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Pathway-based network modeling finds hidden
genes in shRNA screen for regulators of acute
lymphoblastic leukemia†

Jennifer L. Wilson,a Simona Dalin,b Sara Gosline,a Michael Hemann,b

Ernest Fraenkel*ab and Douglas A. Lauffenburger*a

Data integration stands to improve interpretation of RNAi screens which, as a result of off-target effects,

typically yield numerous gene hits of which only a few validate. These off-target effects can result from

seed matches to unintended gene targets (reagent-based) or cellular pathways, which can compensate

for gene perturbations (biology-based). We focus on the biology-based effects and use network

modeling tools to discover pathways de novo around RNAi hits. By looking at hits in a functional

context, we can uncover novel biology not identified from any individual ‘omics measurement. We

leverage multiple ‘omic measurements using the Simultaneous Analysis of Multiple Networks (SAMNet)

computational framework to model a genome scale shRNA screen investigating Acute Lymphoblastic

Leukemia (ALL) progression in vivo. Our network model is enriched for cellular processes associated

with hematopoietic differentiation and homeostasis even though none of the individual ‘omic sets

showed this enrichment. The model identifies genes associated with the TGF-beta pathway and predicts a

role in ALL progression for many genes without this functional annotation. We further experimentally

validate the hidden genes – Wwp1, a ubiquitin ligase, and Hgs, a multi-vesicular body associated protein –

for their role in ALL progression. Our ALL pathway model includes genes with roles in multiple types of

leukemia and roles in hematological development. We identify a tumor suppressor role for Wwp1 in ALL

progression. This work demonstrates that network integration approaches can compensate for off-target

effects, and that these methods can uncover novel biology retroactively on existing screening data. We

anticipate that this framework will be valuable to multiple functional genomic technologies – siRNA,

shRNA, and CRISPR – generally, and will improve the utility of functional genomic studies.

Insight, innovation, integration
This work integrates multiple ‘omic data sets to better understand leukemia pathology. The most striking finding in this work is that we can identify biological
annotations from these data when these datasets are integrated in a network model even though these annotations were not present in any individual input dataset.
Further, we use RNAi screening data as the model’s foundation; this screening technology is a popular tool for probing gene function that is criticized for noise and
off-target effects. With integration, we derive novel insights in spite of this noise and are able to test our theoretical findings through dedicated validation.

Introduction

Functional genomic screens are a powerful tool for systematically
probing gene function in the context of many biological systems.1–6

Shortly after its adaptation to experimental work, RNAi gained
popularity as the technology is relatively easily and quickly
adaptable to multiple biological systems.3,5,6 However, off-target
effects (OTEs) which can result from seed matches between the
individual RNAi and unintended genes7 are a widely criticized
limitation of this technology. These effects complicate validation
and pursuit of further hypotheses6,8,9 and thus, RNAi screens
require analysis methods that can more efficiently identify true
targets for validation.6,7 Many studies have focused on improving
the stability and specificity of the RNAi reagents themselves,10

or have developed algorithms for predicting real effects by
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considering unintended seed matches.8,11,12 Other studies have
considered alternative platforms, such as TALENS or CRISPR, for
probing gene function.5 CRISPR systems can exhibit stronger loss
of function phenotypes than RNAi and seem a promising alter-
native.13 These systems enable precision genome engineering by
more efficiently blocking gene function, and have the added
capacity of being able to activate and inactivate genes.13 CRISPR
systems still suffer from OTEs and are sensitive to mismatches in
the 12 bases proximal to the guide strand.14 Overall, these
approaches only address the technical challenges of gene inter-
ference and do not consider the biological consequences.

Few investigations have considered how a cell may compen-
sate for a gene perturbation. An RNAi reagent may perfectly
block an mRNA transcript, but a redundant protein may
compensate for the loss of a particular gene or the targeted
protein may be stable beyond the duration of knockdown,
leading to false negatives. Further reasons for false negatives
include the inability for RNAi to sufficiently diminish expres-
sion of highly stable proteins (e.g. enzymes which may retain
function after knockdown) or the use of small, targeted
libraries. To compensate for the possibility of false positives
and false negatives, one group used GO analysis to find con-
sensus among three different siRNA screens for HIV replication
factors. The group saw little overlap between the specific hits
from each screen, but saw that all three screens had top hits
enriched for the same GO functions.15 Given the propensity for
OTEs, it is not surprising that three independent screens
identified different candidate hits, but it is striking that the
individual hits fall in similar pathways.15 This work foresha-
dows the value of using pathways to provide context around any
individual hit. However, our current definitions of cellular
pathways are incomplete and there is a real need for discover-
ing pathways and attributing new genes to existing pathways.

Here we pursued an integrated, pathway-based approach
to identify in vivo specific regulators of acute lymphoblastic
leukemia (ALL) progression. Development of treatments for
acute lymphoblastic leukemia (ALL) has had mixed success
and improvements in patient overall survival is still unchan-
ging.16 For childhood ALL patients, 10% suffer remissions and
these treatments have high toxicity.17 We already know that the
tumor microenvironment affects how cancers progress and
respond to therapies in a complex manner. Paracrine signaling
in the bone-marrow microenvironment can confer resistance to
therapy in myeloma18 and local cytokines can promote cancer
development in the context of specific genetic lesions.19 More
thorough disease characterization in the native microenviron-
ment would facilitate development of new treatment strategies.
Further, ALL is just one of many types of cancers which arises
from incomplete hematopoietic differentiation. Given the simi-
lar origin of these diseases, it is possible that we can learn and
repurpose molecular studies from other hematopoietic cancers
to accelerate development for ALL. Already, we have used a
genome-wide shRNA screen to discover genetic mediators of
pre-B-cell ALL progression in vivo, and demonstrated the ability
to identify micro-environment-specific genes affecting impro-
per B-cell development.20

Recognizing the likelihood of significant OTEs and acknowl-
edging the significant merits of pathways analysis methods,
we developed a network model to discover missed targets, or
predicted genes, from the initial shRNA screen. This network
model builds on the pathway-based approach described earlier
by incorporating diverse experimental datasets to better model
the genes contributing to ALL progression. We assume that
many pathway annotations are incomplete, and that modeling
multiple experimental datasets will uncover novel pathways.
We construct our network model using shRNA, ChIPseq, and
mRNA expression data and use this model to understand and
validate features of the in vivo system. We experimentally
validate novel roles for Hgs and Wwp1: Hgs is a gene that is
generally deleterious to B-cell ALL viability, and Wwp1 is an
in vivo specific regulator of disease progression. We perform
this analysis using screening data that was not designed for
further computational modeling in mind – the screen did not
contain redundant shRNAs or non-targeting controls. Taken
together these results demonstrate the ability of network
models to select candidate targets from an shRNA screen and
discover novel pathways from disparate datasets. Biologically,
the model makes specific predictions about gene targets that
affect ALL progression by affecting the tumor microenviron-
ment, illuminating multiple pathways that are relevant for
therapeutic development in ALL.

Results
A network-based data integration scheme

To identify pathways that mediate ALL progression, using
multiple experimental data � we introduce a network-based
approach, described in Fig. 1. Conceptually, this approach uses
published protein–protein interaction data (Fig. 1A) alongside
computational derived protein–DNA interactions to construct a
set of all possible interactions that can relate experimental
measurements from shRNA screening and mRNA expression.
This larger network will then be reduced (Fig. 1B and C) to
identify biological pathways, either known or unknown, that
are implicated by the experimental data, described below.

shRNA screen and mRNA expression data identify distinct and
incomplete gene sets

We collected previously-published shRNA screens and mRNA
expression data from a mouse model of ALL, one in vitro and the
other in vivo20 (Fig. 1D). Together this data represents the direct
and indirect effects of RNA knockdown in both environments.

To identify the direct effects of shRNA screens, we calculated
a fold-change in shRNA representation, comparing sequencing
reads for each shRNA at input (time of transplant) and post
disease burden (at morbidity). We ranked genes based on the
greatest depletion from input to post disease burden and
considered the top 1% (84/87 genes for the in vivo/in vitro
screens) for further investigation (Table 1). GO enrichment of
the ranked list, using GOrilla21,22 of targets from the in vivo dataset
did not identify any enrichment of GO terms. GO enrichment of
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the ranked in vitro targets found enrichment of cellular homeo-
stasis, and cation regulation; however, these terms were enriched
merely based on the presence of TMEM165, KCNA5, and CEBPA,
without contribution from any other targets in the ranking
(Table 2). Overall, we found little functional enrichment or
information from shRNA data alone, suggesting that we had an
incomplete picture of genes regulating ALL progression.

Using microarrays, we also collected differential mRNA expres-
sion data to compare between cellular contexts at morbidity.
Genes were considered based on their fold-change relative to
the in vivo context, and ranked based on fold-change. Again, we
investigated the top 1% of genes up-regulated in vivo (77 genes)
and up-regulated in vitro (66 genes) (Table 3). Using GOrilla, we
found few enriched GO terms in the in vivo data genes as
compared to the whole genome; these terms included regula-
tion of transport, and actin cytoskeleton organization (Table 4).
There were no enriched GO terms in the set of genes up
regulated in the in vitro context. We would expect that for any
biological process, not all relevant genes will be differentially
expressed or be sensitive to shRNA perturbation. Given these
circumstances, we would not expect differential expression
analysis or shRNA screening to uncover all relevant genes
or expect these measurements to identify the same genes.
The fact that there was little functional enrichment in these

top candidates reaffirms the incomplete nature of individual
high-throughput measurements,23 and suggests an integrated
approach could find hidden information.

Measuring histone activation for model specificity

When designing this model, we wanted to find interaction sets
that connected the genes identified from the shRNA screen and
from differential expression analysis. This model required
protein to DNA interactions in addition to the existing protein
to protein interactions in our interactome (Fig. 1A). These
interactions were not publically available so we used a combined
computational and experimental approach. Specifically, we used
measurements of open and active chromatin to identify regions
of putative transcriptional activity and predicted transcription
factor to DNA binding interactions using computational
modeling techniques.

We collected ChIP-seq data for the activating histone
markers H3K27Ac and H3K4me3 from our ALL model in culture.
Compared to an IgG control, we identified 29 468 and 18 142
peaks in the H3K27Ac and H3K4me3 datasets respectively. To
identify regions of possible transcription factor binding, we
searched within these peak regions for local minima, or valleys,
between histones; from this analysis we found 70 894 and
24 617 valley sequences in the H3K27Ac and H3K4me3 datasets.

Fig. 1 Constructing a network model from multiple ‘omic measurements. (A) We start with a probabilistic interactome that includes protein–protein
interactions scored by the confidence of their interaction. This confidence score reflects the strength of evidence across multiple interaction databases
and this score constrains the edge’s capacity within our flow-based model. Higher confidence leads to higher capacity. Some of these proteins are
transcription factors (triangles). We complement these edges with transcription-factor (triangles) to DNA (octagons) binding interactions. We predict
these interactions and their edge probabilities by measuring active and open chromatin via ChIP-seq and looking for enrichment of transcription factor
binding motifs. Conceptually, this is our available road map for creating pathways where the capacities are akin to speed limits. (B) We connect an artificial
source node to all proteins that have corresponding shRNAs that were considered hits in the screen. These edge capacities reflect the strength of the
shRNA effect. In our model, these edges reflect how strongly an shRNA depletes from input to morbidity. We connect an artificial sink node to
differentially expressed mRNAs. These edges reflect the fold-change in expression. The algorithm introduces flow into the network and looks for an
optimal route from the source to the sink, selecting edges based on available capacity. (C) The final path through the interactome becomes the de novo
pathway. This pathway may or may not include all of the original inputs (e.g. differentially expressed mRNA or depleted shRNAs). Further, SAMNet allows
the simultaneous construction of pathways for multiple conditions. In our investigation we treated the parallel in vitro and in vivo screens as separate
conditions. (D) Screening design interrogates in vivo specific regulators of ALL progression. A genome-scale library was introduced to ALL cells in vitro.
Representative samples were either maintained in culture or transplanted into mouse models. At time of morbidity, blood and culture samples were
re-sequenced to measure shRNA representation.
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Table 1 Top 1% of depleting shRNAs in vitro and in vivo. We calculated the
absolute values of fold-changes for all genes that depleted from input to
end point. We mapped all genes to their human homologues for use with
SAMNet. Fold-changes were calculated using DESeq2

Gene Abs (f.c.)

In vivo
ASRGL1 10.818
FNDC5 10.233
MRPL37 9.670
ATP6V1C1 9.478
DHX37 9.244
NRG2 9.155
ATP10B 8.940
HOXD3 8.765
HDHD1 8.760
PCBP4 8.744
DHDDS 8.633
SERF1A 8.474
SLC29A2 8.390
STK32B 8.296
POLQ 8.241
GTF3C5 8.164
SPC24 8.140
IPO11 8.102
GMPS 8.102
UBE2H 8.073
ZNF416 8.025
CASP14 8.014
SCD 8.000
MAPRE3 7.898
PLEKHA5 7.879
SMARCD1 7.856
DENND1C 7.840
TMEM156 7.821
TMEM176A 7.800
LPPR5 7.751
SRP72 7.704
ATP6AP2 7.595
FOXO6 7.588
WISP3 7.564
LCE3C 7.562
ZBTB4 7.512
RCC1 7.512
FXYD6 7.512
UBE2L6 7.505
SNTB1 7.498
TIMD4 7.480
DVL1 7.452
COLEC12 7.440
DHRS7C 7.440
CTSC 7.435
CECR5 7.425
IQCH 7.425
MTRF1L 7.366
TGS1 7.337
TIGD5 7.327
SPATA13 7.306
CPSF6 7.296
NDUFS1 7.292
ARMCX6 7.281
OR13C4 7.275
BCMO1 7.270
SF3A1 7.268
DIAPH3 7.266
PGLYRP2 7.249
ABHD12B 7.242
DRD1 7.241
ODF2 7.238
POGZ 7.215
TDRD7 7.206
C9orf69 7.193
ALKBH2 7.143

Table 1 (continued )

Gene Abs (f.c.)

GRHL3 7.119
C17orf97 7.111
SUZ12 7.111
TMEM79 7.106
LAG3 7.062
IDH3A 7.042
C4orf32 7.039
PNO1 7.018
FUT10 7.005
VCPIP1 6.990
TFDP1 6.974
RPL7 6.966
RNF11 6.956
SLC6A2 6.951
YEATS2 6.932
LAP3 6.928
ADAMTS18 6.927
TRIM33 6.916

In vitro
C10orf71 10.038
KCNA5 9.965
TMEM165 9.751
C1orf85 9.671
KLF3 9.633
CEBPA 9.333
TPSG1 8.975
ZNF367 8.826
GTPBP10 8.774
MFSD3 8.754
GLB1L 8.558
DNTT 8.498
MYT1 8.285
ANKS6 8.262
KRT77 8.160
NRARP 8.103
PPP3CB 8.099
MAD2L1 8.055
CRNKL1 8.016
ACTC1 8.016
AHCYL1 8.016
FCRL3 7.996
SURF4 7.996
RCOR2 7.962
FCGR3A 7.955
ZNF616 7.913
BAG5 7.902
SASS6 7.803
SMYD5 7.760
TRIM59 7.745
ZNF347 7.723
NFAT5 7.721
MATR3 7.649
MED8 7.643
CCT2 7.550
RAB33A 7.545
MCPH1 7.440
KCTD1 7.407
POLR3GL 7.380
MPZL1 7.365
INTS1 7.341
DNMT3A 7.334
ARL9 7.304
DOK2 7.285
SYNJ2 7.285
MBTPS2 7.228
C4orf17 7.183
NHLRC1 7.107
ATXN3 7.090
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Of these valleys, 15 178 regions overlapped between the two
datasets (21% of the H3K27Ac and 62% of the H3K4me3). Fig. 2
shows example ChIP-seq reads, MACS peaks, valley regions,

and IgG controls for 3 control genes: Trim27, E2f3, and Hist1h1b.
We selected these example genes because they had relevant
histone activation marks in mouse B-cell samples that were
previously published in the UCSC Genome Browser. From existing
data, we expected to measure activation, and used these results to
benchmark the quality of our experimental data prior to compu-
tational analysis. For these genes, the H3K4me3 and H3K27Ac
ChIP-seq and MACs peaks were well aligned, although the valleys
varied slightly. In the case of Hist1h1b, the H3K27Ac data had a
larger MACS peak and thus more valley regions. Given these
trends, we used the union of all valley regions to identify possible
regions of transcription factor binding.

From these active valley regions, we used our own software suite,
Garnet, to identify transcription factor to DNA binding interactions.
Garnet uses a weighted scoring approach to quantify the probability
that a transcription factor occupies a region based on the strength
of the transcription factor motif.24,25 The analysis created a list of
262 705 interactions with scores above 0.3. We select 0.3 as a lower-
bound for selecting interactions to reduce computational time. The
algorithm is incentivized to use higher quality (i.e. higher scored)
interactions, and so eliminating the weakest interactions creates
smaller data objects. The upper bound is 0.99 because Garnet
creates a normalized score. We append these interactions to an
existing protein–protein interaction network derived from iRefWeb
(interactome described in methods).

SAMNet identifies a network of genes affecting ALL progression

As we already knew that shRNA and mRNA measurements capture
distinct pathway components,23 we pursued a data integration
approach to predict new genes in the ALL progression pathway.
We used the Simultaneous Analysis of Multiple Networks (SAMNet)26

to construct such a pathway because this was the most powerful tool
given the data we had collected. The algorithm integrates diverse
perturbation and response datasets and maps them to a physical
interaction network comprising all possible ways by which the
perturbed species (e.g. shRNA hits) can give rise to the observed
response (e.g. differentially expressed transcripts). SAMNet then
applies a network flow-based paradigm to select a subset of inter-
actions that relates the experimentally-perturbed genes from the
shRNA screen to the differentially expressed mRNA through
the specified interactome. We conceptually depict how SAMNet
integrates shRNA and mRNA data with our interaction network,
or interactome in Fig. 1. In the context of the resulting model,
RNAi genes are connected upstream of transcription factors and
differentially-expressed mRNAs; sometimes, RNAi genes represent
transcription factors themselves and are directly connected to
differential mRNAs. Mathematically, the algorithm selects an inter-
action sub-network by pushing flow through a probabilistically-
weighted interactome (described in methods). Flow initiates at
the RNAi hits and terminates on differentially expressed mRNAs.
Fold-change values from RNAi and mRNA expression data constrain
the amount of flow any experimental gene hit can capture in the
network. Genes are able to capture flow from either commodity, and
interactions can be shared between commodities if the algorithm
identifies that these interactions can connect data from both
experimental environments.

Table 1 (continued )

Gene Abs (f.c.)

MID2 7.090
CHM 7.022
MEIS1 6.997
ZNF583 6.922
LAT 6.909
ZNF217 6.908
TPRKB 6.893
POLR2B 6.881
SPIRE1 6.849
ENO3 6.826
ZKSCAN2 6.722
C1orf106 6.694
REG1A 6.675
ZBTB24 6.667
TTLL9 6.663
ITGB1BP1 6.633
IL5RA 6.607
SNTB2 6.598
AKR1D1 6.560
ZFYVE26 6.554
MRPL13 6.484
TDGF1 6.457
LGALS7 6.428
GCH1 6.378
DSEL 6.301
EIF2S3 6.300
S100A4 6.299
MRO 6.279
HMGA2 6.157
RASL10A 6.154
GIT2 6.148
PPARG 6.131
SCLT1 6.104
ASXL2 6.091
TM7SF3 6.078
NOS3 6.044
BICD1 6.040
NR3C1 6.035

Table 2 GO enrichment of shRNA targets from the in vitro screen.
Enrichment used a single ranked list against the whole genome via the
GOrilla web tool. There were no enriched GO terms for the genes selected
by the in vivo screen

Go process FDR q-value

Cellular homeostasis 3.79 � 10�2

Ion homeostasis 4.07 � 10�2

Cellular divalent inorganic cation homeostasis 4.38 � 10�2

Divalent inorganic cation homeostasis 4.74 � 10�2

Cellular chemical homeostasis 5.17 � 10�2

Cation homeostasis 5.69 � 10�2

Calcium ion homeostasis 6.32 � 10�2

Metal ion homeostasis 7.12 � 10�2

Monovalent inorganic cation homeostasis 8.13 � 10�2

Chemical homeostasis 9.32 � 10�2

Inorganic ion homeostasis 9.49 � 10�2

Metal ion transport 1.14 � 10�1

Cellular cation homeostasis 1.42 � 10�1

Cellular metal ion homeostasis 1.90 � 10�1

Cellular ion homeostasis 2.85 � 10�1

Cellular calcium ion homeostasis 5.69 � 10�1
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The foundational model consisted of 311 nodes and 480
edges (full network available at http://fraenkel-nsf.csbi.mit.edu/
psiquic/cytoscape.html). We proceeded from this foundation by

removing the ‘source’ and ‘sink’ nodes which are topological
formalities for creating the network model. This created an
interaction network where upstream protein–protein interactions
converge on transcription factor to DNA binding interactions.
To first focus on a protein interaction sub-network, we omitted
the 43 mRNA nodes and transcription factors that are not directly
connected to the protein–protein interactome (see below).
The resulting sub-network contains 258 nodes and 259 edges
(Fig. 3). This network contained 91 targets from the RNAi
inputs (i.e. experimental genes), and 167 predicted genes. Of
the 167 predicted genes, 33 are transcription factors.

A predicted transcription factor to DNA binding sub-network
contains 84 nodes with 79 edges (Fig. 4); 41 nodes are

Table 3 Genes selected as top candidates from mRNA expression data. The table shows the top 1% of genes up-regulated in vivo (top) and in vitro
(bottom)

In vivo, genes with fold-change values
HBA-A1 12.10 LOC671894///LOC674 7.75 MYOM2 7.03
S100A9 11.93 RTP4 7.63 MX1 7.01
S100A8 10.92 MS4A1 7.61 TIAM1 7.00
IIGP1 9.91 4732416N19RIK 7.57 D430019H16RIK 6.97
RHOJ 9.80 2900041A09RIK 7.56 DOCK9///LOC670309 6.96
NKG7 9.76 CASP4 7.55 SPARC 6.96
AQP1 9.75 IFITM3 7.53 FPR-RS2 6.93
ANXA2 9.64 SLFN4 7.53 PLF///PLF2///MRP 6.91
CSF1R 8.94 5830431A10RIK 7.49 MYH6///LOC671894/ 6.81
IL18 8.85 ZBP1 7.44 CCL3 6.75
NRP1 8.68 B230343A10RIK 7.41 S100A5 6.73
FOS 8.52 CCL5 7.37 TIMM8A2 6.72
SAA3P 8.47 4921525O09RIK 7.36 LGMN 6.69
CHI3L3 8.45 C5AR1 7.33 DLGH3 6.65
TCRB-J///TCRB-V13 8.29 C1QB 7.30 ITGA5 6.65
LOC240327 8.27 HTRA3 7.28 KLK3 6.64
IGL-V1///2010309G2 8.26 LAMB2 7.26 LGALS3BP 6.64
ENPP3 8.24 PLXNB1 7.25 CD97 6.63
PGLYRP1 8.19 IL2RA 7.24 DIRAS2 6.60
SLC9A3R2 8.11 A330102K04RIK 7.19 KLF4 6.55
LCN2 8.00 GPRC5A 7.16 GZMA 6.52
BLR1 7.90 TCRB-V13///LOC6655 7.12 2010300C02RIK///LO 6.51
HYDIN 7.89 TYROBP 7.10 ADCY6 6.51
EPPK1 7.88 1100001G20RIK 7.05 A930013B10RIK 6.49
NGP 7.82 LMNA 7.04 TLR1 6.48
MPA2L///LOC626578 7.80 XDH 7.04

In vitro, genes with fold-changes
TGFB3 �9.74 IL21R �4.82 5730442G03RIK �3.78
HBB-BH1 �8.50 BEX6 �4.57 1700025G04RIK �3.77
VLDLR �7.05 1190002F15RIK �4.39 B230107K20RIK �3.77
HS3ST1 �6.99 FETUB �4.34 JDP2 �3.77
PLA2G2F �6.02 NUPR1 �4.33 NETO2 �3.76
1700097N02RIK �5.97 REEP1 �4.29 PRG3 �3.69
NKX1-2 �5.77 GLRP1 �4.25 RTN4RL2 �3.57
ACTR3B �5.69 SENP8 �4.17 SLC6A13 �3.57
PPP1R3B �5.52 CCR2 �4.15 D19ERTD652E �3.53
UBQLN2 �5.49 PAX7 �4.13 ORC1L �3.51
ANKRD15 �5.42 POLH �4.10 CD248 �3.51
SOX6 �5.38 2610019I03RIK �4.05 DPM3 �3.48
CDH1 �5.37 FADS2 �4.03 GM129 �3.48
1810011H11RIK �5.35 DKK3 �3.99 USP2 �3.48
CD28 �5.20 PKP2 �3.95 EVA1 �3.45
LOC433844 �5.13 AXIN2 �3.92 ABCG1 �3.44
AI427515 �5.09 KIF2C///LOC631653 �3.88 AMMECR1 �3.43
ART4 �5.01 NAP1L3 �3.84 CMAH �3.42
PTGS1 �4.95 2610021K21RIK �3.83 PLK1 �3.40
GFI1B �4.95 BARD1 �3.83 ZDHHC2 �3.39
SELENBP1 �4.93 CHAC1 �3.80 GCM2 �3.39
CTH �4.93 4731417B20RIK �3.79 MAP6 �3.38

Table 4 GO enrichment for genes up-regulated in vivo. Enrichment used
a single ranked list against the whole genome via the GOrilla web tool.
There were no enriched GO terms for genes up-regulated in vitro

GO function FDR q-value

Regulation of transport 1.24 � 10�1

Response to transition metal nanoparticle 1.96 � 10�1

Positive regulation of transport 2.15 � 10�1

Actin filament-based process 2.46 � 10�1

Actin cytoskeleton organization 3.27 � 10�1
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transcription factors, and 43 nodes are differentially expressed
mRNAs. This sub-network includes an additional 7 experimental
genes from the RNAi input set; this yields a total of 40 transcrip-
tion factors in the whole network, combining the two sub-
networks. These 7 targets are transcription factors which had
predicted connections to altered mRNAs, but did not have
further connections to the protein–protein interaction network.
This set of transcription factors comprises Tfdp1, Foxo6, Hmga2,
Meis1, Myt1, Cebpa, and Klf3. Another identified transcription
factor, Pparg, had connectivity both to the protein–protein
interactome and directly to differential mRNA (Fig. 3 and 4).

Integrated approach finds genes connecting disparate data sets

This network further specifies interactions specific to either
the in vivo or in vitro screen, as well as interactions common to
both screens (Fig. 3 and 4). The network identified genes
hits that connected the in vitro data (e.g. HGS, ARR, CASP10)

or the in vivo data (e.g. CPSF6, WWP1, TCF4, KLF5, HOXA9),
and genes that connected data from both screens (e.g. IKBKB,
NFKBIA, RELA).

We can also use the predicted genes identified by the
algorithm to enhance the ability to identify known pathways
using Gene Ontology (GO) functional enrichment statistics.
Functional enrichment of the network genes compared to the
whole genome identified GO processes distinct from those
identified in the RNAi or mRNA expression data alone (Table 5).
The processes include many associated with hematopoiesis
including leukocyte homeostasis (q-value: 9.76 � 10�10), lympho-
cyte homeostasis (q-value: 1.67 � 10�9), regulation of leukocyte
differentiation (q-value: 2.05 � 10�8), hemopoiesis (q-value:
4.16 � 10�8), and positive regulation of lymphocyte prolifera-
tion (q-value: 1.97 � 10�4). These processes included B-cell
specific functions such as negative regulation of cell differen-
tiation (q-value: 4.92 � 10�10) which reflect the undifferentiated

Fig. 2 ChIP-seq with valley-finding identifies regions for transcription-factor binding. Genome viewer tracks for Trim27 (chr13:21,267,345-21,277,316),
E2f3 (chr13:30,071,171-30,083,320), and Hist1h1b (chr13:21,868,763-21,874,488), showing ChIP-seq reads (top), MACs peaks (middle), valley regions
(lower, orange), and IgG control (grey, lower) for H3K27Ac (top 4 rows) and H3K4me3 (bottom 4 rows). The valleys highlight regions where we searched
for transcription factor binding motifs.

Fig. 3 SAMNet identifies integrated network for ALL progression. The purple/green edges represent interactions from the in vivo/in vitro screens. RNAi
hits are represented by a shaded square; the shading refers to the extent of depletion in the original screen. A diamond is a transcription factor selected by
SAMNet; those that are shaded are also hits from the shRNA screen. All white-face nodes are hidden targets selected by the algorithm. Node border color
represents fractional representation in a family of 100 random networks. Those without pink/orange border coloring are non-specific. The thickness
of the interaction line represents the amount of flow captured by that interaction; qualitatively this reflects an edge with higher interaction confidence in
the underlying interactome. Downstream mRNA pictured in Fig. 4. Red arrows indicate where Wwp1, Hgs, Lmo2, and Pogz exist within the network.
A high-resolution image is available: http://fraenkel-nsf.csbi.mit.edu/psiquic/.
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state of B-cell leukemias.27 This set of GO processes also
included functions associated with other hematopoietic pro-
genitors, namely leukocytes. This enrichment occurs because

genes with these annotations are shared among these two
biological functions. 12 of the 13 genes annotated as having a
role in leukocyte homeostasis are also involved in lymphocyte

Fig. 4 SAMNet selects transcription factors that explain genes with greatest differential expression. The transcription factors and differentially expressed
genes are represented as triangles and octagons respectively. Grey shading on the transcription factors represents the extent of depletion in the original
screen. Shading on the differentially expressed genes reflects either down-regulation (green) or up-regulation (purple) in the in vivo screen relative to the
in vitro screen. The thickness of the interaction line represents the amount of flow captured by that interaction; qualitatively this reflects an edge with
higher interaction confidence in the underlying interactome. Node border color represents fractional representation in a family of 100 random networks.
Those without pink/orange border coloring are non-specific. A high-resolution image is available: http://fraenkel-nsf.csbi.mit.edu/psiquic/.

Table 5 GO enrichment of network genes identifies processes associated with B-cell leukemia. GOrilla identified enriched GO processes using the
network nodes as the foreground against a background of the whole genome

GO process p-value q-value Enrichment Genes

Transforming growth factor
beta receptor signaling
pathway

1.27 � 10�12 9.29 � 10�11 13.76 (20 822; 69; 307; 14) Fos, Parp1, Skil, Smad4, Tgfb3, Smad2, Smad9, Ptk2,
Smad3, Trp53, Creb1, Jun, Map3k1, Src

Negative regulation of cell
differentiation

7.07 � 10�12 4.92 � 10�10 3.89 (20 822; 610; 307; 35) Med1, Hdac2, Vhl, Lmo2, Tcf7l2, Pparg, Hoxa9, Ptk2,
Il18, Trp53, Foxo1, Jdp2, Apcs, Pkp2, Xdh, Itgb1, Vim,
Ezh2, Erbb2, E2f1, Skil, Erbb4, Myc, Smad3, Hmga2,
Meis1, Gsk3b, Itgb1bp1, Mapk1, Pax6, Suz12, Trp73,
Ctnnb1, Stat5a, Nfkbia

Positive regulation of protein
import into nucleus

8.16 � 10�12 5.65 � 10�10 3.00 (20 822; 1084; 307; 48) Mcph1, Jak2, Med1, Plscr1, Pcna, Bag5, Map2k1, Vhl,
Brca1, Pparg, Fadd, Hif1a, Crnkl1, Trp53, Foxo1,
Trim28, Mdfi, Traf2, Gch1, Mecom, Atxn3, Ubqln2,
Traf6, Atf4, Bag6, Xdh, Nck1, Zbp1, Klf4, Ccr2, Parp1,
Skil, Epm2a, Dvl2, Myc, Smad3, Mapk1, Ppp4c, Trp73,
Rela, Cd28, Il2ra, Map3k3, Stat5a, Map3k1, Map2k4,
Nfkbia, Rab33a

Leukocyte homeostasis 1.50 � 10�11 9.76 � 10�10 13.16 (20 822; 67; 307; 13) Ahr, Sos1, Fas, Lat, Skil, Ppp3cb, Hif1a, Fadd, Casp3,
Ikbkb, Il2ra, Stat5a, Mecom

Lymphocyte homeostasis 2.66 � 10�11 1.67 � 10�9 14.53 (20 822; 56; 307; 12) Sos1, Ikbkb, Ahr, Lat, Fas, Il2ra, Skil, Ppp3cb, Stat5a,
Fadd, Hif1a, Casp3

Regulation of leukocyte
differentiation

3.73 � 10�10 2.05 � 10�8 5.75 (20 822; 236; 307; 20) Sos1, Fas, Ccr2, Erbb2, Fos, Fadd, Myc,Tal1, Creb1,
Gfi1b, Jun, Apcs, Asxl2, Cd28, Il2ra, Ctnnb1, Rb1,
Stat5a, Traf6, Tyrobp

Regulation of myeloid
leukocyte differentiation

4.13 � 10�10 2.24 � 10�8 9.13 (20 822; 104; 307;14) Fos, Fadd, Myc, Tal1, Creb1, Gfi1b, Jun, Asxl2, Apcs,
Ctnnb1, Rb1, Stat5a, Traf6, Tyrobp

Hemopoiesis 7.79 � 10�10 4.16 � 10�8 8.71 (20 822; 109; 307; 14) Jak2, Med1, Klf4, Ahr, Ccr2, Lmo2, Hif1a, Hoxa9,
Meis1, Tal1, Sox6, Ctnnb1, Sp3, Sp1

Positive regulation of
chromosome organization

4.45 � 10�9 2.13 � 10�7 8.48 (20 822; 104; 307; 13) Brca1, Smad4, Eed, Trp53, Tal1, Plk1, Ctbp1, Jdp2,
Gfi1b, Asxl2, Ctnnb1, Rb1, Ep300

Positive regulation of myeloid
leukocyte differentiation

7.35 � 10�8 3.06 � 10�6 11.52 (20 822; 53; 307; 9) Gfi1b, Jun, Fos, Asxl2, Rb1, Stat5a, Fadd, Traf6, Creb1

Positive regulation of cytokine
production

7.47 � 10�8 3.10 � 10�6 4.21 (20 822; 322; 307; 20) Jak2, 2Atp6ap2, Ccr2, Brca1, Fadd, Hif1a, Smad3, Il18,
Creb1, Rela, Cd28, Rel, Traf2, Stat5a, Arnt, Hdac1,
Traf6, Src, Atf4,

Regulation of apoptotic
signaling pathway

1.16 � 10�6 3.79 � 10�5 5.31 (20 822; 166; 307; 13) Jak2, Plscr1, Nck1, Fas, Skil, Fadd, Mapk8, Smad3,
Myc, Trp53, Gsk3b, Trp73, Traf2

Myeloid cell development 4.62 � 10�6 1.31 � 10�4 10.32 (20 822; 46; 307; 7) Sox6, Med1, Ptpn11, Tal1, Meis1, Ep300, Src
Positive regulation of
lymphocyte proliferation

7.38 � 10�6 1.97 � 10�4 5.95 (20 822; 114; 307; 10) Nck1, Ccr2, Cdkn1a, Cd28, Stat5a, Fadd, Traf6

Regulation of Wnt signaling
pathway

3.49 � 10�5 7.84 � 10�4 3.88 (20 810; 227; 307; 13) Hdac2, Cdh1, Atp6ap2, Tcf7l2, Dvl2, Smad3, Dkk3
Dvl1, Foxo1, Mdfi, Hdac1, Src, Xiap
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homeostasis. The enrichment analysis also identified pathways
with known relationships to leukemias, if not specifically acute
lymphoblastic leukemia. We address the potential significance
of these pathways in the discussion.

Predicted pathway contains genes contributing to ALL
progression specifically in vivo and genes affecting B-cell
viability

As initial evidence supporting the effective capabilities of our
integrative pathways-based modeling approach, we note that the
model predicts in vivo specific effects for Lmo2 and Pogz. These
two targets have, in fact, been previously validated successfully.20

For additional evidence, we undertook here new dedicated
experimental tests of predicted hidden genes selected from the
model-determined ranking list (Table 6). From the ranked gene
list (Table 6), we used in vivo competition assays to measure the
effects of loss of these predicted genes on ALL progression.

Hgs is a vesicular body-associated protein and was not included
in our initial library screen. The model predicts that shRNAs
targeting Hgs will deplete in vitro. In competition assays, an shRNA
against Hgs depleted in culture, the blood, bone marrow, and
spleen. The depletion in culture was greater than in all organs and
was consistent with our model predictions (Fig. 5). These findings
suggest that while Hgs confers a growth disadvantage to a pre-B-cell
ALL, the in vivo environment mitigates the effect of Hgs loss. This
may be due to growth factors or other paracrine signals that are
relevant to hematological malignancies,19 direct cell-to-cell contact,
disease compartmentalization, or many other factors unique to the
in vivo environment.20

Wwp1, is a ubiquitin conjugating enzyme that was in our
initial library, however the sequencing reads were below the
limit of detection, suggesting a bad shRNA reagent. The model
predicts that Wwp1 knockdown has an in vivo specific effect, and
competition assays confirm this phenotype. shWwp1 enriches in
the blood, bone marrow, and spleen (Fig. 5).

Discussion

Discovering pathways de novo by leveraging multiple ‘omics
measurements can find latent information from functional
genomic screens. We confirm the relevance of our model first
through GO analysis. GO enrichment of the input RNAi and
mRNA expression sets found no enrichment of relevant func-
tions. This reaffirmed the disparate nature of individual data
sets and suggested the possible value of an integrated
approach. Further, we validated specific gene predictions from
our network model. The model predicted an in vivo specific
effect for Lmo2 and Pogz. They were functionally related to the
very top gene targets as predicted by the pathway model, and
were found to have in vivo specific effects through further
validation. Hgs and Wwp1 were not included in the original
screen analysis due to low sequencing coverage, yet the model
predicted their relevance. Without such a model, they may
never have been considered. Through focused validation, they
both proved relevant to ALL progression.

Table 6 Aggregate scoring of top network nodes. Genes are grouped by type
(transcription factor, phenotypic, and hidden) and contextual effect. The shading
in the right columns refers to colors from the network key in Fig. 3 and 4
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The model makes many predictions about genes with roles
in development that have unclear roles in ALL. Many of these
development-associated genes are implicated across leukemias,
though degree of expression and directionality of their effects
can be context dependent. Some transcription factors, such as
TCF3, PAX5, IKZF1, and EBF1, are involved during many
hematopoietic stages.28 Other network genes are characteristic
of non-ALL leukemias. For instance, our network selects the
transcription factor TCF4. This factor is up-regulated in the
solid tumors of adult T-cell ALL patients29 but currently has an
unknown roll in B-cell ALL, though it is highly expressed in this
pre-B-cell ALL system. Additionally, functional enrichment
identifies that network genes are enriched for the TGF-beta
growth factor pathway process. Multiple leukemias, including
chronic myelogenous (CML), acute T-cell leukemia (ATL), and
ALL, express TGF-beta associated genes. Though, expression of
TGF-beta components was higher in the T-cell leukemias than in
the other leukemic cell lines30 and the ATL samples responded to
exogenous TGF-beta. Further, TGF-beta and Foxo3a activity both
promote the maintenance of leukemia-initiating cells in CML31

and loss of Foxo3a and TGF-beta inhibition better sensitized cells
to Imatinib treatment. Clinically, patients with higher levels of
TGF-beta are considered high-risk, as they often harbor additional
mutations that prevent the tumor-suppressor roles of TGF-beta.32

The network also identifies the Wnt signaling pathway which is
relevant in multiple hematological malignancies; specifically,
stabilized beta-catenin is associated with differentiation arrest,
is highly expressed in childhood T-cell ALL, and Wnt signaling
can promote drug resistance.29,33–35 Hemopoiesis is governed by
stage- and lineage-specific transcription factor regulation28,29 and
finding relationships between differentiation and disease genes is
valuable for understanding ALL generally. These predictions
underscore our incomplete knowledge of this disease pathway.
Additionally, specific network predictions are useful for trans-
lating therapeutic insight into ALL; specifically investigating

TGF-beta and Wnt in ALL will inform research in therapeutics
as these pathways have already been characterized in other
leukemic contexts.

The network predictions about genes associated with B-cell
development are relevant for interpreting therapeutic resistance.
B-cell development pathways have been identified as hallmarks
of drug-resistant leukemias and thus, therapeutic strategies
promoting B-cell maturation show promise.17 Previous studies
have also demonstrated the role of histone modification path-
ways in relapsed ALL; specifically CREBBP and CTCF, are
mutated in these patients and may affect treatment response.36

The network confirms the relevance of CREBBP to pre-B-cell ALL,
though, the model indicates that this gene is deleterious to B-cell
viability and does not specifically modulate the response not
specific to the in vivo environment. Identifying developmental
pathways in ALL is not novel, but there is novelty in specifying
which of these genes are deleterious for pre-B-cell growth and
those that are deleterious in vivo.

We develop our model to select for context-specific inter-
actions and can identify genes relevant to the in vitro or in vivo
settings, or genes that are common to both. In the case of Hgs,
the model predicts an in vitro specific effect. We demonstrate
that Hgs loss confers a growth disadvantage in culture, blood,
spleen, and bone marrow, but that this loss is most drastic
in culture. This trend emphasizes the ability to distinguish
genes relevant to the pre-B-cell model and those specifically
responding to the cancer microenvironment. In the case of Hgs,
loss of this gene is significant in culture, blood, spleen, and
bone marrow, though our model predicts and confirms that
this is not an effect specific to the tumor microenvironment.
This framework is valuable as screening context (e.g. treatments
or experimental environment) can affect which parts of a
pathway are relevant. In our example, all genes in the model
are predicted as part of the ALL pathway, but only a subset are
relevant to ALL progression in vivo.

Fig. 5 Validation shows in vitro and in vivo effects for Hgs and Wwp1. In the competition assays, we measure the relative abundances of pre-B-cells with
and without an shRNA against our gene of interest either in culture or transplanted into mice. We measure relative proportions at the time of morbidity
using FACS. All plots are mean � S.D. For all samples, n = 3, except for Hgs, and Wwp1 tissue samples where n = 4.
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Hgs (Hrs) is a member of the ESCRT-0 family of proteins
involved with multivesicular body (MVB) formation.37 This pro-
tein is involved with the internalization and degradation of
activated cell-surface receptors38,39 and loss of Hrs is associated
with increased accumulation of E-cadherin and decreased cell
proliferation.38 Hrs is also essential for the termination of IL-6
signals by sorting gp130, a transducer of IL-6 stimulation, for
endosomal degradation.40 Further, Hrs deficiency in mice
decreased B-cell receptor expression; BCR expression is necessary
for pre-B-cell expansion.39,41 The consequences of Hgs loss sug-
gest that deficiencies in receptor internalization are deleterious to
this type of pre-B-cell ALL.

The network predicts a novel role for Wwp1 in pre-B-cell
ALL. Even though the network model was constructed using
shRNAs that conferred a growth disadvantage, the model does
not predict the directionality of effects for predicted genes.
Validation experiments confirmed that Wwp1 had an in vivo
specific effect, and that Wwp1 loss conferred a growth advan-
tage. This enrichment is surprising because so far, most
evidence suggests that Wwp1 is an oncogene; our competition
assays suggests that in ALL, Wwp1 may have a tumor suppres-
sor role. WWP1 is a member of the Nedd4 family of ubiquitin
ligases, many of which are over-expressed in cancer.42 Many
results suggest that WWP1 acts an oncogene by targeting
tumor-suppressing proteins, such as LATS, for degradation.
WWP1 is over-expressed in breast and prostate cancers, and
seems to function in this oncogenic manner.43,44 Though,
WWP1 also participates in a unique feedback loop with p53.
Wwp1 stabilizes p53 protein in the cytoplasm, but decreases its
expression, and in turn, p53 reduces the expression of Wwp1.45

This feedback loop is dependent upon p53 mutation status;
mutated p53 abrogates this feedback dynamic leading to
increased Wwp1 expression. In our pre-B-cell ALL, Wwp1 has
relatively low expression and intact p53 suggesting an intact
feedback loop. Loss of Wwp1 could lead to decreased p53
protein stability and enable interactions with other proteins.
For instance, these cells express high levels of survivin (Birc5),
which can prevent p53-mediated apoptosis in pediatric ALL.46

Off target effects are one of the largest criticisms of RNAi
screens, yet even with these effects, we construct and validate a
model for genes regulating ALL progression. We create this
model with less than 100 input targets from each screen and
find GO enrichment of genes related to leukemia and hemato-
poietic development. This demonstrates that the network filter
is sufficiently powerful for analysis of screening data and that
even stringent thresholds are sufficient for identifying genes
relevant to a pathway. Further, we perform this analysis retro-
actively without controlling for OTEs or requiring specific
negative controls, showing that RNAi analyses do not have to
specifically compensate for OTEs. This suggests that even with
limited and imperfect screening results, we can learn more
from these screens, and that pathway discovery approaches are
a viable path forward for the gene-interference community.

There are limitations associated with this approach. We have
not yet made an estimate of validation rate for these network-
based filters. To make this estimate, we would need to validate

all genes in the network and determine the false positive rate.
This method requires multiple datasets to create a possible
network whereas other approaches require fewer input datasets.
Some examples of tools that require a single input dataset
include the Prize Collecting Steiner Forest (PCSF),47,48 TieDIE,49

and HOTNET.50,51 For a biologist, these tools could be easier to
implement, but they lack the perspective gained by integrating
multiple ‘omic measurements. Each ‘omic measurement captures
a slightly different aspect of the cellular process under investiga-
tion, and so there are trade-offs between completeness and simpli-
city when selecting these tools.

Application of integration methods will improve understand-
ing of gene-interference screens regardless of improvements in
reagent design. CRISPR systems are more sensitive than RNAi
and are better suited for discovering essential human genes.52,53

Though, both technologies are limited by biological compensa-
tion through alternative pathways or redundant proteins. Thus,
adapting and applying interaction-based methods for data inte-
gration will continue to be of importance for functional genomic
investigations. These integration methods can impact many
biological problems beyond cancer investigations. To cite a few
examples, RNAi screens are useful for uncovering synthetic
lethal relationships,54 genes associated with homologous recom-
bination,55 and genes responsible for ectodomain shedding.56

Many have promoted the value of data integration analysis
methods,2,4,8,21 however, these analysis approaches remain
under utilized in the gene interference community.

Materials and methods
shRNA screen, and data processing

The original shRNA screen and mRNA expression data are described
previously.20 DESEQ2 size-factor normalized and calculated fold-
changes for shRNA sequencing data. We ranked these fold-change
values by p-value from DESEQ2.57 The GOrilla tool (http://cbl-gorilla.
cs.technion.ac.il/)21,22 determined GO functional enrichment using
the top 1% of differentially depleted shRNAs against the background
of the whole mouse genome. GOrilla also determined functional
enrichment of the top 1% of differentially expressed (up-regulated/
down-regulated mRNAs for the in vivo/in vitro contexts) mRNAs
against the background of the whole mouse genome.

Cell culture and ChIP-seq

Pre-B-cell ALL cells58,59 were cultured as published.20 We per-
formed ChIP assays as previously described.60 Briefly, 8.5 � 106
pre-B-cells were cross-linked with 11% formaldehyde. Pellets were
lysed and sonicated using the BioRuptor. Following sonication,
activated DNA regions were immunoprecipitated using the follow-
ing antibodies: K4me3 (Millipore Lot#1974075), K27Ac (Abcam
Lot#GR1048521), and IgG (Millipore Lot#JBC17938060).

Peak and valley finding

We used the MACS algorithm61 to identify peak regions 10k kb
upstream of the transcription start site. Within these peak
regions, we searched for valleys (local minima within peak
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regions) and then used these regions as inputs for potential
transcription factor binding locations. The ChIP-seq data are
available: GSE77570 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE77570). To discover valleys, we create a script
that looks for local minima surrounding peaks in the H3K4me3
and H3K27Ac datasets. We use MACS61 to define significant
peaks in each ChIP-seq data set and then define local minima
between peaks. Our definition requires that a ‘‘minimum’’
region be less than half the height of the shorter of two
neighboring peaks. This approach is motivated by the fact that
transcriptional enhancers are more likely to bind in between
histones and we needed these sequences to identify transcrip-
tion factor motif regions. Previous work demonstrated that
transcription factor binding is correlated with local minima
in ChIP-seq data,62 and additional work has used these ‘‘dips’’
to look for enriched transcription factor motifs.63

Interactome construction

We used Garnet to create transcription factor to DNA binding
interactions. The Garnet package uses a weighted scoring
function22 to determine which transcription factor motifs were
the most likely to bind a set of Fasta sequences. For input, we
used the valleys identified from our previously mentioned
ChIP-seq data. The software is part of a suite of ‘omics integra-
tion tools (http://fraenkel.mit.edu/omicsintegrator).

For our starting interaction network, we downloaded inter-
actions from iRefWeb version 9 and we only kept interactions
that mapped to UNIPROT reviewed human proteins. These
interactions were scored using the miscore framework64 to
create a probabilistically-weighted interactome. This score con-
siders the number of publications, the type of interaction, and
the evidence supporting the interaction. We discarded inter-
actions with a score below 0.3. This yielded a starting network of
88 117 interactions. The interactome is hosted on the Fraenkel
Lab Website (http://fraenkel-nsf.csbi.mit.edu/psiquic/).

Simultaneous analysis of multiple networks (SAMNet)

We built the model using SAMNet.26 We used the top 1% of
depleted shRNAs (for in vivo and in vitro), the top 1% differen-
tially expressed mRNAs (up-regulated genes were assigned
prizes for the in vivo context and down-regulated genes were
assigned prizes for the in vitro context), the transcription factor
to DNA binding interactions, and the weighted interactome as
inputs to the algorithm. For simplicity, we mapped all mouse
data to human gene symbols using homology. We used a
gamma parameter of 17 as this was found to maximize the
number of shRNA-targeted genes in the network. We again
used GOrilla to determine the functional enrichment of the
network, this time using the set of network nodes as a fore-
ground against the background of the whole mouse genome.

Randomizations and robustness analysis

For randomizations, we completed 100 runs of the algorithm
at the same gamma parameter, but with the depletion and
differential expression scores distributed to random sets of
genes. We calculated node enrichment fraction, or specificity,

by counting the number of times a node from the real network
was selected in a random network. For further scoring and
ranking, we used 1-specificity to keep all network parameters
on a 0–1 scale. We used networkx in Python to determine the
authority scores for network genes. SAMNet outputs the amount
of flow converging on a gene. Our aggregate scoring method
weighted each of these normalized values by the standard
deviation of these metrics across all genes and was normalized
to the sum of all metric standard deviations:

R¼
ð1-specificityÞ�sð1-specificityÞþauthority�sauthorityþflow�sflow

sð1-specificityÞþsauthorityþsflow

We completed this calculation separately for genes unique
to in vivo/in vitro contexts and common between both contexts
because common genes had two authority and flow scores.
Because we designed the model to allow for multiple out-going
connections from transcription factors but not from hidden
genes and because phenotypic (shRNA) hits did not have
incoming flow in the mode, we created separate rankings for
transcription factors and phenotypic hits.

GFP competition assays

For model validation, we conducted parallel in vitro and in vivo
GFP competition assays. We created shRNA constructs for Hgs
and Wwp1, and infected pure populations of mCherry positive
ALL cells as described.20 At the time of experiment, infected
pre-B-cells were mixed 50 : 50 with mCherry positive ALL cells.
From these populations, 100k cells were tail-vein injected into
four 8-week-old, female C57BL6 mice, and 100k cells were
plated in triplicate. Cultured populations were split 1 : 5 daily
until mice reached morbidity (10–12 days following injection).
At the time of morbidity, we collected blood, spleen, and bone
marrow. For all in vivo and in vitro samples, we measure the
%GFP of mCherry-labeled cells and calculated a fold-change
relative to the 50 : 50 ratio at input. We normalized %GFP-fold-
change to the MLS control for the respective tissue and used a
t-test with Welch?s correction to determine significance. The
sequences used for Hgs and Wwp1 shRNAs are CCAGAAAC
CACTTATATGTCTA and CTCCCTATTTTATACAGAGCAA. We tested
shRNA knockdown using qPCR relative to Gapdh using Taqman
expression assays. shHgs and shWwp1 left 23.28% and 67.64%
mRNA remaining (Fig. S1, ESI†).

All experiments were performed in compliance with the
relevant laws and institutional guidelines. Animal protocols
were submitted to and approved by the MIT CRC. Animals were
housed in compliance with the DCM policies for live subjects.
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2015, 144–152.
29 O. H. Ng, Y. Erbilgin, S. Firtina, T. Celkan and Z. Karakas,

Blood Cancer J., 2014, 1–8.

Integrative Biology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ne
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 1
0:

13
:2

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6ib00040a


774 | Integr. Biol., 2016, 8, 761--774 This journal is©The Royal Society of Chemistry 2016

30 Y. Niitsu, Y. Urushizaki, Y. Koshida, K. Terui and K. Mahara,
Blood, 2015, 1–5.

31 K. Naka, T. Hoshii, T. Muraguchi, Y. Tadokoro, T. Ooshio,
Y. Kondo, S. Nakao, N. Motoyama and A. Hirao, Nature,
2010, 463, 676–680.

32 J. R. Downing, N. Engl. J. Med., 2004, 351, 528–530.
33 T. K. Fung, A. Leung and C. So, Stem Cells and Cancer Stem

Cells, 2013.
34 W. Fiskus, S. Sharma, S. Saha, B. Shah, S. G. T. Devaraj, B. Sun,

S. Horrigan, C. Leveque, Y. Zu, S. Iyer and K. N. Bhalla,
Leukemia, 2014, 29, 1267–1278.

35 E. Ashihara, T. Takada and T. Maekawa, Cancer Sci., 2015,
106, 665–671.

36 C. G. Mullighan, J. Zhang, L. H. Kasper, S. Lerach, D. Payne-
Turner, L. A. Phillips, S. L. Heatley, L. Holmfeldt, J. R. Collins-
Underwood, J. Ma, K. H. Buetow, C.-H. Pui, S. D. Baker,
P. K. Brindle and J. R. Downing, Nature, 2011, 471, 235–239.

37 J. R. Edgar, E. R. Eden and C. E. Futter, Traffic, 2014, 197–211.
38 M. Toyoshima, N. Tanaka, J. Aoki, Y. Tanaka, K. Murata,

M. Kyuuma, H. Kobayashi, N. Ishii, N. Yaegashi and
K. Sugamura, Cancer Res., 2007, 67, 5162–5171.

39 T. Nagata, K. Murata, R. Murata, S.-L. Sun, Y. Saito,
S. Yamaga, N. Tanaka, K. Tamai, K. Moriya, N. Kasai,
K. Sugamura and N. Ishii, Biochem. Biophys. Res. Commun.,
2014, 443, 351–356.

40 Y. Tanaka, N. Tanaka, Y. Saeki, K. Tanaka, M. Murakami,
T. Hirano, N. Ishii and K. Sugamura, Mol. Cell. Biol., 2008,
28, 4805–4818.

41 M. Zhang, G. Srivastava and L. Lu, Cell. Mol. Immunol., 2004,
1, 89–94.

42 C. Chen and L. E. Matesic, Cancer Metastasis Rev., 2007, 26,
587–604.

43 Z. Zhongmei, R. Liu and C. Chen, Int. J. Cancer, 2011, 130,
1504–1510.

44 B. Yeung, K.-C. Ho and X. Yang, PLoS One, 2013, 8, e61027.
45 A. Laine and Z. Ronai, Oncogene, 2006, 26, 1477–1483.
46 J. W. Tyner, A. M. Jemal, M. Thayer, B. J. Druker and

B. H. Chang, Leukemia, 2012, 623–632.
47 S.-S. C. Huang and E. Fraenkel, Sci. Signaling, 2009, 2, ra40.
48 N. Tuncbag, A. Braunstein, A. Pagnani, S.-S. C. Huang,

J. Chayes, C. Borgs, R. Zecchina and E. Fraenkel,
J. Comput. Biol., 2013, 20, 124–136.

49 E. O. Paull, D. E. Carlin, M. Niepel, P. K. Sorger, D. Haussler
and J. M. Stuart, Bioinformatics, 2013, 29, 2757–2764.

50 F. Vandin, E. Upfal and B. J. Raphael, Lecture Notes in Computer
Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
vol. 6044, pp. 506–521.

51 F. Vandin, E. Upfal and B. J. Raphael, J. Comput. Biol., 2011,
18, 507–522.

52 T. Hart, K. R. Brown, F. Sircoulomb, R. Rottapel and
J. Moffat, Mol. Syst. Biol., 2014, 10, 733.

53 T. Hart, M. Chandrashekhar, M. Aregger, Z. Steinhart,
K. R. Brown, S. Angers and J. Moffat, Systematic discovery
and classification of human cell line essential genes, 2015.
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