechanisms
and characteristics

Enzymes offer a naturally occurring sequence-specificity for
site-selective modifications. Ligases such as biotin ligase, lipoic
acid ligase or tubulin tyrosine ligase are capable of transferring
molecular probes to a particular amino acid (aa) within a
recognition sequence. Similarly, transferases can be used to
transfer functional groups from a donor substrate to a specific
amino acid within a peptide sequence, as demonstrated for
phosphopantetheinyl transferases Sfp and AcpS, transglutaminase
or the phosphocholine transferase AnkX. Another possibility is to
use transpeptidase activity. Sortase A exchanges a part of the
recognition sequence with a separate peptide conjugated to a
labelling moiety. The specific modification of an amino acid side
chain can also be achieved with formylglycine-generating enzyme,
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Table 1 Characteristics of enzymatic labelling techniques. One-step labelling achieves the direct modification of a POl with a reporter group (e.g.
fluorescent probes). Two-step labelling involves in a first step the transfer of a chemically reactive functional group (e.g. azide, alkyne, biotin, hydrazine
conjugates) which is targeted in a second step upon reaction with a suitable modified reporter group (e.g. via SPAAC, biotin—streptavidin binding or

hydrazine formation)

Reported One-step or
tag Typical/reported concentrations and two-step
Enzyme Recognition tag positions  incubation conditions Reported applications labelling
Biotin ligase GLNDIFEAQKIEWHE (AP-tag) N-terminal, BirA-coxpression enables biotinylation In vitro, in vivo (cell ~ Two-step
(BirA) C-terminal, during protein expression; biotin surface labelling with
internal detection with streptavidin reporter fixed or live cells), cell
within 15-60 min at RT using fixed lysate isolated from
cells or at 4 °C using live cells;'”*" transgenic mice
Ligation of 1 mM keton probe (biotin
analogue) within 10-60 min at 32 °C,
subsequent detection with 1 mM
hydrazine probe within 10-60 min
at 4 °C in live cells®
Lipoic acid ligase DEVLVEIETDKAVLEVPGGEEE N-terminal, Labelling with 100-350 pM lipoic acid In vitro, in vivo (cell ~ One-step
(Lpla) (LAP-tag 1st generation) C-terminal, derivative for 15-120 min; probe detection surface labelling with and two-step
GFEIDKVWYDLDA (LAP-tag) internal 10-20 min; reaction temperature: live cell imaging)
21-37 uc25,28,29
Tubulin tyrosine VDSVEGEGEEEGEE (Tub-tag) C-terminal Labelling with 1 mM tyrosine derivative  In vitro Two-step
ligase (TTL) for 1-3 h; subsequent detection via
biocompatible labelling required 4-24 h;
reaction temperature: 30 or 37 °C*
Phospho- DSLEFIASKLA (ybbR-tag) N-terminal, Labelling with 1-10 pM CoA-derivative In vitro, in vivo (cell ~ One-step
pantetheinyl- GDSLSWLLRLLN (S6-tag) C-terminal, for 20-40 min; reaction temperature: surface labelling with and two-step
transferase GDSLDMLEWSLM (Al-tag) internal 37 °C389 fixed or live cells)
(Sfp and AcpS)

Transglutaminase PNPQLPF (Q1-tag) N-terminal, Labelling with 400-500 pM cadaverine In vitro, in vivo (cell ~ One-step
(TGase) PKPQQFM (Q2-tag) C-terminal, probe for 25-30 min or up to 4 h; surface labelling with and two-step
GQQQLG (Q3-tag) internal reaction temperature: 4 or 37 °C*"*° live cell imaging)

xxQxx (basic Q-tag)
AnkX/Lem3 TITSSYYR N-terminal, Labelling with 1 mM CDP-choline probe In vitro Two-step
C-terminal, derivative for <1 h; reaction temperature:
internal RT*
Sortase A (SrtA)  LPxTG C-terminal Labelling with 1-5 mM oligoglycine probe In vitro, in vivo (cell ~ One-step
for 1-5 h in vitro®**>/10 uM oligoglycine  surface labelling with and two-step
probe for 15-60 min in living cells; live cell imaging)
reaction temperature: 37 °C>°
Formylglycine- LCxPxR (aldehyde-tag) N-terminal, Labelling with 30-500 pM hydrazine In vitro, in vivo (cell ~ One-step
generating C-terminal, or aminooxy probes for 2 h or overnight  surface labelling with and two-step
enzyme (FGE) internal in vitro®>®°/1 mM labelling probe for 1 h live cell imaging)

in living cells; reaction temperature:
RT or 37 °C*'

RT - room temperature.

which naturally modifies a cysteine derived thiol group to an
aldehyde function (see Table 1).

Already in 1999 a 15 aa long acceptor peptide, termed AP-tag,
was reported to serve as a substrate for E. coli derived biotin
ligase (BirA). This enzyme promotes the conjugation of a
biotin to a lysine side chain within the AP-tag (Fig. 1A)."°
BirA-mediated biotinylation was demonstrated for many different
AP-tagged proteins in cell lysates including the transcription
factors GATA-1 and EKLF.'® Co-expression of AP-tagged and
BirA-tagged proteins allows the so-called proximity biotinylation
to study protein—protein interactions.'” This method is widely
used and has enabled investigations of homo- and hetero-
dimerization of chemokine receptors CXCR4, CCR2 and CCR5
in RPE cells'® or glycoprotein interactions during herpesvirus
entry into cells.’® Of note, the method also enables investiga-
tions of proximity between two proteins expressed on different
cells. For example, BirA-mediated biotinylation was used to
characterize the synaptic connectivity between the presynaptic

1732 | Mol. BioSyst., 2016, 12, 1731-1745

adhesion protein NRX-1 and the postsynaptic transmembrane
protein NLG-1 in vivo in Caenorhabditis elegans.’® In a recent
study, BirA-mediated biotinylation exposed the anterograde
trafficking of calcium activated potassium channels (K¢,3.1)
in polarized epithelial cells (including HEK293, MDCK, LLC-
PK1 and Caro-2 cells). The AP-tag was introduced into the
protein and BirA was fused to an ER-retaining sequence (KDEL)
to specifically label AP-tagged Kc,3.1 along the anterograde path-
way.”! Furthermore the endocytosis of the apical Na*/K*/2Cl~
co-transporter (NKCC2) equipped with an AP-tag between the
5th and 6th transmembrane domain was measured in real time
by total internal reflection fluorescence (TIRF) microscopy.
After BirA-mediated biotinylation, fluorescent staining was
performed with fluorescent streptavidin.?* BirA also accepts a
biotin derivative containing a ketone group. A comparison of biotin
ligases from different organisms revealed that Saccharomyces
cerevisiae and Pyrococcus horikoshii accept alkyne and azide
derivatives of biotin.>*** The biotin modifications enable

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Protein labelling by means of (A) biotin ligase (BirA), (B) lipoic acid ligase (LplA) or (C) tubulin tyrosine ligase (TTL). The red star indicates the

reporter group.

subsequent labelling of proteins such as epidermal growth
factor receptor (EGFR) on live cells by formation of acyl
hydrazones or Staudinger ligation.”?

A BirA cross-compatible technique uses E. coli derived lipoic
acid ligase (LplA), which catalyses the ligation of lipoic acid
to a sequence-specific lysine side chain in an ATP-dependent
manner (Fig. 1B).>>° LplA specifically recognizes the LAP-tag,
which consists of 22 aa, and accepts different lipoic acid
derivatives containing alkyne, azide, ¢trans-cyclooctene, aryl alde-
hyde or aryl hydrazine groups as well as fluorophores.*>*”~>°
Strain-promoted alkyne-azide cycloaddition (SPAAC), hydrazone
formation or Diels-Alder cycloaddition®® enabled the sub-
sequent chemical modification of the lipoic acid appendage
on LAP-tagged proteins such as CFP,>> BFP,*® low-density
lipoprotein receptor (LDLR),>® neurexin-1B*’ or actin.*® The
LplA mutant LplA"*”V has been reported to provide higher
ligation yields than the wild-type enzyme.?” In contrast to BirA,

This journal is © The Royal Society of Chemistry 2016

LplA accepts fluorescently labelled conjugates and permits one-
step labelling of the POI. LplA-mediated protein labelling was
demonstrated on HEK293T-, HeLa and COS-7 cells. A mini-
mized LAP-tag with only 13 aa®' was used to incorporate a
p-iodophenyl derivative as new bio-orthogonal handle into
proteins, which could be selectively addressed in a second step
by palladium-catalysed Sonogashira cross-coupling.** Wombacher
et al. reported norbornene-conjugated lipoic acid analogues, which
were introduced into LAP-tagged CFP and dihydrofolate reductase
from E. coli (eDHFR) and fluorescently labelled via inverse-electron
demand Diels-Alder reaction.*

The enzyme tubulin tyrosine ligase (TTL) allows the
C-terminal labelling of proteins with a 14 aa hydrophilic
recognition sequence called Tub-tag. TTL is a regulator of
microtubule homeostasis and usually promotes the coupling
of tyrosine to the a-tubulin C-terminus. Hackenberger and
Leonhardt showed that TTL is also able to incorporate tyrosine

Mol. BioSyst., 2016, 12, 1731-1745 | 1733
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derivatives containing azide, formyl, amine or nitryl groups
(Fig. 1C).** This enabled the two step labelling of GFP-specific
nanobodies with biotin, fluorescent probes or polyethylene
glycol (PEG) chains by means of SPAAC, Staudinger ligation,
Staudinger-phosphite reactions and hydrazone or oxime form-
ing reactions. Labelling also succeeded in E. coli lysate.

The use of transferases offers interesting alternatives to
ligase-mediated labelling. Phosphopantetheinyl transferases
(PPTase) such as Sfp and AcpS catalyse the transfer of a
phosphopantetheinyl (Ppant) group derived from coenzyme A
(CoA) to a serine residue within a specific recognition sequence
(Fig. 2A).>* Owing to an impressive substrate promiscuity of Sfp
and AcpS, CoA can be modified at its terminal thiol with small
molecules, including biotin, sugars, peptides, porphyrin and
fluorophores, the latter allowing one-step labelling similar to
LplA.>*77 Furthermore, a set of three specific tags is available:
ybbR-tag (11 aa), S6-tag (12 aa), preferentially recognized by Sfp
and Al-tag (12 aa) preferentially recognized by AcpS.*® The
ybbR-tag was successfully introduced at the N- and C-terminus,
or within the protein sequence as demonstrated for eGFP.”’
Orthogonal cell surface labelling with fluorescent CoA conju-
gates on living HeLa cells was demonstrated for S6-tagged EGFR
or Al-tagged transferrin receptor 1 (TfR1).>® The S6/A1 pair of
tags was also used to enable labelling of the tropomyosin
receptor kinase TrkA and the p75 neurotrophin co-receptor
(P75NTR) in SH-SY5Y cells.?® The A1-P75NTR construct was first
labelled with biotin-CoA using AcpS and then stained with

A) PPTase Sfp
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streptavidin-QDot525. Subsequently, the S6-TrkA construct
was biotinylated by using Sfp followed by labelling with
streptavidin-QDot655. To enable imaging of interactions
between chemokines and their fluorescent protein (FP)-tagged
receptors on live CHO-K1 cells, the chemokines CXCL12, CCL2
and CCL21 were expressed with a S6-tag at the C-terminus and
subjected to PPTase-mediated labelling with a fluorophore-CoA
conjugate.’® Co-localization of signals from the fluorophore
and the FP indicated receptor-chemokine interactions.

Transglutaminases (TGase) catalyse the formation of an
amide bond between the carboxamide of a glutamine side chain
and the e-amino group of a lysine side chain. TGases have been
used to attach small molecules to antibodies,"" modify proteins
by PEGylation®? or lipidation,*® site-specifically conjugate pro-
teins,** as well as immobilize proteins on solid support.*> CFP
and EGFR were labelled in vitro and on the surface of living
cells by means of guinea pig liver TGase (gpTGase), which
promotes the conjugation of labelled cadaverine (lysine ana-
logue conjugated to biotin, AlexaFluor586 or photoaffinity
moieties) with 6-7 aa long glutamine-rich Q-tags.*® Recent
studies described the use of tissue TGase (TG2) or microbial
TGase (mTGase).””*® The latter provides the advantage of
calcium-independent labelling. Transfer of propargylamine with
subsequent CuAAC modification was demonstrated for maltose
binding protein using mTGase.

Two enzymes from Legionella pneumophila were recently
investigated by Hedberg et al. for the reversible covalent labelling

Q OH y H '
B N N
OH sfp O(,)»o/xﬁor M\[o]/ ~g
POI POI
N "{>
|
o 28 @
NN Sy
g_z/\oo_oo_o/%\n/ \/\rr
[¢] (0]
"o
el O
Coenzyme A (CoA)-derivatives
R = biotin, sugars, peptides, porphyrin and fluorophores
B) AnkX / Lem3
QH |
PN ‘
OH AnkX 060 | OH
POI POI — @Sl
NH,
Lem3
2
OH OH
O° >N ¥ T |
O ~grhorbo~ AN
O~0
HO OH

CDP-choline derivative
R = PEG-fluorescein, quarternary or tertiary amines

Fig. 2 Protein labelling via (A) phosphopantetheinyl transferase (PPTase) Sfp or (B) phosphocholine transferase AnkX. The hydrolase Lem3 enables

removal of the label.
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of proteins. The first enzyme AnkX transfers a phosphocholine
moiety from a cytidine diphosphate choline (CDP-choline)
derivative to the second serine residue within the eight amino
acid recognition sequence TITSSYYR (Fig. 2B). The second
enzyme Lem3 is able to remove the label upon hydrolytic
cleavage of the transferred phosphocholine from the serine
side chain. The method tolerates fusion of the recognition
sequence to the N- or C-terminus, as well as into internal loops
as demonstrated for fluorescein labelling of model proteins
such as maltose binding protein, small ubiquitin-like modi-
fier and DrrA enzyme.*®

Remarkably small tag sizes are found for sortase A and
formylglycine-generating enzyme. The transpeptidase sortase
A (SrtA) derived from Staphylococcus aureus specifically recog-
nizes the short pentapeptide sequence LPXTG. SrtA cleaves the
amide bond between threonine and glycine, forms a reactive
thioester between the carboxyl group of threonine and an
enzyme-derived cysteine and promotes the ligation of this
reactive intermediate with an amino group of an oligoglycine
substrate by formation of a new amide bond (Fig. 3A). First
reports on SrtA as new protein engineering tool described
modifications of LPETG-tagged GFP with a set of various
oligoglycine substrates conjugated to peptides including
unnatural amino acids, proteins or small molecules like
folate.>® Subsequently, the substrate diversity was extended
to PEGylation, peptide-glycosylphosphatidylinositol conju-
gates or cyclised peptides.’’* SrtA-mediated labelling has
been used to label proteins with fluorophores, photocross-
linkers, biotin, alkyl chains and cholesterol on intact cells
such as HEK293T, CHO and HeLa cells.”*>® In a noteworthy

A) Sortase A

SrtA

(LPxTe) — ~
(e ®

Oligoglycine probe
with R = fluorophore, biotin, small molecule, ...

POI

B) Formylglycine-generating enzyme

HS

aldehyde-tag

FGE

POI

POI

aldehyde-tag

View Article Online

Review

study the bacterial toxin aerolysin was labelled with fluoro-
phores and biotin. The ability to form homo-heptameric pores
in membranes of target cells after binding to cell surface
receptors was not impaired and SrtA-mediated biotinylation
helped to identify aerolysin-receptor interactions, which are
responsible for aerolysin uptake.’” Recently LPETG-tagged
lipopeptides enabled the visualization of liposome trafficking
into lung cancer.”®

The formylglycine-generating enzyme (FGE) naturally co- or
post-translationally modifies a cysteine within the conserved
recognition motif CxPxR to an aldehyde-bearing formylglycine
(Fig. 3B).>° The hexapeptide sequence LCXPxR, termed “alde-
hyde tag”, was included at N-terminal, C-terminal or internal
sites as shown for maltose binding protein, human growth
hormone, bacterial sulfotransferase or antibodies. Because
FGE is endogenously expressed in most prokaryotes and
eukaryotes, the aldehyde moiety is formed without additional
intervention. For labelling with fluorophores, biotin, peptides
or PEG probes the aldehyde group was addressed in hydrazone
or oxime forming reactions.**®® The endogenous location of
FGE in the endoplasmic reticulum was exploited to specifi-
cally trace aldehyde-tagged proteins such as IgG antibody,
platelet-derived growth factor receptor (PDGFR) and glyco-
protein CD4 along the secretory pathway.®! Recently, a natural
glycosylation site within an Fc fragment was replaced by an
aldehyde tag, which allowed the introduction of tailor-made
glycoforms by means of oxime-forming reactions.®® Recent
work with recombinantly expressed FGE suggests that Cu" is
required as a cofactor in order to achieve high turnover in
formyl generating reactions.®”

(LPXT | Gn J4

Oxime formation with
aminooxy probe
R = fluorophore, biotin, PEG, peptide,...

HoN ‘O”‘

HoN.
2 H/'

Hydrazone formation with
hydrazine probe
R = fluorophore, biotin, PEG, peptide,...

aldehyde-tag

Fig. 3 Protein labelling via (A) sortase A (SrtA) and (B) formylglycine-generating enzyme (FGE).
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Enzymatic labelling techniques provide high specificity,
relatively small tag sizes and covalently bound labels. Yet
there are disadvantages. To achieve high labelling yields
rather long reaction times and/or high concentrations of
substrate are required. One of the fastest approaches to stain
proteins in living cells was reported for BirA with a total
labelling time of 20 min.>* However, the second step of this
two-step labelling method had to be performed at 4 °C to
reduce endocytosis of the target protein EGFR. Labelling with
SrtA and fluorescent oligoglycine conjugates was reported to
be achieved within 15 min on living HEK293T cells. But the
concentration of the oligoglycine substrate was considerably
high with 10 pM.>® At high concentrations of substrate the
specificity of labelling can be at stake and excessive washing
may be required to remove non-covalently bound substrate.
PPTase-mediated protein labelling is even performed at
1-150 uM concentration of biotin-CoA,**>” AlexaFluor488- or
TexasRed-CoA*® probes. Most other enzyme-based labelling
methods require higher concentrations of substrate. For
example, 1 mM ketone-containing biotin derivative is applied
in ligations by BirA.>* Some enzyme-catalysed reactions such
as the transpeptidase reaction catalysed by SrtA are reversible
which leads to decreases in labelling yields if the substrate is
applied at low concentration.’>** Many enzymes depend on
cofactors such as ATP (e.g. BirA,>*>* LplA,>>?%3! TTL*?), Mg**
(e.g. BirA,>*** Lpla,>>?%3 TTL,* PPTase’®?°) or Ca** (e.g.
TGase,*®*” except mTGase*®) which may interfere with the
biological process under investigation. With regard to the
labelling time, the two-step procedures significantly prolong
the process. Usual incubation times in the first step take
10-60 min (e.g. LplA,>>*® TTL,*® AnkX," SrtA,**>® Bira,>
TGase*®"). The bio-orthogonal labelling reactions in the second

View Article Online

Molecular BioSystems

step require up to 3 h (e.g. SPAAC, Staudinger ligation)** or even
overnight treatment (Cu-promoted alkyne-azide cycloaddition).*®

However, a rapid labelling at low concentration of labelling
agents is desirable in studies of fast biological processes. This
feature can be obtained with peptide-tags that have high
affinity for reactive metal complexes, small molecules or pep-
tides and thereby enable reactions at high effective molarity,
which provides for efficient labelling with reagents at nano-
molar concentrations.

Recognition of metal ions and small
molecules by peptide-tags —
mechanisms and characteristics

The selectivity of labelling can be ensured by the mutual
recognition between electron-deficient metal ions and
electron-rich ligands. The binding of small metal ion probes,
in most cases by a chelating effect, facilitates a one-step
labelling of the target protein (see Table 2).

One of the shortest peptide-tags is comprised of tetra-
cysteine or tetraserine motifs. In a pioneering study, Tsien
et al. showed in 1998 that organobisarsenic acid thioesters
form covalent bonds with peptide-tags containing a tetracysteine
core CCxxCC, most commonly CCGPCC. Upon binding to the
thiol groups of the peptide-tag, the Fluorescein-Arsenical-Helix-
Binders (FlAsH) increase their fluorescence approximately
50000-fold (Fig. 4A). In order to reduce the cytotoxicity and
non-specific binding of FIAsH, micromolar concentrations of
1,2-ethandiol (EDT) have to be distributed to the cells simulta-
neously.®*®* Derivatives such as ReAsH,** CHoXAsH,*! CrAsH®®
and Cy3As®® expand the scope of available dyes. In many cases,

Table 2 Characteristics of metal ion recognition tags and small molecule binding motifs

Labelling Reported tag  Typical/reported concentrations and Reported

technique Recognition tag and labelling probes position incubation conditions applications

Tetracysteine  Tag: CCxxCC N-terminal, Labelling with 1-5 uM FIAsH probe for Fixed and live

motif Probes: FlAsH, ReAsH, ChoXAsH, CrAsH, Cy3As C-terminal, 30-90 min in living cells; reaction cell staining

Internal temperature: RT®%*
Tetraserine Tag: SSPGSS N-terminal, Labelling with 50 nM probe for 20 min in Live cell
motif Probe: RhoBo C-terminal, living cells; reaction temperature: 37 °C®® staining
Internal

His-tag Tag: Hise or Hisq N-terminal, Labelling with 100-500 nM probe for Fixed and live
Probes: fluorescent conjugates of Ni':bis/tris/ C-terminal 1-60 min; reaction temperature: RT’>7%77 cell staining
tetrakis-NTA; HisZiFit or Zn":IDA-Cy5

Oligo- Tags: (D4)3, CAg(D4)2, D3 (DDD or DDDXXDDD),  N-terminal, Labelling with 1-2 uM for 5-7 min (non- Live cell

aspartate-tag ~ DYKDDDDK, (DDDW),DDD C-terminal covalent); reaction temperature: 25 °C’%/ staining
Probes: fluorescent conjugates of Zn":DpaTyr or 20 uM probe for 12 h (covalent); reaction
Ni":DpaTyr temperature: 4 and 20 °C”°

Lanthanide- Tags: ACADYNKDGWYEELECAA or Within tar- — In vitro

binding-tag FIDTNNDGWIEGDELLLEEG get sequence staining
Probe: Tb**

Fluorette-tag Tag: CCGGGSKVILFERWTWEPISEGAP- C-terminal Labelling with 20 pM probe for 1 h; Live bacteria
GSKVILFEGGPG (ReacTR-tag) reaction temperature: 37 °C%® staining
Probes: Texas red, Rhodamine red, Oregon
green 514, fluorescien

dC10o-tag Tag: LSAAECAAREAACREAAARAGGK N-terminal, Labelling with 10 pM probe for 30 min; Live cell
Probes: maleinimide-coumarin compounds C-terminal reaction temperature: 37 °C”* staining

RT - room temperature.
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A) Tetracysteine - FIAsH tag

B) Tetraserine - RhoBo tag
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Fig. 4 Protein labelling by reactions between (A) tetracysteine tag and a
bisarsenical profluorescent probe or (B) tetraserine tag and a bisboronate.

flanking sequences have been added to the CCxxCC motif to
increase the selectivity.”” When administered in 2.5 UM concen-
tration, the bisarsenical dyes permeate the cell membrane and
enable intracellular labelling of CCxxCC tagged proteins.®* Back-
ground signals due to interactions with other thiol-containing
proteins often require time-consuming washing procedures.
Furthermore, the incorporation of such cysteine-rich sequences
can promote incorrect disulphide-bond formation within the
POI and disturb the integrity of the protein. Schepartz presented
bisboronic acid dyes as alternatives of the bisarsenical dyes
(Fig. 4B). A rhodamine-derived bisboronic acid (RhoBo) showed
nanomolar affinity for the tetraserine motif SSPGSS and provided
increases in fluorescence after binding.®® But in contrast to the
tetracysteine motif, the target sequence SSPGSS is found in more
than 100 human proteins, amongst them the highly abundant
myosin heavy chain.

Improved specificity can be achieved by metal-chelating
tags, which recognise rather unnatural repetitive sequences
such as the Hise-, Hisjp-tag or the oligo-aspartate tag. The
hexahistidine tag (His¢-tag), originally developed as an affinity
tag for protein purification, is as short as the tetracysteine or
tetraserine motif and known to interact tightly with transition-
metal complexes, e.g. Ni:nitrilotriacetic acid (Ni":NTA).*°
Since the interactions between metal ion and ligand are non-
covalent, high mutual affinities are required to achieve stable
labelling. To further increase the stability of the label, Tampé,
Piehler and colleagues developed multivalent complexes carrying
two to four NTA moieties (called bis-, tris- and tetrakis-NTA,
Fig. 5A).7° The trisNTA ligands have exceptionally high affinities
for His-tags (Ni":trisNTA-His,: Kp = 0.1 nM).”* The attachment of
bright fluorophores allowed the single-molecule super-resolution

This journal is © The Royal Society of Chemistry 2016
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A) Hisg-tag with Ni':trisNTA
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Fig. 5 Protein labelling via interactions between (A) a histidine tag and a
fluorescent Ni':trisNTA compound or (B) an oligo-aspartate tag (e.g. CA6D4
tag) and a fluorescent Zn":DpaTyr conjugate.

microscopy of actin and lamin filaments in CHO-K1 cells.”?
Allbritton designed a trifunctional probe comprised of a Ni'":NTA
guiding unit and a photo-reactive arylazide group which enabled
the covalent linkage with a Hisstagged murine dihydrofolate
reductase (mDHFR) in vitro. The third functionality was either a
biotin or a DNA strand for further conjugation or immobilization
of the POI in vitro.”® Trifunctional probes containing a reporter
dye were used by Auer et al. for the covalent labelling of a
Hise-tagged interleukin-4 receptor on the surface of living
cells.”* A covalent modification of His-tagged proteins was
recently introduced by Terring and Gothelf. The so-called
DNA-templated protein conjugation (DTPC) describes the bind-
ing of a trisNTA-oligonucleotide to a Hisg-tagged POI. This
allows site-selective recognition by a second complementary
oligonucleotide carrying a reactive N-hydroxysuccinimide (NHS)
moiety, which enables subsequent crosslinking to a lysine residue
in close proximity within the POL” This was demonstrated for
Hisetagged serotransferrin and native IgG1 antibodies, which
contain a histidine cluster. Tsien et al. found that the hexa-
histidine tag not only binds Ni":NTA probes, but also a Zn"
complex (HisZiFiT-Zn") with a Kp ~ 40 nM.”® Since the
diamagnetic Zn" is not a fluorescence quencher (other than
the paramagnetic Ni"), fluorescein was derivatized in a way to
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directly bind two Zn>" ions. Incubation with 100 nM HisZiFiT in
buffer with 1 uM free Zn>" and two subsequent washing steps
allowed the labelling of cell surface-exposed Hisg-STIM1-CFP.
Hamachi et al. introduced a binuclear Zn™:iminodiacetic acid
(IDA) complex to which a Cy5 fluorophore was attached via
an amide bond. Two His;q-tagged G protein-coupled receptors
(B2R and m1AchR) could be stained on the surface of HEK293 cells
when treated with 0.5 uM Zn™:IDA-Cy5 conjugate for 10 min.””

In 2006 Hamachi et al. introduced the oligo-aspartate tag
(D4 tag) and the corresponding multinuclear Zn":bis((dipicolyl-
amino)methyl)tyrosine (Zn":DpaTyr) complexes.”® A binuclear
Zn"™:DpaTyr had a moderate affinity for the D4 tag (Kp =
1.4 pM). But by elongation of the tag (D4x3 tag) and utilization
of the dimeric Zn":DpaTyr-FITC complex (harbouring four Zn"
ions) at 2 uM concentration, the fluorescence labelling of the
muscarinic acetylcholine receptor (m1AChR) was feasible on
live cells. However, the interaction is non-covalent and the label
will dissociate at prolonged times after labelling. To prevent
undesired label losses, a nucleophilic cysteine residue was
added to the D4 tag and the binuclear Zn"™:DpaTyr complex was
equipped with an a-chloroacetyl group (Fig. 5B). After incubation
for 12 h with 20 uM of the reactive Zn":DpaTyr-TAMRA conjugate,
the probes were found to enter E. coli cells and covalently label
intracellular CA4D,tagged maltose binding protein.”’ The
D4/Zn"™:DpaTyr system was reported to be orthogonal to the
Hise/Ni™:NTA complex.”® Later it was described that Ni":DpaTyr
complexes show remarkably high affinity for the FLAG tag
(DYKDDDDK), the D3 tag (DDD) and D3x2 tag (DDDXXDDD),
with binding affinities around 100-fold stronger than for the
D4/Zn":DpaTyr pair.*”®! More recently, Komatsu et al. designed
a Tb*"-binding peptide (LBP) de novo with aspartic acid as
Th>"-binding sites and tryptophan as sensitizing dye. The 15-mer
sequence DDDWDDDWDDDWDDD was genetically fused to the
C-terminus of glutathione S-transferase (GST) and used for affinity
purification on a Th**-loaded column, as well as for in-gel detec-
tion of the fusion protein, rendering the LBP especially useful due
to its dual functionality.®>

While transition metal ions such as Ni", Co™ and Zn" confer
high affinity for recognition tags as described in the labelling
techniques above, lanthanide ions add further desirable
features; long-lived luminescence in the presence of sensitizing
chromophores, excellent X-ray scattering powers and some of
them even magnetic properties for NMR studies (e.g. Gd™,
Dy™, Tb™, Tm™).®* This prompted a search for peptide-tags
with high affinity for lanthanides to proteins. Imperiali et al
optimized a sequence found in a loop region of the calmodulin
protein family, by means of a split-and-pool library and identified an
18-mer lanthanide-binding tag (LBT, ACADYNKDGWYEELECAA).
With a K, value of around 220 nM for the binding of Tb*", the LBT
tag could be used for concentration determination in cell lysate and
for in-gel visualization of a LBT-ubiquitin fusion protein.®* Later,
Imperiali also found cysteine-free LBTs with nanomolar affinities
for Tb*" (YIDTNNDGWYEGDELLA, Ky, = 57 nM;*® FIDTNNDGWIEG
DELLLEEG, Kp, = 19 nM®®).

The search for peptide sequences that enable fluorescence
labelling of proteins without added enzymes was extended from
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Fig. 6 Covalent labelling with reactive Fluorette (fluorophore binding
peptide) tag.

metal binding tags to tags, which have the ability to directly
bind small molecule fluorescent probes. Already in 1998, Nolan
et al. discovered by phage display a panel of Texas red,
Rhodamine red, Oregon green 514 and fluorescein binding
peptides, named “Fluorettes” (Fig. 6).*” Amongst them, the
TexasRed-binding peptides (TR) showed the highest, subnano-
molar affinities. Jdschke converted the TR peptide into a
reactive tag (ReacTR, sequence: CCGGGSKVILFEGPAGRWTWE
PISEGAPGSKVILFEGGPG) by adding two cysteine residues,
which can undergo a proximity-induced nucleophilic substitu-
tion reaction with the N-o-chloroacetamide-conjugated TexasRed.
After incubation with 10 uM reactive TexasRed probe for 1 h, the
tagged maltose binding protein (MBP-ReacTR) showed bright
fluorescence in the cytosol of transfected E. coli cells.®®

Barbas et al. subjected phage-displayed peptide libraries to a
reaction-based selection. A 21-mer peptide (rpf1368, sequence:
CHNHQKATCRRMRSRETSVKK) was identified which formed
an enaminone with 1,3-diketone derivatives. The reaction rates
were rather slow with a labelling yield of 90% after 10 h.*° Also
employing phage display, Weiss et al. searched for peptides
that react with hydrazides. The resulting hydrazine reactive
peptide (HyRe; sequence: HKTNHSCHKREQEHCRVTTT) was
fused to the T4 lysozyme and underwent selective modification
with 1 mM biotin hydrazide as well as with 1 mM rhodamine B
hydrazide after 1 h reaction time in a crude cell lysate.”®

The rational design of a maleinimide reactive o-helical
peptide led to the dC10a tag (sequence: LSAAECAAREAAC
REAAARAGGK), in which two cysteine residues are separated
by two turns of an o-helix. The minimalistic probe molecule
comprises a coumarin fluorophore and a dimaleinimide moiety
that quenches the fluorescence until both maleinimide groups
undergo thiol addition during the labelling reaction. Owing to
the small size, the probe was able to enter HEK293T cells after
incubation for 30 min at 10 uM concentration and label both,
C-terminally dC10a-tagged histone H2B as well as N-terminally
tagged actin.””

The small molecule-binding peptide-tags provide properties
that allow protein labelling in complex mixtures. However, for
the achievement of a high affinity tag metal complexes seem to
require less amino acid residues than small molecules (e.g. 6 aa tag
for FIAsH vs. 20 aa HyRe tag for rhodamine B hydrazine). High
affinity usually provides faster labelling at lower concentrations of
labelling agent and, therefore, the reported labelling times for
metal-chelating tags in living cells can be as short as 5-7 min in
case of oligo-aspartate tagged (D4);m1AChR’® or 20 min for
tetracysteine-tagged proteins.®® Moreover, metal-chelating tags
require significant lower amounts of labelling probes with the
lowest of 100 nM, as demonstrated for His,o/Ni":trisNTA pair.”*

This journal is © The Royal Society of Chemistry 2016
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These characteristics demonstrate advantages, also in com-
parison to enzymatic labelling techniques, however, the label-
ling of the POI remains non-covalent and thus reversible,
hindering unambiguous analyses of low abundance proteins.
The reported attempts to establish a covalent linkage between
tag and probe employed moderately reactive groups to avoid
background labelling. The low reactivity typically resulted in
slow rates of covalent labelling, which is disadvantageous for
pulse-chase-type experiments.

Peptide and protein based recognition
by peptide-tags — mechanisms and
characteristics

One way to improve the binding affinity of a tag sequence for
the labelling agent is to increase its size. This led to the notion
of peptide-binding peptide-tags. Peptides can bind other pep-
tides with high mutual affinity (see Table 3). One example for
high affinity peptide-peptide interactions is the coiled-coil
motif, in which helical peptides wrap around each other to
form a superhelix. In 1996, Hodges et al. designed a coiled-coil
peptide de novo.”* The dimerization domain consists of five
repeating heptads of the sequences EVSALEK for the negatively
charged E-coil and KVSALKE for the positively charged K-coil.
Electrostatic interactions drive the high-affinity heterodimer
formation (Kp = 1 nM). Using the E-coil as genetically encoded
tag, the peptides were used for the purification, immobilization
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and detection of peptides expressed in E. coli. In 2008, Matsuzaki
reported the artificial, heterodimeric coiled-coil peptides K3
(KIAALKE);, K4 (KIAALKE),, E3 (EIAALEK); and E4 (EIAALEK), -
originally developed by Hodges et al.®® - as tag/probe pair for the
live cell imaging of cell surface receptors. The stability of the E3/
K3 coiled-coil is in the nanomolar range (Kp ~ 70 nM). With a
Kp = 6 nM the E3/K4 coiled-coil provided even higher stability.
This allowed the labelling of an E3-tagged prostaglandin E2
receptor EP3f subtype (EP3BR) upon incubation with only
20 nM TMR-conjugated K3 and K4 probe peptide within
5 min.’* The method was used to investigate the oligomeriza-
tion state of two membrane receptors by staining the E3-tagged
receptors with a mixture of fluorophore-modified K4 pep-
tides.®>® To avoid a potential loss of label during prolonged
imaging periods, the coiled-coil motif was repurposed as a
scaffold that instructs reactions to form a covalent bond. Ball
et al. substituted amino acids at the interface of the E3/K3
coiled-coil pair to position a dirhodium catalyst on one coil so
that addition of a diazo agent induces the alkylation of a
tryptophan residue in the other coil.”” The E3,W-tagged mal-
tose binding protein was selectively biotinylated in cell lysate by
treatment with 5 pM K3, (.Rh, catalyst for 16 h in presence of
100 uM biotin-diazo reagent (Fig. 7A).%® Xia et al. also harnessed
the concept of proximity-induced reactivity by modifying the
E3-coil with a nucleophilic thiol provided by a cysteine residue
within the E3-coil (CCE probe) and the K3-coil with an electro-
philic a-chloroacetyl moiety (CCK probe) (Fig. 7B). Positioning
of the two reactive residues at the interface of the coiled-coil

Table 3 Characteristics of tag systems based on peptide—peptide and peptide—protein interactions

Labelling  Recognition tag including peptide Reported  Typical/reported concentrations and Labelling
technique  probes tag position incubation conditions Reported applications modes
E3/K3 or Tag: (EIAALEK), N-terminal Labelling with 20-60 nM for 2 min; Cell surface labelling, Non-covalent
E3/K4 Probe: dye-(KIAALKE);, reaction temperature: 37* °C** live cell imaging
dye-(KIAALKE),
CCE/CCK  Tag: GGGE-CAALEKE-VAALEKE- N-terminal Labelling with 0.2-1 uM probe for Cell surface labelling, Covalent
VAALEK (CCE) 20 min; reaction temperature: RT® live cell staining, fixed
Probe: GGGK-XAALKEK-VAALKEK- for imaging
VAALKE (CCK)
E3,W/ Tag: EISALEKWISALEQEISALEK C-terminal Labelling with 5 pM K3 catalyst and In vitro Covalent
K3, Rh, (E3,W) 100 puM biotin-diazo probe for 16 h;
Catalyst: KISALKQKESALEQKISALEK reaction temperature: 4 °C°®
(K34,cRh, — between E
dirhodium probe)
ER3/R3CL  Tag: M(EIAALER);-GK (ER3) N-terminal Labelling with 150 uM probe for Cell surface labelling, Covalent
Probe: dye-(RIAALRE);-GC (R3CL) 20 min; reaction temperature: 25 °C'*°  live cell imaging
Cys-E3/K3  Tag: C(EIAALEK); N-terminal Labelling with 100 nM probe for Cell surface labelling, Covalent
thioester Probe: dye-thioester-(KIAALKE); 2-5 min; reaction temperature: RT'"'* live cell imaging
Leucine ZIP-tag: ALEKELA-EAEKELA- N-terminal Labelling with 0.1-1 uM probe for Cell surface labelling, Non-covalent
zipper ELEKELA-GGCGG-ALEKKLA- 4-15 min; reaction temperature: 25 or  in combination with and covalent
ELEKKAA-ELEKKLA 37 °CrOH100 CPP intracellular
Probe: ALKKKLA-EzZKKKLA-ELKKKLA labelling, live cell
imaging
BTX-/SA-tag BTX-tag: WRYYESSLEPYPD N-terminal Labelling with 1-2 pg ml™" BTX for Cell surface labelling, Non-covalent
SA-tag: MDEKTTGWRGGHVVE- 30 min; reaction temperature: 17 or live or fixed cell
GLAGELEQLRARLEHHPQGQREP 37% °Gc1%? imaging
DnaE intein Npu: Nj,, aa 1-123, C;,c aa 103-138  N-terminal, Npu: labelling with 2 pM C;,,, peptide for Intracellular labelling Covalent
Ava: Njp aa 1-102, Ciye @2 103-138  C-terminal 1 h; reaction temperature: 37* °C'**/Ava: via fusion to CPP
labelling with 2.5 pM Ciy, for 1 h'te
AceL/Ter Nine aa 1-25, Ci aa 26-129 N-terminal Labelling with 45 uM N;,,, peptide >1 h; In vitro Covalent
intein reaction temperature: 8, 25 or 37 °C'*”

(* = temperature was not explicitly specified) RT - room temperature.

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Protein labelling via formation of coiled-coils. (A) Covalent labelling via rhodium-catalyst containing K3 peptide and diazo probe, (B) proximity
induced covalent cross-linking between electrophilic a-chloroacetyl group and thiol side chain and (C) proximity induced amine-reactive crosslinking.

promoted the ligation between probe peptide and CCE-tagged
cell-surface receptors. For increased reaction rates, the label-
ling probe had to be used as CCK-1-dimer, still requiring more
than 2 h to reach complete ligation and resulting in a 79 aa long
protein label.”® In 2015, Matsuzaki et al. presented a reduction-
free, amine-reactive crosslinking reaction between modified
E/K coiled-coil peptides. A carboxy sulfosuccinimidyl ester
linker was added to the peptide meant to serve as a labelling
agent (R3CL probe) and a lysine residue was introduced to the
E-peptide (ER3 tag) (Fig. 7C). Within 20 min a significant
crosslinking was observed between 150 pM R3CL probes and
ER3-tagged B,-adrenergic receptors on the surface of CHO cells."*

With an aim to find a very fast biocompatible reaction for
covalent protein labelling that adds only little mass, Seitz et al.
designed a coiled-coil-promoted acyl transfer reaction, which
also bypasses the ligation between tag and probe. For this
purpose, an N-terminal cysteine residue was added to the E3
tag and fused to the POI. A thioester-linked fluorophore was
conjugated to the N-terminus of the K3 probe.'*" The formation

1740 | Mol BioSyst., 2016, 12, 1731-1745

of the parallel coiled-coil triggered the proximity-induced trans-
fer of the dye to the E3 tag according to mechanism known
from nucleic acid templated native chemical ligation.'*® Due to
the high reactivity of the arylmercapto-linked thioesters and the
high effective molarity induced in the end-of-helix arrangement
of functional groups, the transfer of the fluorophore from the
K3 probe to the Cys-E3-tag succeeded within 2 min reaction
time at 100 nM labelling probe (Fig. 8). The approach was
applied to live cell imaging studies, in which a variety of G
protein-coupled receptors (including the human neuropeptide
Y receptors 1, 2, 4, 5, human neuropeptide FF receptors 1 and 2
and human dopamine receptor 1) were labelled at the cell
surface. The modular nature of the thioester-containing K3
probe facilitates the use of different fluorophores or reporter
groups, as it was shown for TAMRA, ATTO488, AF350 and
biotin labels.'® In this study, the authors also demonstrated
that the covalent linkage between reporter dye and target
protein was important to monitor receptor internalization
and recycling in living HEK293 cells.

This journal is © The Royal Society of Chemistry 2016
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Fig. 8 Covalent protein labelling via coiled-coil induced reporter group transfer.

Another small and stable coiled-coil scaffold is the leucine
zipper. Based on the crystal structure of a coiled-coil trimer of
GCN4, Tamamura et al. developed in 2009 artificial leucine
zipper peptides with high mutual affinity (ZIP tag/probe pair,
Kp = 18 nM) for the fluorescence imaging of ZIP-fused
membrane proteins. The 23 aa probe helix is equipped with
an environmentally sensitive dye (4-nitrobenzo-2-oxa-1,3-diazole,
NBD), the other two tag helixes are connected via a loop
sequence and offer a hydrophobic pocket for the dye (A2-tag,
49 aa) (Fig. 9A). The chemokine receptor CXCR4 was genetically
fused to the A2-tag and expressed in CHO cells. Incubation of the
cells with 1 pM NBD-probe peptide led to a fluorescence
change.'® To increase the chemical and biological stability,
Tamamura et al. later incorporated an o-chloroacetyl group to
the probe peptide that can crosslink to a cysteine residue in the

A) Leucin Zipper tag

SH

loop region of the A2-tag.'% For intracellular protein targets, an
octaarginine sequence was attached to the C-terminus of the
probe peptide.*®®

Peptide-based recognition of genetically encoded protein tags
beyond coiled-coil interactions was introduced by Huganir et al. in
2004. The labelling system relied on o-bungarotoxin (BTX, 74 aa); a
small protein from snake venom.'®” Peptide sequences that bind to
BTX were initially selected by phage display and modified for high
affinity binding."”® The resulting 13 aa BTX-binding site (BBS,
sequence: WRYYESSLEPYPD, K, ~ 60 nM'®) was placed in the
extracellular domain of the AMPA receptor for analysing the expres-
sion and membrane trafficking of the tagged receptor. At the same
time, Sanes et al. not only used the BTX-binding site, but also the
streptavidin-binding sequence (SBP, sequence: MDEKTTGWRGG
HVVEGLAGELEQLRARLEHHPQGQREP," K}, ~ 25 nM'®) to stain
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Fig. 9 Protein labelling (A) with the leucine zipper tag, which allows covalent labelling and turn-on of fluorescence, (B) by split-intein mediated reactions

or (C) by cell-penetrating split-intein mediated reactions.
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the C-terminally tagged vesicle-associated protein (VAMP2) on the
surface of live cells by incubation with the respective fluorophore-
protein (BTX or SA) conjugates.'® Attempts to use BTX binding site
or SBP for covalent labelling have not been reported but seem rather
challenging given the size of BTX and SA.

The development of peptide-based tag/probe pairs for pro-
tein labelling seems to be characterised by a trade-off between
the specificity of a tag and its size. Split intein-mediated protein
labelling circumvents this correlation because intein excises
itself after ligation of the flanking sequences (Fig. 9B). One
intein fragment should be short in order to allow efficient solid-
supported peptide synthesis. While such split inteins have been
created artificially, they usually lack sufficient splicing perfor-
mance and solubility.""" The naturally occurring Npu DnakE
intein is one of the fastest inteins reported with a half-life of
only 1 min."*? In 2012, Camarero et al. equipped the 36 aa
C-intein (Cj) of Npu DnaE with a FRET pair in order to quench
the fluorescence in the unspliced state. Using a commercial
protein delivery system, the intracellular labelling of transcrip-
tion factor Yin Yang 1 took place within 2 h using the
FRET-quenched protein trans-splicing reaction (PTS)."*? In
2015, Kwon engineered a Npu DnakE intein and synthesized a
Cint With a photo-protected ester-linkage for controlled activa-
tion, a FRET pair for turn-on fluorescence detection and an
octaarginine as cell penetrating peptide (Fig. 9C).""* As a proof
of concept, labelling of maltose binding protein via PTS was
carried out in HeLa cells. Detection of fluorescence was
observed within the cells after 30 min incubation time. Beside
the Npu DnaE intein other fast split inteins were described such
as the Ava DnaE intein."" In a recent study, histone H2B was
fused to a 102 aa long Ava DnaE N-intein (Nj,) and expressed in
HEK293T cells. Live cell imaging was demonstrated after 1 h
incubation with Npu DnaE Cj, carrying different reporter
groups. Npu DnaE Cj,; was used instead of Ava DnaE C;,, due
to higher synthesis yields."'® Mootz et al. engineered an atypical
naturally occurring split intein with an Nj,,. fragment consisting
of 25 aa only and a Cj,. of 100 aa.'"” Recently, Tampé et al.
significantly improved the affinity of a Ssp DnaB M86 split
intein composed of an Nj, with 11 aa and a Cj, with 143 aa.
The Nj, was C-terminal modified with ¢7isNTA moieties and the
Cint Was N-terminal fused to a Hise-tag which increased the
affinity up to 40 fold and allowed protein trans-splicing at
nanomolar concentrations.'*®

Intein technology is interesting, because the tag is excised upon
labelling. Yet, to retain the benefits of small peptide-tags, one
short, POI-connected intein fragment has to be combined with a
rather large intein fragment that brings in the labelled extein. This
construct must be recombinantly expressed and conjugated with a
reporter group, which may limit the application.

Conclusion

The ideal protein labelling method should proceed with high
tag specificity, require only small tag sizes (to avoid interference
with protein function), succeed within short incubation times
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(to enable investigations of fast biological processes in pulse-chase-
type experiments), confer stability of labelling (preferably by for-
mation of covalent linkages to allow measurements over prolonged
time scales), enable versatility as far as the choice of labelling groups
is concerned and lay little toxic burden onto the cell or the cellular
process under scrutiny. None of the tag-based methods discussed is
without shortcomings and there is, at current, no silver bullet
available for protein labelling. Enzymatic methods provide high
specificity, small tag size and covalent labels, but with the enzymes
currently used rather high substrate concentrations and long
incubation times are required. The stability and acquisition of the
enzymes itself are not always without problems and labelling of
intracellular proteins remains challenging. Nevertheless, the grow-
ing number of publications in which enzymes such as BirA are
used, for example to study protein—protein interactions by proximity
biotinlyation demonstrate that problems are manageable and that
the method allows applications that are difficult to be performed by
other means. Notably short incubation times are feasible with metal
ion recognition tags. Recent studies demonstrate that the placement
of bright dyes such as AlexaFluor 647 in immediate vicinity of the
protein via the Hisg_yo tags and high affinity Ni":trisNTA complexes
facilitates super resolution microscopy of fixed and permeabilized
cells. Ideally, the peptide-tag would be targeted by a membrane
permeable probe. Though numerous studies demonstrate the
feasibility of this approach, the available peptide-tags require rather
long sizes to confer affinities for fluorescent dyes in a range that
require staining with >10 uM concentration; which may lead to
high background. Higher tag specificities are achievable with pep-
tide based affinity reagents. For example, the de novo designed
E3/K3 coiled-coil offers high affinity and selectivity at comparably
small tag size (21 aa). This enables rapid labelling at low concentra-
tions of probe. A recently developed peptide-templated acyl transfer
technique combines the speed of complex formation via coiled-coil
interactions with the advantages of covalent labelling. The method
involves a highly reactive thioester-linked fluorophore K3 conjugate,
which rapidly reacts with a cysteine terminated E3-coil. The covalent
labelling is extremely fast (2-5 min) and only little cargo is added to
the protein of interest. Yet at current, the method is restricted to
N-terminal labelling of cell surface proteins.

It is obvious that the peptide-tag based labelling methods
available as of today still do not offer the robustness and wide
applicability known from autofluorescent proteins and enzyme
based tags (e.g. SNAP, CLIP, Halo). Yet, given the scientific need
for less perturbing labelling methods, considering the pace of
the current development of the field and taking into account
that an ever increasing number of chemists joins the race, the
authors are convinced that peptide based tags will become
game changing enablers in a not too distant future.
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