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Simultaneous tracing of carbon and nitrogen
isotopes in human cells†

Roland Nilsson*ab and Mohit Jain*c

Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the

metabolic network of living cells. However, most studies of mammalian cells have used 13C-labeled tracers

only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other

biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable

isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we

demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen

metabolism in human cells cultured with 13C- and 15N-labeled glucose and glutamine. To facilitate

interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux

analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are

broadly consistent with known biochemical pathways. Whereas measured 13C MIDs were informative for

central carbon metabolism, 15N isotopes provided evidence for nitrogen-carrying reactions in amino acid

and nucleotide metabolism. This computational and experimental methodology expands the scope of

metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic

phenotypes in health and disease.

Introduction

Stable isotope tracing is a well-established method for measuring
intracellular metabolic enzyme activities across the metabolic
network of living cells.1 In this technique, cells are cultured with
nutrients labeled with stable isotopes, and the resulting isotopic
patterns in cellular metabolites are measured by mass spectro-
metry or NMR. While software for quantifying isotopic distribu-
tions is well established,2,3 a wide variety of methods are used for
interpreting the resulting isotope data to draw conclusions about
metabolism, ranging from manual inspection and qualitative
reasoning to sophisticated model-based computational techniques
for quantitative metabolic flux analysis.4 While qualitative tracing
methods have been important in biochemistry to systematically
map metabolic pathways, quantitative methods for flux analysis
have largely been employed in lower organisms5 and plants,6

where precise information about central metabolism is important
to optimize product yields or crops. More recently, stable isotope
tracing has been applied to study the metabolism of mammalian

cells grown in batch cultures,7–11 aiming to systematically
understand human metabolism and identify enzymes or path-
ways that are affected in human diseases.

To date, the vast majority of studies have employed a single
labeling strategy, typically using 13C-labeled substrates and
focusing on central carbon metabolism, usually including glycolysis,
the pentose phosphate pathway, and the tricarboxylic acid (TCA)
cycle.7 Using other stable isotopes, including 15N, 2H, 18O, and 34S,
could yield information about additional metabolic activities in
a given experiment, or even allow for study of pathways not
amenable to carbon labeling. For instance, metabolic flux
analysis using deuterium 2H has proven useful to monitor
redox reactions.12 Similarly, tracing nitrogen using 15N may
provide valuable information on amino acid and nucleotide
metabolism; oxygen tracers 18O could be used to monitor
phosphates (PO4) in energy metabolism; and sulfur isotopes
(34S) can inform on metabolism of cysteine, methionine and
related sulfur-containing compounds.13

Here, we use a combination of 13C- and 15N-labeled tracers
to interrogate carbon and nitrogen metabolism of human cells
within a single experiment. Using high resolution mass spectro-
metry we can resolve and quantify pairwise combinations of
13C and 15N mass isotopomers, resulting in multivariate mass
isotopomer distributions (MMIDs) that reflect the simultaneous
cellular metabolism of these chemical elements. To systematically
handle MMID data, we describe a generalization of the Elementary
Metabolite Unit (EMU) framework14 that extends metabolic flux

a Unit of Computational Medicine, Department of Medicine, Karolinska Institutet,

Karolinska University Hospital, SE-17176 Stockholm, Sweden.

E-mail: roland.nilsson@ki.se
b Center for Molecular Medicine, Karolinska Institutet,

Karolinska University Hospital, SE-17176 Stockholm, Sweden
c Departments of Medicine and Pharmacology, University of California, San Diego,

USA. E-mail: mjain@ucsd.edu

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c6mb00009f

Received 5th January 2016,
Accepted 12th April 2016

DOI: 10.1039/c6mb00009f

www.rsc.org/molecularbiosystems

Molecular
BioSystems

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
A

pr
il 

20
16

. D
ow

nl
oa

de
d 

on
 2

/8
/2

02
6 

11
:5

8:
53

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c6mb00009f&domain=pdf&date_stamp=2016-04-20
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6mb00009f
https://pubs.rsc.org/en/journals/journal/MB
https://pubs.rsc.org/en/journals/journal/MB?issueid=MB012006


1930 | Mol. BioSyst., 2016, 12, 1929--1937 This journal is©The Royal Society of Chemistry 2016

analysis to multiple elements. We discuss features of carbon
and nitrogen metabolism observable in human cells with this
method.

Materials and methods
Cell culture and metabolite extraction

Human HeLa cells were cultured in 6-well culture dishes using
RPMI-1640 medium (Life Technologies) with 11 mM glucose, of
which 70% was U-13C-glucose (Cambridge Isotope Laboratories)
and 2 mM glutamine, of which 70% was U-13C,15N-glutamine
(Cambridge Isotope Laboratories), and supplemented with 5%
dialyzed FBS (Hyclone). Cell extracts were analyzed after 24 and
72 hour culture periods. HeLa cells were plated at a density
that resulted in B85% confluency (B1 � 106 cells per well) at
the end of the culture period, and to maintain a doubling time
of B30 hours throughout the culture period. At the completion
of the culture period, spent medium was removed, cells rapidly
washed with phosphate buffered saline to remove residual
medium, and metabolites extracted using 1 mL of 100% HPLC
grade methanol pre-cooled at �80 1C. Cellular material was
scraped in the cold methanol, collected and vortexed for 1 minute.
Cellular material was centrifuged at 10 000 RPM � 10 min at 4 1C
and the organic supernatant containing extracted metabolites
was collected and maintained at �80 1C until analysis. Separate
wells with identical plating were used for confirmation of final
cell counts. Three independent biological replicates were used
for all cell culture experiments.

Mass spectrometry and mass isotopomer distributions

Metabolites were assayed as previously described15 using liquid
chromatography coupled to high resolution mass spectrometry
(LC-MS). Liquid chromatographic separation was achieved using
hydrophilic interaction chromatography (HILIC) employing an
Atlantis HILIC column (150 � 2.1 mm; Waters, Milford, MA) or
Luna NH2 column (5 mm, 150 � 2 mm; Phenomenex) with both
positive and negative electrospray ionization (ESI). LC was
coupled to a high resolution Q Exactive Quadrupole-Orbitrap
mass spectrometer (ThermoFisher) operating at 70 000 resolution,
scanning a mass range of 50–1000 m/z. Metabolites were identified
by retention time and m/z from pure standards.15 Observed m/z
accuracy was maintained at o5 ppm. Chromatographic peaks
areas were obtained by manual integration using in-house software.
Peaks corresponding to mass isotopomers were manually inspected
to verify identical chromatrographic peak shapes, and false
isotopes were excluded. Mass isotopomer distributions were
calculated for each sample by normalizing values to the total
peak area for all mass isotopomers of each metabolite.

Uptake/release measurements

Absolute concentrations of glutamine, glutamate and lactate in
fresh (0 h) and spent (72 h) culture medium were measured
using a commercial YSI 2900 bioanalyzer.15 Net rates consump-
tion or release of glutamine, glutamate and lactate per cell were
calculated by normalizing to cell proliferation, as previously

described,15 assuming constant fluxes over time. Rates of acetate,
alanine, asparate, citrulline, and biomass components (protein,
RNA, glycogen, and glutathione) were estimated from literature
values (S3 Dataset) for the purpose of bounding the model fluxes,
assuming 10% error.

Metabolic network model

The metabolic network model used in this work is fully described
in the ESI.† Reaction stoichiometry were obtained from a previously
published model of human cellular metabolism.16 Atom maps
were obtained from KEGG17 and were manually curated. Molecular
symmetry for fumarate, succinate and urea was handled using
EMU equivalence classes, as previously described.14

Multivariate mass isotopomer distributions

To represent the isotopic labeling state of multiple chemical
elements, we introduce multivariate mass isotopomer distributions
(MMIDs). Denote the elements by e = 1,. . ., E, and consider a
metabolite i having ni

e atoms of element e. Then any possible
multivariate mass isotopomer of this metabolite can be repre-
sented by an E-dimensional vector a taking values in the array
Gi = {0,. . ., ni

1} � � � � � {0,. . ., ni
E}, representing all possible

combinations of mass isotopomers for each element. An MMID
of metabolite i is then a probability (frequency) distribution xi

a

over this array, satisfying
P
a

xia ¼ 1 and xi
a Z 0 for all a A Gi. For

example, if considering 13C and 15N isotopes, then the MMID
of glutamine (C5H10O3N2) is a probability distribution over
Gi = {0,1,2,3,4,5} � {0,1,2}, as in Fig. 1D. Note that it is not
sufficient to consider the sets of atoms for each element
separately as 1-dimensional MIDs: this would be correct only
if the isotopomers of each element are independent, so that the
full MMID is a product distribution.

To relate MMIDs to fluxes in metabolic networks, we generalize
of the Elementary Metabolite Unit (EMU) framework14 to multiple
elements. We define a multiple-element EMU (MEMU) of a given
metabolite as a list of subsets of atoms, one for each element, not
necessarily contiguous in the molecular structure. Again, the mass
isotopomers of an MEMU are elements of an E-dimensional array,
and the MMID of an MEMU is a probability distribution on this
array. Cleavage or unimolecular reactions are viewed simply as a
transfer of an MEMU, which means their MMIDs must be equal.
For a condensation reaction forming MEMU i from MEMUs j and k,
the product MMID xi is a now multidimensional convolution of the
MMIDs x j, xk of the substrates: for each a A Gi,

xia ¼
X

b;c: a¼bþc
xjbx

k
c ; b 2 Gi; c 2 Gj (1)

Based on these rules, decomposition of the metabolic network
model to MEMU networks was done using the algorithm previously
described for EMUs.14 Equation systems that relate fluxes to these
MMIDs at steady state were generated from atom maps using
Mathematica v.10 (Wolfram Research; code is available from the
authors upon request).

Given the MEMU decomposition, for each product MEMU, if
reactions with fluxes v1,. . ., vN transfer MEMUs with MMIDs
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x1,. . .xN to the same product MEMU, then at steady-state, the
product’s MMID x0 is a linear combination

v0x
0
a ¼

XN
i¼1

vix
i
a (2)

for each multivariate mass isotopomer a, where v0 ¼
PN
i¼1

vi is the

total flux ‘‘through’’ the product. The only difference between
(2) and the 1-dimensional case14 is that the MMID xa is no
longer a vector but an E-dimensional array (for carbon–nitrogen
data, E = 2, so xa is a matrix), and convolutions must be
calculated according to eqn (1). While time-dependent equations
for isotopic nonstationary data can similarly be derived, as
previously described,18 we here consider the steady-state case.

Metabolic flux analysis

The vector of metabolic fluxes v was estimated by fitting
the MEMU network model to measured MMID data using a
previously described nonlinear optimization method,19 as follows.
Let x denote the ‘‘flattened’’ vector collecting all mass isotopomer
fractions of all MMIDs, and write g(x,v) = 0 to represent the
collection of all eqn (1) and (2) for all MEMUs, relating fluxes v
to all MMIDs in the system. For metabolites present in both
mitochondria and cytosol, the observed MMIDs y was modeled as
a linear mixture MxA = y, where A is an index vector for the

corresponding model MMIDs and M is a mixing matrix. We
consider both M, x and v as free variables, and estimate them by
solving the constrained optimization problem

min
M;x;v

MxA � yð ÞSy
�1 MxA � yð Þ>þ vB � wð ÞSw

�1 vB � wð Þ>

s:t: gðx; vÞ ¼ 0; 8i :
X
a

xia ¼ 1; Sv ¼ 0

x � 0; v � 0

where B is an index vector for the measured fluxes w, and S
is the stoichiometry matrix (needed here because cofactor
balances are not implied by the MEMU balance equations).
Note that, while the objective is linear in x, the constraints
g(x,v) = 0 are nonlinear due to eqn (1). Assuming independent
errors, the covariance matrices Sy and Sw were chosen to be
diagonal. Since all possible mass isotopomers do not occur
practise, many MI fractions were close to or identical to zero,

resulting in near-zero standard deviations si ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Sy

� �
ii

q
on the

diagonal. To avoid a singular covariance matrix, we therefore
enforced a minimum bound si 4 0.01.

Optimization was done using CONOPT v.3.15 (ARKI Consulting &
Development A/S) controlled via the GAMS modeling language
(GAMS Software GmbH). A separate optimization problem was
generated for each biological replicate in order to inspect the

Fig. 1 (A) Example 13C and 15N mass isotopomers intensity peaks in glutamine in a single scan of LC-MS profile mode data. (B) Mass isotopomers peaks
of glutathione, as in (A). (C) Region of profile mode LC-MS data showing chromatographic elution of glutathione mass isotopomer peaks, from the same
sample as in (B). (D) MMID of glutamine depicted as an array plot. (E) MMID of glutamine. Error bars denote absolute standard deviation of triplicates. MI,
mass isotopomer. (F) Histogram (gray bars) and cumulative density (solid line) of MMID standard deviations across all measured metabolites.
Undetectable mass isotopomers (zero in all samples) were excluded. Rightmost histogram bin represents all MI with standard deviation 40.03.
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resulting variation in flux estimates. To check for occurrence of
local minima, each problem was solved 100 times starting from
randomly chosen initial points. Since most flux solutions were
close together with nearly identical objective values, the centroid
of these 100 solutions was taken as the final estimate.

Results
Measuring multivariate MIDs in intracellular metabolites

To investigate the metabolism of carbon and nitrogen in
human HeLa cells, cells were labeled with 70% U-13C-glucose
and 70% U-13C,15N-glutamine and cell extracts were taken at
24 h and 72 h time points. The fraction of 70% labeled tracer
was chosen to yield information-rich isotopomer patterns, as
fully labeled substrates tend to produce less informative data.20

The mass shift due to incorporation of a single 13C atom in a
downstream metabolite is B1.003 m, while that due to 15N is
B0.997 m. Hence, isotopomers due to 13C or 15N incorporation
differ by B0.006 m, which is readily detectable in small meta-
bolites using high resolution mass spectrometers, operating at
470 000 mass resolution. In principle, it is therefore possible
to distinguish any pairwise combination of 13C and 15N mass
isotopomers; we refer to these combinations as multivariate
mass isotopomers (MMIs). Cellular metabolites were analyzed
by LC-MS which fully resolved isotopic peaks from adjacent
carbon and nitrogen MMIs (m/z difference = 0.006) in metabolites
having m/z of approximately o250. An example of separation
of carbon/nitrogen MMIs in glutamine is shown in Fig. 1A.
For larger metabolites, adjacent MMIs were not completely
baseline resolved, as shown for glutathione (Fig. 1B), but
centroiding of m/z spectra still yielded intensity estimates
for peak resolved peaks, which appeared to be stable during
chromatography (Fig. 1C), indicating that MMIs can still be
measured.

A total of 38 metabolites with high quality peaks were
identified using pure standards, of which 25 contained at least
one nitrogen atom. For each of these metabolites, we calculated
the fractional abundance of all possible carbon–nitrogen
MMIs, resulting in 2-dimensional MMI distributions (MMIDs).
As an example, the MMID for glutamine is shown in Fig. 1D
and E. Measured MMIDs ranged in complexity from glycine
(3 � 2 = 6 MMIs) to ADP (11 � 6 = 66 MMIs), for a total of
616 carbon–nitrogen MMIs monitored (S3 Dataset), compared
to 258 when considering 13C isotopes only. Of these 616 MMIs,
328 were below sensitivity thresholds in all samples, indicating
that they are not synthesized by cells in these conditions.
Nonzero mass isotopomers were highly reproducible over
biological replicates (independent cell cultures), with stan-
dard deviation less than 0.01 in more than 90% of cases
(Fig. 1F). However, low-abundance mass isotopomers were
often systematically underestimated, probably reflecting loss
of signal near threshold levels (Fig. S1, ESI†). With a few
exceptions discussed below, MMIDs were similar between
the 24 h and 72 h time points, indicating that in most path-
ways monitored, metabolic and isotopic steady-state was

reached already at 24 h (Fig. S2, ESI†). In the remainder of
analyses, we consider the metabolic state at the 24 h time point.

Network model and fit to data

The resulting MMID dataset is quite complex, reflecting a variety
of activities in the metabolic network, and is difficult to analyze
manually. To aid in systematic interpretation, we constructed a
model of metabolism covering the major interrogated pathways,
including glycolysis, the pentose phosphate shunt, and the TCA
cycle, as well as metabolism of nonessential amino acids,
nucleotide and glutathione biosynthesis, and a simplified bio-
mass synthesis reaction. This model consists of 125 reactions
and 51 uptake or release fluxes, includes cofactor balancing, and
covers 121 metabolites compartmentalized into mitochondria
and cytosol. The atom map for carbons and nitrogens comprised
1403 atom-to-atom mappings in total. The eight essential amino
acids measured (his, ile, leu, lys, met, thr, trp, val) are not
synthesized in human cells and contained no label from glucose
or glutamine as expected, and were omitted from the model.
Also, the MMID glucose-6-phosphate (g6p) was poorly measured
and was omitted as well. The full model description is given
in ESI.†

To relate carbon–nitrogen MMIDs to metabolic fluxes in this
model, we developed an extension of the Elementary Metabolite
Unit (EMU) mathematical framework14 that describes MMIDs
as a function of the metabolic flux state and the metabolic
tracers (see Methods for details). Briefly, a multi-element EMU
(MEMU) of a given metabolite is a list of subsets of atoms, one
for each element. These MEMUs allows representing reactions
that cleave metabolites into smaller fragments, or condense
metabolites into larger ones: for example, glycine can be
derived from the MEMU consisting of carbons 1,2 and nitrogen
4 of serine. From the atom mappings for all reactions in the
metabolic network model, we can generate the minimal set of
MEMUs whose MMIDs must be calculated to relate the
observed MMIDs to metabolic fluxes. For the present model,
this analysis resulted in 575 two-dimensional carbon–nitrogen
MEMUs, for a total of 3317 MMIs.

Metabolic fluxes were estimated by fitting this MEMU model
to the measured MMID and metabolite uptake/release data. Of
the 29 measured metabolites used to fit the model, 12 were
present in both the cytosol and mitochondria compartments;
these were modeled using linear mixtures, whose coefficients
were estimated from data (see Methods for details). A separate
model fit was performed for each biological replicate (n = 3) and
for each time point. In most cases, fitted MMIDs were highly
similar between replicates (Fig. S3, ESI†). While most measured
MMIDs agreed well with model estimates (Fig. 2A), we obtained
rather large errors for glutamyl-cysteine, ADP and UDP-glucose
(Fig. 2B), leading to higher total squared error (598–663 across
replicates) than allowed by the chi-square criterion (95% w2

quantile = 401). This likely reflects inaccurate or biased estimates of
these MMIDs and/or lack of metabolic steady state for nucleotide
metabolism. For this reason, quantitative estimates of metabolic
fluxes in this model should be considered uncertain; however, it is
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still possible to gain insight into metabolism by analyzing those
MMIDs that fit the model.

Amino acid metabolism

The carbon-only MID of glutamate was consistent with synthesis
from consumed glutamine via glutaminase, with partial recycling
from alpha-ketoglutarate (Fig. 3A). The full carbon–nitrogen MMID
of glutamate, however, exhibited markedly less of the 13C5

15N1

mass isotopomer than would be expected if synthesized solely from
glutamine (Fig. 3A and 1F). This suggested that the glutamate
MMID mostly reflects cytosolic glutamate, which should contain
less 13C5

15N1 due to influx of 12N from other amino acids via
reversible transamination reactions (Fig. 3B). The MMID of proline

indicated that approximately 55% of this intracellular amino
acid is synthesized from cytosolic glutamate (Fig. 3C), with the
remainder originating from uptake from medium or an unlabeled
precursor. Of the remaining amino acids that can be synthesized
by HeLa cells,21 the MMID for alanine was consistent with
synthesis from pyruvate, and nearly all aspartate was derived
from oxaloacetate, while asparagine, serine, and glycine were not
synthesized from glucose or glutamine (Fig. S3, ESI†).

The carbon skeleton of arginine was not synthesized, consistent
with arginine being essential for HeLa cells.21 In addition, both
nitrogens in arginine were unlabeled, consistent with the lack of
an active urea cycle in these cells.22 Disposal of excess nitrogen
according to the model was mainly in the form of ammonium

Fig. 2 (A) Model fit to measured MMIDs after 24 h culture in labeled medium. Results for one sample is shown; all replicates were similar.
(B) Total variance-weighted squared error per metabolite for each of 3 replicates, joined by solid lines. Difficult to fit metabolites are indicated: glucys,
gamma-glutamylcysteine; adp, adenosine diphosphate; udpg, uracil diphosphate-glucose.

Fig. 3 (A) Measured, fitted mitochondrial and fitted cytosolic carbon–nitrogen MMIDs of glutamate after 24 h culture in labeled medium. Complete
MMIDs are shown as array plots, selected isotopomers as bar charts. (B) Model of glutamate metabolism (simplified) with fitted MMIDs. Mitochondrial
glutamate (upper) reflects synthesis from glutamine, while cytosolic glutamate (lower) is affected by aminotransferase activity, resulting in a smaller
fraction 13C5

15N1. (C) Measured and fitted carbon–nitrogen MMIDs of proline, as in (A).
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and glutamate (alanine synthesis could not be estimated accurately).
Ornithine, an important precursor of polyamines required by pro-
liferating cells, was unlabeled, indicating that it is synthesized from
arginine, not from glutamate. Taken together, these results indicate
that carbon–nitrogen MMIDs can provide additional information on
amino acid metabolism compared to carbon labeling alone.

Nucleotides

Since de novo synthesis of nucleotides requires nitrogen, we
anticipated that carbon–nitrogen MMIDs may be valuable for
studying nucleotide metabolism as well. Due to low LC-MS
peak intensities, estimated MMIDs for nucleotides were not

accurate enough to allow for quantitative flux analysis, as seen
in large squared errors for these metabolites (Fig. 2B). Never-
theless, the measured MMID of adenosine disphosphate (ADP)
was broadly consistent with the known pathway of de novo
purine synthesis (Fig. 4A and B). Incorporation of a labeled
ribose moiety was evident from the 13C5 carbon mass isotopomer
alone. Importantly, carbon–nitrogen MMIs provided evidence of
de novo synthesis of the purine ring, during which labeled
nitrogen is incorporated from glutamine and glutamine-
derived aspartate, while the carbons of the purine ring derive
from unlabeled glycine, serine and CO2. It was evident that
purine nucleobase salvage did not occur in these cells, which

Fig. 4 (A) Measured and fitted carbon–nitrogen MMIDs of adenosine diphosphate (ADP) after 24 h culture in labeled medium. Complete MMIDs are
shown as array plots, selected isotopomers as bar charts. (B) Schematic of purine synthesis with fitted MMIDs. Percentages indicate relative contribution
of pathways according to model estimates. (C) Measured and fitted carbon–nitrogen MMIDs of uracil diphosphate-glucose (UDP-glucose) after 24 h
culture in labeled medium. (D) Schematic of pyrimidine synthesis, as in (B).
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would appear as a 13C5
15N0 isotopomer, which was not observed

(Fig. 4A). About 40% of the purine pool remained unlabeled
(13C0

15N0), suggesting that only 60% of purines were de novo
synthesized at the 24 h time point, with the remainder obtained
from a pre-existing unlabeled purine pool, possibly including
turnover of RNA (Fig. 4B).

For pyrimidines, UDP-glucose was the only pyrimidine-
containing compound definitively identified from this experi-
ment (Fig. 4C). While we could not resolve all carbon–nitrogen
MMIs in this large molecule (m/z = 565), some MMIs could be
identified without risk of confounding. The abundant 13C6

15N0

MMI indicated incorporation of labeled glucose (13C6) into pre-
existing unlabeled UDP, which may reflect ongoing glycogen
synthesis. The presence of various 15N1 and 15N2 mass isotopomers
indicated synthesis of the pyrimidine ring from aspartate,
glutamine and CO2. The model estimated 75% of pyrimides
to be de novo synthesized at 24 h (Fig. 4D). As with purines,
there was no evidence of salvage of pyrimidine nucleobases,
since 13C5

15N0 or 13C11
15N0 MMIs were not observed (Fig. 4C);

this was expected since the medium did not contain these
metabolites. In summary, the carbon–nitrogen MMIDs of
nucleotides were in good agreement with the known metabolic
network structure, and provided evidence of de novo nucleotide
synthesis and turnover.

Discussion

Our results indicate that simultaneous tracing of isotopes in
multiple elements such as 13C and 15N is experimentally and
computationally feasible, and allows for a more detailed analysis of
the metabolic network than with 13C labeling alone. In particular,
amino acid metabolism and nucleotide synthesis are clearly
observable with this approach. Although this information
might also be obtained using additional 13C tracers in parallel
labeling experiments, as reported by others,23 multiplexing
tracers may generate more information per experiment, and
provides independent, direct evidence for nitrogen meta-
bolism. Our computational framework also allows handling
other isotopes of interest, such as 2H, 18O or 24S, in a uniform,
systematic manner. The multivariate methods presented herein
is a straightforward generalization of the EMU methodology. In
our experience, the increase in mass isotopomer variables is
not prohibitively large: for the model used herein, we obtained
a total of 3317 MMI variables using carbon–nitrogen EMUs,
compared to 1971 when treating carbon only. Also, introducing
additional elements tends to result in more and smaller EMU
subnetworks, which reduces the computational complexity of
solving EMU balance equations. Methods based on the cumomer
framework24 can be easily extended along the same lines.

While our computational method can simultaneously track
isotopes in any number of elements, a practical limitation
is that low-abundance metabolites become more difficult to
measure as the metabolite pool is divided into a large number
of isotopomers. For example, if one would consider the isotopes of
13C, 2H, 15N, and 18O simultaneously, even a simple metabolite

such as serine (C3H7O3N) has a MMID with dimensions
4 � 8 � 3 � 2 (192 isotopomers total). Therefore, multiple
isotopes will likely be most effective when studying compounds
that generate strong LC-MS peaks. In addition, mass resolution
limits what isotopes can be confidently resolved, particularly in
larger metabolites such as UDP-glucose. Moreover, natural 34S1

isotopomers are present at +1.996 Da above the base isotopomer
with B4% relative abundance, and may be confounded with
15N2 mass isotopomers at +1.994 Da. In our data, only glutamyl-
cysteine (C8H13N2O5S) and reduced glutathione (C10H16N3O6S)
could theoretically generate both 15N2 and 34S1 mass isotopomers,
and in these cases 15N2 was not present, but this caveat remains
important. In our study, a mass resolution of 70 000 was sufficient
for all but the largest metabolites. Higher resolution mass analyzers
could theoretically allow using multiple isotopes to generate
more rich data. The MMID approach could also be useful with
other analytical methods, in particular the recently introduced
high resolution GC-Orbitrap instruments. Future work could
also explore combining the MMID methodology with data-
dependent tandem mass spectrometry to determine positional
isotope incorporation from MMIDs of metabolite fragments
(MEMUs).

The use of multiple isotopes markedly increases the number of
measured mass isotopomers, which provides additional informa-
tion, but also reveals discrepancies that may go unnoticed when
fitting carbon isotopomers only. While more measurements is of
course desirable, it also places high demands on an accurate model
of cellular metabolism, rendering model fitting more difficult; this
was previously seen in a large study19 of E. coli metabolism,
consisting of 162 measured mass isotopomers (carbon only) from
13 metabolites. Our analysis required fitting 462 carbon–nitrogen
mass isotopomers from 29 metabolites, and although our model
agreed reasonably well with data, we were unable to reach a
statistically acceptable fit, particularly for nucleotides. Partly, this
may be due to model errors, such as neglected reactions, substrate
channeling, and metabolite pools that have not completely reached
steady state. Also, our model includes balancing of cofactors like
NAD and NADP, which imposes additional constraints rarely
included in metabolic flux analyses. However, it is also evident
that the error model underlying the standard w2 model fit criterion
(zero bias, normal distributed residuals) is not fully appropriate for
orbitrap mass spectrometers, as low abundance mass isotopomers
were systematically underestimated (Fig. S1, ESI†). Future work
should explore alternative error models for such data in order to
take full advantage of the rich isotopomer patterns observable with
high resolution mass spectrometry instruments.

In addition to establishing a framework for isotope tracing
with multiple elements, this study also revealed a number of
interesting metabolic features of the HeLa cell line. These
cells synthesized only a few amino acids, namely glutamate,
aspartate, alanine and proline under standard culture conditions,
while the remaining are presumably obtained from the growth
medium. Interestingly, the amino acids synthesized generally
appear to have important roles in central metabolism indepen-
dent of protein synthesis: glutamate is a key amine group donor
in various amino transferases; aspartate is involved in the
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malate–aspartate shuttle, which is known to be active in a
variety of cultured cells;25 and alanine has been suggested to
act as an ammonia scavenger.26 Why proline is synthesized to a
large extent despite being present in the medium is not clear,
although it has been hypothesized to act as a redox carrier in
mitochondria.27 In addition, while some cell lines have been
reported to be dependent on serine synthesis from glucose,28

we find little evidence of serine synthesis in HeLa cells. Indeed, a
recent report indicated that serine synthesis varies dramatically
between cell types.29 The regulation of specific amino acid
synthesis pathways by amino acid availability is still not well
understood,30 and we anticipate that our method may be useful
for studying these processes. Our analysis was also informative
for studying nucleotide metabolism, and suggested compart-
mentalization of glutamate not evident from carbon isotopomers
alone. Extending these studies to additional cell types, both
normal and transformed, will be of importance for better under-
standing of cellular metabolism.

Conclusions

Simultaneous tracing of carbon and nitrogen in mammalian
cells is feasible with modern high-resolution mass spectro-
meters, and computational methods for steady-state metabolic
flux analysis can be extended to handle the resulting data.
Nitrogen isotopomers are informative for areas of amino acid
and nucleotide metabolism that are rarely addressed using
13C tracers. Although further work is needed to fully under-
stand the statistical properties of full-scan high resolution mass
spectrometry data, multivariate mass isotopomers obtained
from dual substrate labeling provides rich information that
can help advance our understanding of systems metabolism.
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