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Comparative assessment of potential human health impacts is a critical step in evaluating both chemical

alternatives and existing products on the market. Most alternatives assessments are conducted on a

chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex pro-

ducts, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reac-

tion products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major

challenge for registration and health assessments. Here, we present a comprehensive experimental and

computational approach to categorize UVCBs according to global similarities in their bioactivity using a

suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped

for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing

process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem

cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from

five product groups. Concentration-response data from high-content imaging in cardiomyocytes and

hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed dis-

tinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering

of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover,

we observed a high degree of correlation between bioactivity profiles and physico-chemical properties,

as well as improved groupings when chemical and biological data were combined. Altogether, we

demonstrate how novel in vitro screening approaches can be effectively utilized in combination with

physico-chemical characteristics to group complex substances and enable read-across. This approach

allows for rapid and scientifically-informed evaluation of health impacts of both existing substances and

their chemical alternatives.

Introduction

Comparative analysis of potential human health effects and
physicochemical properties, combined with valuation of
exposure scenarios, environmental impacts and other factors,
is a critical step in evaluating the safety of both existing pro-
ducts and potential chemical alternatives. However, most
complex substances and chemical alternatives lack traditional
animal study-derived data that can be used to comprehensively
evaluate their safety. Recent National Research Council (NRC)
report1 “A Framework to Guide Selection of Chemical Alterna-
tives” argued for the transition towards using data from novel
high throughput and in silico approaches and posited that “it
is critical that the scientific community embrace the challenge and
advantages of using novel data streams in the alternatives assess-
ment process.”
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In response to the NRC’s call for developing principles and
tools that support the benchmarking and integration of high-
throughput data on chemical effects, especially in the context
of different regulatory requirements, we pursued a case study
of very complex high-production volume (HPV) substances that
fall into a broad category of Unknown or Variable composition,
Complex reaction products and Biological materials (UVCB).
Petroleum products are a prototypical example of UVCB. Given
their chemical complexity and multi-constituent nature, which
is further complicated by batch- or manufacturer-dependent
compositional variations, UVCBs continue to represent a
major challenge to regulatory agencies and registrants alike.2,3

All petroleum products were registered in the European Union
for the 2010 submission deadline under REACH (≥1000
tonnes registration band), comprising more than 8000 individ-
ual registrations.2 A number of these submissions were
accompanied by testing proposals to fill data gaps in specific
toxicity endpoints.4 To minimize the need for testing in ver-
tebrate animals, the majority of data gaps were addressed by
using read-across to similar substances for which the required
data were available.

Read-across of petroleum substances within the REACH
framework is typically done by grouping the individual sub-
stances into product categories with similar manufacturing
processes, physico-chemical (including refining history and
boiling point/carbon number ranges) and chemical properties
(such as hydrocarbon classes).3,4 Several recent studies have
shown that analytical–chemical properties, specifically the aro-
matic ring class (ARC) profiles of certain high-boiling pet-
roleum substances, correlate well with reproductive and
developmental toxicity and mutagenicity of petroleum
substances.5–7 However, category read-across approaches for
UVCBs that are based solely on such broad similarity para-
meters may not always be considered sufficient. Adding a bio-
logical data-based read-across component,8 i.e. categorizing
substances according to similarity in their biological responses
in addition to the physico-chemical and manufacturing
characteristics, may represent an enhanced strategy and
provide complementary experimental evidence to support dis-
tinctive product categories for petroleum substances.3,4

Recent advances in in vitro high-content screening (HCS)
technologies have improved their potential for multidimen-
sional bioactivity profiling in a rapid and relatively cost-efficient
way.9–12 Importantly, HCS can be used in conjunction with
induced pluripotent stem cell (iPSC)-derived organotypic cell
culture models, including iPSC-derived cardiomyocytes and
hepatocytes. Such iPSCs derived from non-embryonic human
stem cells are a particularly attractive and physiologically rele-
vant in vitro model that mimics and maintains the phenotypic
characteristics of their respective somatic counterparts.13,14

Collectively, the need for increased confidence in read-
across of complex UVCBs and the advantages afforded by novel
in vitro model systems and high-dimensional bioactivity data
readouts create the opportunity for the biological data-assisted
categorization of UVCBs. Thus, we hypothesized that modern
bioactivity profiling may be used to support categorization and

read-across of UVCBs using a case study of complex petroleum
substances. Herein, we describe a comprehensive experimental
and computational approach based on HCS screening of 21
petroleum substances from five distinct product groups and
use these data to categorize them into groups for read-across.
In particular, we determined bioactivity-based concentration-
response profiles for these substances using multidimensional
HCS of iPSC derived cardiomyocytes and hepatocytes. Concen-
tration-response profiling allowed derivation of quantitative
estimates of bioactivity for each parameter, data that were inte-
grated and visualized into aggregate bioactivity profiles using
ToxPi approach.9,15 Similarities in bioactivity profiles were
then used for biological and chemical–biological data-integra-
tive groupings of substances, an approach that allows for rapid
and scientifically-informed evaluation of health impacts of
both existing substances and their chemical alternatives.

Experimental
Chemicals and biologicals

iCell cardiomyocytes (Catalogue #: CMC-100-010-001) and
hepatocytes (Catalogue #: PHC-100-020-001), including their
respective plating and maintenance media were obtained from
Cellular Dynamics International (Madison, WI). EarlyTox Cardio-
toxicity kits were purchased from Molecular Devices LLC (Sunny-
vale, CA). Reference standard compounds (isoproterenol, sotalol,
and propranolol) were included in these kits. Hank’s Balanced
Salt Solution, RPMI 1640 medium, B-27 medium supplement,
gentamicin (50 mg ml−1), penicillin/streptomycin solution,
Hoechst 33342, and MitoTracker Orange CMTMRos reagent were
all purchased from Life Technologies (Grand Island, NY).
Cisapride monohydrate, tetraoctyl ammonium bromide, and
formaldehyde solution were purchased from Sigma-Aldrich
(St. Louis, MO). Dimethyl sulfoxide (DMSO), dexamethazone,
hydrogen peroxide (3%), and recombinant oncostatin M were
obtained from Fisher Scientific (Waltham, MA).

Sample preparation

DMSO-soluble extracts of petroleum substances from five dis-
tinct product categories (SRGO – Straight Run Gas Oils, OGO –

Other Gas Oils, VHGO – Vacuum & Hydrotreated Gas Oils, RAE
– Residual Aromatic Extracts, and HFO – Heavy Fuel Oils) were
provided by Concawe (Brussels, Belgium) (Fig. 1, Table 1).
Samples were prepared using previously published extraction
procedures for routine isolation of complex polycyclic aromatic
compounds (PAC) in petroleum substances.16,17 The DMSO
extraction procedure used herein is designed to concentrate
the ‘biologically active’ fraction (i.e., aromatics) of the refinery
streams; the extracts obtained using this method are used
routinely for safety testing (e.g., mutagenicity) and chemical
characterization of the refinery streams.18 Briefly, 4 grams of
each petroleum substance was dissolved in 10 ml of cyclo-
hexane, 10 ml of DMSO was added and the mixture was vigor-
ously shaken for several minutes. The DMSO layer was
removed and the cyclohexane was re-extracted with an
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additional 10 ml of DMSO. Both PAC-enriched DMSO layers
were combined and diluted 2 : 1 with two volumes of 4% (w/v)
sodium chloride solution. Following subsequent extraction
with 20 ml and 10 ml cyclohexane to isolate the PAC fraction,
the organic layers were washed twice with distilled water and

filtered through anhydrous sodium sulfate. The solvent was
evaporated to almost dryness (rotary evaporator at 15–20 Torr)
at 40 °C, followed by final evaporation at 80 °C for 30 min.
Prior to in vitro experiments dried PAC extracts were weighed
and solubilized in up to 6 ml DMSO.

Fig. 1 Selection of petroleum substances for bioactivity profiling. Petroleum substances for bioactivity profiling comprised a total of 21 petroleum
substances from five product classes, five straight run gas oils (SRGO), nine vacuum & hydrotreated gas oils (VHGO), two other gas oils (OGO), three
heavy fuel oils (HFO), and two residual aromatic extracts (RAE).

Table 1 Chemical–biological data-based grouping of petroleum substances in ToxPi

# Sample Category CAS ToxPi (biological) ToxPi (volatility) ToxPi (chem-biol)

1 CON-01 SRGOa 64741-43-1 9.0 9.0 2.8
2 CON-02 SRGOa 68814-87-9 8.2 9.6 2.7
3 CON-03 SRGOa 68814-87-9 5.9 10.1 2.1
4 CON-04 SRGOa 68915-96-8 9.5 8.3 2.7
5 CON-05 SRGOa 64741-43-1 7.9 8.6 2.4
6 CON-07 OGOb 64742-46-7 4.1 11.1 1.8
7 CON-09 OGOb 64742-80-9 5.6 10.5 2.0
8 CON-12 VHGOc 64741-49-7 10.8 9.5 3.2
9 CON-13 VHGOc 64741-58-8 11.5 7.8 3.0
10 CON-14 VHGOc 64741-77-1 8.7 9.7 2.7
11 CON-15 VHGOc 64742-87-6 9.9 9.6 3.1
12 CON-16i VHGOc 68334-30-5 8.8 12.7 2.9
13 CON-16ii VHGOc 68334-30-5 7.9 10.6 2.8
14 CON-17 VHGOc 68476-30-2 6.3 11.3 2.5
15 CON-18 VHGOc 68476-31-3 10.2 8.5 3.2
16 CON-20 VHGOc 92045-24-4 10.5 8.1 2.8
17 CON-26 RAEd 64742-10-5 1.2 4.3 0.4
18 CON-27 RAEd 91995-70-9 2.7 4.4 0.7
19 A083/13 HFOe 68476-33-5 6.6 — 1.3
20 A087/13 HFOe 68476-33-5 3.6 — 0.8
21 A092/13 HFOe 68476-33-5 5.4 — 1.2

a Straight run gas oil. bOther gas oil. c Vacuum & hydrotreated gas oil. d Residual aromatic extract. eHeavy fuel oil.
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Cells were exposed to the extracts in descending logarith-
mic order of concentrations (100%, 10%, 1%, 0.1%, 0.01%
and 0.001% dilutions of the DMSO-solubilized dried extracts
from each petroleum substance). Serial dilutions were orig-
inally prepared in 100% cell-culture grade DMSO and then
further diluted fifty-fold in corresponding cell culture media to
yield 5× working solutions in 5% DMSO. The final concen-
tration of DMSO in assay wells following addition of test sub-
stances was 1% (v/v), an amount of DMSO consistent with
previous reports which by itself had no effect on cardio-
myocyte- or hepatocyte-derived phenotypes.12

Cell culture

iPSC cardiomyocytes and hepatocytes were cultured according
to the manufacturer’s (Cellular Dynamics International,
Madison, WI) recommendations and as described in more
detail elsewhere.9,10,12,19 Briefly, frozen vials of cardiomyocytes
were thawed for 4 min at 37 °C before cells were resuspended
in 10 ml plating medium. Cell density was determined by
microscopic analysis using disposable hemocytometers and
the concentration of the suspension was adjusted to yield a
target cell density of 2 × 105 viable cells per ml. Cells were
seeded at a density of 5000 cells per well in pre-gelatinized
(2 hours at 37 °C with 25 µl 0.1% gelatin in water) 384-well
plates and rested for 30 min at room temperature before being
incubated at 37 °C and 5% CO2. After 48 hours, the plating
medium was replaced with 30 µl per well of fresh maintenance
medium containing 1 : 500 penicillin/streptomycin solution.
After approximately five days in culture, cardiomyocyte-specific
synchronous contractions were observable. Cells were main-
tained in culture for a total of 10 days before experiments were
conducted.

Similarly, vials of hepatocytes were thawed for 3 min at
37 °C in a water bath and subsequently resuspended in RPMI
medium containing 2% (v/v) iCell hepatocyte medium sup-
plement, 0.1 µM dexamethasone, 2% (v/v) B27 supplement,
25 µg per ml Gentamicin, and 20 ng ml−1 Oncostatin-M. Fol-
lowing microscopic evaluation of the cell density, the suspen-
sion was further diluted to a final concentration of 1 × 106

cells per ml. 25 µl of this suspension was then added to each
sample well on collagen I coated 384-well plates, yielding a
final cell density of 25 000 cells per well. Plates were initially
kept at room temperature for 30 min and then transferred to
an incubator set at 37 °C and 5% CO2. After four hours of incu-
bation, the plating medium was replaced with 25 µl fresh
medium, a step that was repeated daily for four days. On day
five, the plating medium was exchanged with 25 µl per well
maintenance medium, consisting of RPMI containing 2% (v/v)
iCell hepatocyte medium supplement, 0.1 µM dexamethasone,
2% (v/v) B27 supplement, and 25 µg per ml gentamicin. Main-
tenance medium was exchanged daily for the duration of the
experiment.

Calcium flux assay

Intracellular calcium flux in iPSC cardiomyocytes exposed to
the test solutions for 120 min was measured using FLIPR tetra

(Molecular Devices) instrument using the EarlyTox Cardiotoxi-
city Kit as described previously.9,12 Cardiomyocytes were incu-
bated for 2 hours at 37 °C following the addition of one
volume of pre-equilibrated calcium-dye reagent. Prior to
exposure of iPSC cardiomyocytes to test solutions, baseline
calcium flux measurements were recorded at 515–575 nm fol-
lowing excitation at 470–495 nm and at a frequency of 8 Hz for
100 seconds. The internal instrument temperature was regu-
lated at 37 °C. Cells were then simultaneously exposed to test
solutions using the internal fluidics handling system. 120 min
post-exposure, the beating of iPSC cardiomyocytes was moni-
tored as specified above. Between measurements, cells were
incubated under cell culture conditions at 37 °C and 5% CO2.
Recorded data were processed in Screenworks 4.0 software
(Molecular Devices LLC., Sunnyvale, CA) and statistical para-
meters were exported as Microsoft Excel files for concen-
tration-response assessment.

Cellular imaging

Cytotoxicity and mitochondrial integrity were assessed in both
cardiomyocytes and hepatocytes by high-content live cell
imaging 24 h and 72 h following exposure to test solutions,
respectively. Cells were stained with one volume of 2× concen-
trated Hoechst 33342 (4 µg ml−1), Calcein AM Green (2 µM),
and MitoTracker Orange (0.4 µM) for 30 minutes at 37 °C and
5% CO2 prior to image acquisition. Images were acquired
using the ImageXpress Micro XL system (Molecular Devices)
using the DAPI (Hoechst 3342), FITC (Calcein AM Green), and
TRITC (MitoTracker Orange) filters at 20× magnification.
Acquired images were processed using the multi-wavelength
cell scoring applications module in MetaXpress image proces-
sing software (Molecular Devices) and quantitative data were
extracted for concentration-response profiling.

Assay quality controls

The qualitative integrity of the screening assays in this study
was evaluated using previously established conditions.12 In
addition to sample wells, tissue culture plates included wells
containing untreated and vehicle-treated (1% DMSO in media)
cells. Phenotypic outputs from vehicle-treated cells did not
differ significantly from untreated cells, a finding that is con-
sistent with previous reports.12 In addition, cardiomyocytes
and hepatocytes were treated with 46 μM tetra-octyl
ammonium bromide (TAB), which serves as a positive control
for cytotoxicity. Cardiomyocytes were also treated with refer-
ence compounds: 0.1 μM isoproterenol (positive chronotrope),
0.15 μM cisapride (long QT) and 10 μM propranolol (negative
chronotrope), and expected drug-associated phenotypes were
observed.

Coefficients of variation (%CV), herein defined as the stan-
dard deviation of the means of vehicle-treated controls, corre-
lated well with previously published values (Fig. S2†).12 The
consistency of replicates in high-content screening assays was
determined using correlation analysis for duplicate determi-
nations of all 21 petroleum substance extracts and each assay
parameter (Fig. S3†). Pearson (r = 0.79–0.98) and Spearman
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(ρ = 0.75–0.98) correlations indicated good to excellent intra-
plate replicability in all applied assays. The inter-plate assay
reproducibility was evaluated through comparisons of %CV
values. %CV values were found to be almost exclusively below
10% and to be consistent between different plates (Pearson r =
0.97, Spearman ρ = 0.78) for all sixteen assays/assay para-
meters, an indicator of the excellent robustness of the utilized
screening assays.

Data processing and concentration-response profiling

Quantitative outputs from screening assays were normalized to
the mean of responses measured in wells containing vehicle-
treated (1% DMSO) cardiomyocytes or hepatocytes (Fig. S1†).
Concentration-response curves, converted from % dilution to
μg ml−1 based on the starting weight of the extracted sub-
stance (see Sample preparation section above) and subsequent
dilutions in DMSO and media, were then fitted to a nonlinear
logistic function in R and used to derive point-of-departure
(POD) values as described previously.19 POD values are herein
defined as concentrations at which the fitted curve exceeds
one standard deviation above or below the mean of vehicle-
treated controls. Calculated POD values based on percent
dilution were converted to µg ml−1 concentrations in order to
correct for differences in the concentration ranges of the
initial stock extracts.

Data integration in ToxPi

For data integration and visualization in Toxicological Priority
Index Graphical User Interface (ToxPi GUI),15 we selected a
total of fifteen experimental phenotypes, eight cardiophysiol-
ogy parameters (peak frequency, peak rise/decay time, peak
baseline, peak width, peak width at 10% amplitude, peak
spacing, and peak amplitude), three cardiomyocyte parameters
(total number of cardiomyocytes, cardiomyocytes with intact
mitochondria, and cardiomyocyte viability), and five hepato-
cyte parameters (hepatocyte viability, total area of live hepato-
cytes, % hepatocytes with intact mitochondria, hepatocyte
mitochondrial integrated intensity, hepatocyte nuclear mean
area). POD values for each phenotype were inversely normal-
ized on a 0–1 scale with 0 representing the highest POD value
in a given data set (i.e. the lowest observed bioactivity) and 1
representing the lowest measured POD values (i.e. the highest
observed bioactivity) (Fig. S1†). These normalized POD values
were then used as quantitative inputs for bioactivity profiling
in ToxPi.

Differential gene expression analysis

Global changes in gene expression patterns were analyzed
using a targeted RNA sequencing technology, TempO-Seq
(BioSpyder Technologies, Inc., Carlsbad, CA) measuring a set
of genes selected by an effort organized by NIEHS to represent
a surrogate whole transcriptome assay, the S1500 (https://
federalregister.gov/a/2015-08529). For TempO-Seq analysis, we
exposed iPSC hepatocytes to five representative petroleum sub-
stance extracts (two SRGOs, two VHGOs, and one HFO) in con-
centration-response for 48 hours as described above. Following

cell lysis in the TempO-Seq lysis buffer, mRNA targets present
in the cell lysates were hybridized with a detector oligo mix,
followed by nuclease digestion of excess oligos and ligation to
generate a pool of amplification templates that share PCR
primer landing sites. During product amplification, each
sample well was assigned a specific, “barcoded” primer pair,
allowing for proper identification and matching of mRNAs
and samples following sequencing. Sample amplicons were
pooled and cleaned up using a PCR clean-up kit (Clontech,
Mountain View, CA). Libraries were sequenced at Texas A&M
University Genomics & Bioinformatics Services using a HiSeq
2500 Ultra-High-Throughput Sequencing System (Illumina,
San Diego, CA). Sequencing readouts were demultiplexed to
generate FASTQ files, and passed all internal quality controls.
Genes that were differentially expressed in each of the tested
petroleum substances relative to the DMSO controls were
identified using the DESeq2 R package.20 DESeq2 employs a
normalization method that accounts for compositional bias in
sequenced libraries and individual library size. This method
calculates a size factor for each sample as the median ratio of
the read count relative to the corresponding row geometric
average (i.e. that gene for all samples in a group), and then
divides the raw counts by that associated size factor. The size
factor is an estimate of the necessary correction factor for all
read counts of the corresponding column, which is then
applied to enable appropriate sample-to-sample comparisons.
The adjusted counts undergo a Wald test followed by Benja-
mini-Hochberg false discovery rate (FDR) correction for mul-
tiple testing to identify significantly differentially expressed
transcripts (FDR q-value of <0.1).21 Model based clustering was
performed using the hclust package in R, with number of com-
ponents chosen using a maximum median Bayesian Infor-
mation Criterion.22

Results and discussion

The process of safety evaluation for existing or novel products
and materials is predicated on the availability of comprehen-
sive datasets that include extensive animal testing. While the
requirements for the information needed for approval of pharma-
ceuticals and pesticides are very proscriptive and largely
harmonized across the globe, the regulatory regimes for most
chemicals in commerce not only vary from country to country,
but are also evolving rapidly.23,24 Identification of “safer
alternatives” to products already on the market is yet another
challenge whereby no uniform process or standard exists to
establish what “safer” means.1 Human health considerations
are frequently behind a desire for an alternative, and weigh
heavily into the overall safety considerations for the choice
among the alternatives. Regardless of the exact criteria to be
applied to satisfy decisions in a comparative alternatives
assessment, the principles of grouping and read-across25 can
aid in filling data gaps or selecting among options. While
demonstrating the similarity among individual chemicals is
already a formidable challenge in read-across,26 real-life
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exposures are to complex substances. Little methodological
work has been done beyond chemical–physical characterization
on how to establish with confidence their similarity in terms of
human health impacts. Thus, there is a need to create experi-
mental and data integration approaches that can aid selection
of safer alternative chemicals and contribute to pollution pre-
vention. This study tested a hypothesis that multidimensional
in vitro bioactivity profiling may be used to support categoriz-
ation and read-across of complex substances; a case study of
petroleum substances as prototypical UVCB was investigated.

Sample selection

The process of crude oil refining yields a variety of complex
products which fall into specific refinery streams based on
their physico-chemical and structural properties to meet
product specifications. We therefore selected 21 petroleum
substances comprising five of these refinery streams, i.e. man-
ufacturing process-defined product categories (Fig. 1,
Table 1).27 For example, included in our experiments were a
number of gas oils (five SRGOs, nine VHGOs, and two OGOs)
which are considered fairly chemically similar because they
boil off in the comparable range of temperatures
(∼150–500 °C) during the refining process. These are com-
posed mainly of straight, branched and cyclic alkanes, and aro-
matics of wide, but largely overlapping range of carbon chain
lengths (C9–C25 for SRGOs, C9–C36 for OGOs and C9–C30 for
VHGOs).27 In addition, we selected three HFOs and two RAEs,
all of which differ significantly in their physico-chemical
characteristics from gas oils.27 HFOs comprise complex
residual fractions from (vacuum) distillations of crude oil or
catalytically or hydro-cracked oil products. RAEs, by contrast,
are the products of solvent extractions of various petroleum
residues. As such, HFOs and RAEs are composed of higher-
molecular weight constituents than gas oils; typically ranging
between carbon numbers C14–C98 (HFO) and C25–C95 (RAE)
and a wider range of boiling points (265–715 °C for HFOs and
403–702 °C for RAEs).

High-content screening of iPSC cardiomyocytes and
hepatocytes

Phenotypic screening for concentration-response assessment
of DMSO-soluble extracts of all 21 petroleum substances in
iPSC cardiomyocytes and hepatocytes was performed using
previously established high-content screening assays.9,10,12

Cells were exposed to serial dilutions of test substances in con-
centration-response over 6 (cardiomyocytes) or 5 (hepatocytes)
logs. The respective highest concentrations were in the range
between 100 and 1000 µg ml−1.

Prior to exposure and after two hours of incubation in the
presence of test substances, cardiomyocyte contractility was
monitored by fluorescent visualization of internal calcium
flux. Subsequently, cell viability was evaluated by live cell
imaging following staining with Calcein AM (cell viability),
Hoechst 33258 (nuclei), and MitoTracker Orange (mitochon-
dria). iPSC hepatocytes were incubated in presence of test sub-
stances for 72 hours before the cells were stained with the

same probe combination as cardiomyocytes in preparation for
high-content live cell imaging. Processing of the acquired
images and calcium flux-traces resulted in quantitative
outputs for a variety of cell type-specific and generic pheno-
types (see Experimental section).

Some of the petroleum substances exhibited bioactivity in
cardiomyocytes (Fig. 2A and S4†), primarily increasing the beat
frequency and decreasing peak amplitudes, and affected cell

Fig. 2 Category-specific biological effects of petroleum substances.
Petroleum substance product group-specific concentration-response
plots for representative phenotypes cardiomyocyte peak frequency (a)
and hepatocyte viability (b) are shown. Data points represent means of
duplicate determinations (n = 2). Grey zones indicate cytotoxic concen-
trations based on cell viability measurements. [BPM = beats per minute,
cardiomyocyte beat frequency; VHGO = vacuum & hydrotreated gas
oils; SRGO = straight run gas oils; OGO = other gas oils; HFO = heavy
fuel oils; RAE = residual aromatic extracts].
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viability of both cardiomyocytes and hepatocytes (Fig. 2B).
These effects were concentration-dependent. Substances
defined under the three VHGO and SRGO categories generally
showed higher potency than OGOs and the heavier HFOs and
RAEs. Gas oil and heavy fuel oil extracts increased cardio-
myocyte beat frequency at sub-cytotoxic concentrations, result-
ing in a biphasic appearance of the respective concentration-
response plots, i.e. initial increases in the beat rate (approx. at
concentrations ranging between 1 and 100 µg ml−1) were fol-
lowed by decreasing beat rate indicating the threshold for cyto-
toxicity. The only exceptions were the two OGOs, in which the
highest tested concentrations had no effect on cell viability,
but they were capable of inhibiting the cardiomyocyte contrac-
tility by approximately 70% (Fig. 2). While HFOs still elicited a
variety of phenotypic responses, albeit at lower potencies than
gas oil extracts, RAE were generally associated with the lowest
bioactivity in the current study. These findings are concordant
with previous studies of petroleum substances in fish.28,29

Bioactivity trends observed in cardiomyocyte-derived pheno-
types correlated well with cell viability measurements in
exposed hepatocytes (Fig. 2); SRGOs, VHGOs, and OGOs con-
stituted the most bioactive cluster of tested petroleum sub-
stances. However, it should be noted that while treatment of
hepatocytes with HFOs and RAEs resulted in moderate to low
cytotoxicity, it induced pronounced effects on the mitochon-
dria, i.e. decreased numbers of cells with intact mitochondria
and increases in mitochondrial intensity.

The results of these experiments, especially a remarkable
similarity in concentration-response curves within a product

category, but differences between categories (Fig. 2), provided
evidence that these data can be utilized to build confidence in
the groupings of the petroleum substances according to paral-
lels in their bioactivity profiles.

Computational bioactivity profiling and grouping of petroleum
substances

Curve-fitting to concentration-response data derived from
in vitro screening assays yielded quantitative measures of
bioactivity that were used as inputs for data integration using
ToxPi (Fig. S1†). In order to conduct an unbiased data analysis,
each assay parameter was assigned an individual ToxPi slice
with equally distributed weighting (Fig. 3A). The cumulative
ToxPi score for each petroleum substance, reflecting the sum
of normalized input scores for each slice of the respective
bioactivity profile, was then used as a score to rank substances
according to their overall bioactivity.

ToxPi ranking using quantitative bioactivity data allowed
clustering of petroleum substances into groups. A high-degree
of similarity was found in bioactivity profiles of substances
within a product group, as well as pronounced differences
between substances from different groups. VHGOs and SRGO
shared some overlap and contributed the most bioactive pet-
roleum substances in the ranking with ToxPi scores ranging
between 6.3 and 11.5 (VHGO), and 5.9 and 9.5 (SRGO) (Fig. 3A,
Table 1). HFOs (ToxPi scores = 3.6–6.6) and OGOs (ToxPi
scores = 4.1–5.6) were moderately bioactive, with RAEs (ToxPi
scores = 1.2–2.8) showing very little bioactivity other than mito-
chondrial effects in hepatocytes. More importantly, trends for

Fig. 3 Bioactivity profiling and categorization of petroleum substances in ToxPi. Point-of-departure values derived from sixteen distinct assays or
assay parameters were integrated for quantitative bioactivity profiling of 21 petroleum substances in ToxPi (a). The plot reflects a global ranking of
petroleum substances according to their cumulative ToxPi score, i.e. each data point represents the sum of individual assay scores shown in the
respective bioactivity profiles. Potential bioactivity-based correlations were analyzed using the hclust function in r (b). [VHGO = vacuum & hydro-
treated gas oils; SRGO = straight run gas oils; OGO = other gas oils; HFO = heavy fuel oils; RAE = residual aromatic extracts].
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chemical categories observed from the global ranking were
consistent with similarities in bioactivity profiles of individual
substances of distinct product groups. In fact, key character-
istics of bioactivity profiles within a product group were
remarkably similar, with a single notable exception: CON-20
differed from other VHGOs through its pronounced effects on
hepatocytes (Fig. 3A).

Corroborating evidence for the integrative groupings based
on ToxPi scores was provided by cluster analysis of the original
POD data set (Fig. 3B). The depicted dendrogram clearly dis-
tinguishes two major branches separating the three gas oil
groups from HFOs and RAEs. Due to its comparably higher
potency with regard to bioactivity parameters in hepatocytes,
CON-20 was most correlated with the RAE group. Within each
major branch, two sub-clusters further distinguished between
petroleum product groups, separating VHGOs from SRGOs
and OGOs, and HFOs from RAEs. Clustering of SRGOs and
OGO was reflective of qualitative similarities in their bioactiv-
ity profiles, which indicated lower levels of bioactivity in
cardiomyocytes as compared to VHGOs.

Thus, computational bioactivity profiling in ToxPi and clus-
tering analysis of POD values allowed for groupings of pet-
roleum substances that were closely similar within product
categories. This outcome indicates the utility of in vitro HCS
data to categorize highly complex substances and to potentially
increase confidence in read-across analyses.

Physico-chemical data-based integrative grouping of
petroleum substances

Petroleum substances are very complex and variable in chemi-
cal composition with many different chemical components. In
addition to the manufacturing process, physico-chemical pro-
perties and analytical–chemical information are used to group
them for read-across. Here, we used one such parameter, mass
% evaporation data (in 50 °C increments), to probe similarities
and differences among petroleum samples from four groups,
SRGO, VHGO, OGO, and RAE. Mass % evaporation data were
integrated in ToxPi to yield evaporation profiles, as well as a
volatility-based ToxPi score (Fig. 4A). Global ranking of pet-
roleum substances according to their relative volatility was
approximately proportional to their respective boiling point
ranges. Most notably, the three gas oil groups formed a large
cluster of significantly more volatile (ToxPi score ranges for
SRGO = 8.3–10.1, VHGO = 7.8–12.7, OGO = 10.5–11.1) sub-
stances as compared to the RAEs (ToxPi score range = 4.3–4.4)
and could not be distinguished on the basis of volatility data
alone (Table 1). A challenge in confident grouping of different
gas oil categories through comparison of their volatility was
further demonstrated through cluster analysis (Fig. 4B). We
found two major clusters, gas oils and RAEs. Within the gas
oils cluster there were additional sub-clusters, but no distinct
separation of SRGOs, OGOs, or VHGOs.

In order to test the initial hypothesis that in vitro HCS data
can improve and refine physico-chemical data based groupings
of petroleum substances we correlated evaporation profile and
bioactivity profile-derived ToxPi scores (Fig. 4C).8,30 While both

data sets were not significantly correlated (Pearson r = 0.35;
Spearman ρ = −0.21), the inclusion of biological data indicated
a clear trend towards clustering of petroleum substances
within each of the four included substance groups with RAEs
and OGOs being defined as separate clusters, whereas SRGO
and VHGO clusters were slightly overlapping.

Chemical–biological data-integrative categorization of
petroleum substances

Combined chemical–biological data integration in ToxPi was
approached using four equally (25% each) weighted data clus-
ters combining eight cardiophysiology phenotypes, three
cardiomyocyte bioactivity and five hepatocyte bioactivity
parameters, and two physico-chemical (initial and final
boiling point) descriptors (Fig. 5A). Integrated ToxPi profiles
showed a high degree of similarity within each petroleum
product group, with CON-20 as an exception due to its pre-
viously discussed higher activity in hepatocyte assays. Indeed,
inclusion of physico-chemical descriptors and balanced
weighting of data types in ToxPi provided a more refined
grouping of petroleum substances than was achieved using the
global ranking of just the biological data-integrative ToxPi
score. RAEs (ToxPi score = 0.4–0.7), HFOs (ToxPi score =
0.8–1.3), and OGOs (ToxPi score = 1.8–2.0) formed three clearly
isolated groups, with some overlap being present between
SRGOs (ToxPi score = 2.1–2.8) and VHGOs (ToxPi score =
2.5–3.2) (Table 1).

ToxPi-derived groupings were consistent with the clustering
analysis (Fig. 5B). As previously described for the biological
data-based analysis, two major branches separated gas oils
from HFOs and RAEs, which in turn were sharply separated
within their sub-branches. Within the gas oil branch, most
VHGOs, except for CON-18, were distinctly clustered. However,
OGOs and SRGO were still clustered within the tertiary branch,
with the OGOs only separating at the quaternary level.

Gene expression profiling as an unbiased source of bioactivity
data for grouping and read-across

Gene expression profiling provides additional high-dimen-
sional comprehensive data stream for biological read-
across.8,31,32 However, full-genome transcriptomic analyses are
rather low-throughput and costly. Therefore, to explore the
utility of high-throughput transcriptomics for bio profiling
and biological read-across of UVCBs, gene expression analysis
was conducted using a highly multiplexed templated oligo tar-
geted sequencing assay, TempO-Seq, which uses ligation of
detector oligos hybridized to RNA targets, sample barcoding
during amplification and pooling prior to sequencing. Unlike
other ligation-based assays that have been described,33,34

TempO-Seq can be performed without capture of the target
RNA which makes the assay very simple, robust and easy to
fully automate.

The feasibility of TempO-Seq to provide mechanistic insight
into petroleum substance-mediated differential gene
expression patterns was tested following 48 hours of exposure
of iPSC hepatocytes to a select set of petroleum substances
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from three distinct product classes (SRGO, VHGO, HFO) in
concentration-response. Samples were selected from concen-
trations that had minimal effect on cell viability (>80% cell
viability).

The number of differentially expressed genes varied for
each of the substances (Fig. 6A and S5†), with the heavy fuel
oil (A087/13) showing the highest number of transcriptional
changes. Overall, changes in gene expression were moderately
substance-specific, with only 10 genes (out of 1767 queried)
commonly differentially expressed (q-value <0.1) after exposure
to any of the five petroleum substances at any concentration;
however, considerable similarity in the genes that were signifi-
cantly differentially expressed was observed among all tested
substances (Fig. 6B and S6†). In addition, three distinct clus-

ters were observed (Fig. 6C), with the heavy fuel oil separating
significantly from the other substances (p = 0.001). In
addition, for the combined data, principal component 3 was
significantly associated with tested concentration (p = 0.0002,
Spearman ρ = 0.86). Commonalities in gene expression signa-
tures among the substances suggest that the overall treatment
effect may be greater than substance-specific transcriptomic
effects. It is likely that inclusion of additional test substances
in future studies will improve the separation of petroleum sub-
stance groups and provide further insight into group-specific
signatures of differential gene expression patterns.

When data from the highest tested concentrations was ana-
lyzed, a total of 66 genes were found to be commonly differen-
tially expressed in cells treated with any of the five petroleum

Fig. 4 Physico-chemical data-integrative grouping of petroleum substances. Mass % evaporation data (in 50 °C increments) for Concawe samples
from four product groups (SRGO, OGO, VHGO, and RAE) were integrated in ToxPi to yield evaporation profiles, as well as a chemical ranking accord-
ing to their overall volatility, i.e. mass % evaporation data derived ToxPi score (a). Potential correlations in the originating data set were analyzed
using the hclust function in r (b). Physico-chemical data derived ToxPi scores were subsequently correlated with bioactivity data-derived ToxPi
scores (c). [VHGO = vacuum & hydrotreated gas oils; SRGO = straight run gas oils; OGO = other gas oils; RAE = residual aromatic extracts].
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substances (Table S1†). However, despite the above described
clustering of petroleum substances by class according to tran-
scriptional profiling (Fig. 6C), most profoundly altered genes
were similar across classes, and even across all of the pet-
roleum substances evaluated (Tables S2 and S3†). For example,
expression of COL4A1 and COL4A2 (collagen, type IV, alpha 1
and alpha 2, respectively) was reduced in cells treated with any
of the petroleum substances, a phenomenon associated with
cell death.35 Two isoforms of the UDP glucuronosyltransferase
gene family (UGT1A1 and UGT1A6), which are involved in the
glucuronidation of small lipophilic molecules into more polar
glucuronic acid conjugates, were induced in cells treated with
each of the five tested petroleum substances, an observation
that indicates the involvement of these genes in the metab-
olism and clearance of petroleum substances. TIPARP
(TCDD-Inducible Poly(ADP-Ribose) Polymerase), an aryl hydro-
carbon receptor transactivation suppressor,36 had the largest
fold difference change in expression, as well as the smallest
corrected p-values of all genes for every sample. CDKN1A
(Cyclin-Dependent Kinase Inhibitor 1A) was also found to be
commonly up-regulated, which indicates a signature of cell
cycle arrest caused by cellular damage. Among the top-most
down regulated genes, UBE2C (Ubiquitin-Conjugating Enzyme
E2C) and cyclin B1 and B2 were the most significantly sup-
pressed, genes that are involved in the progression of
mitosis.37,38 Altogether, genes that code for proteins involved
in metabolism and cell cycle are those that were the most sig-
nificantly changes in expression, and these genes were

observed to be differentially expressed across all tested pet-
roleum substances.

Relevance of the biological read-across to human health
assessments

The inherent complexity and qualitative variability, largely a
result of the manufacturing process-dependent differences in
oil refining, create a challenge for traditional, chemical struc-
ture-based groupings of petroleum products for read-across.
The uncertainties in grouping UVCBs, combined with a lack of
a standardized framework for the application of read-across
for UVCBs by the regulatory agencies, creates a need for novel
approaches to increase the confidence in using novel toxico-
logical data streams, such as in vitro assays and transcrip-
tomics, and to improve transparent communication of
complex multi-dimensional datasets. Considering the com-
plexities of the chemical exposure-associated biological pro-
cesses, confident application of a similarity principle in
regulatory decision-making will undoubtedly benefit from the
inclusion of multi-dimensional bioactivity data in addition to
chemical information. Indeed, knowledge-based chemical
design principles increasingly rely on both physico-chemical
properties of molecules, as well as the use of higher through-
put in vitro and molecular assays to evaluate both UVCBs and
chemical alternatives in existing products.1 It has also been
suggested that “hybrid” approaches to read-across, models
that use both biological (e.g., -omics data or in vitro toxicity
screening profiles) and chemical features increase accuracy,

Fig. 5 Chemical–biological data-integrative categorization of petroleum substances. Combinatorial integration of physico-chemical and bioactivity
data for groupings of petroleum substances in ToxPi was achieved through parameter-specific clustering of assay parameters (a). Four major and
equally weighed (= 25%) data clusters reflected eight cardiophysiology phenotypes, three cardiotoxicity and five hepatotoxicity parameters, and two
physico-chemical descriptors, i.e. initial and final boiling points. Cluster analysis was performed using the hclust function in r (b). [VHGO = vacuum &
hydrotreated gas oils; SRGO = straight run gas oils; OGO = other gas oils; HFO = heavy fuel oils; RAE = residual aromatic extracts].
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expand domain of applicability of the models, and improve
transparency and interpretability.8,30–32 Another inherent chal-
lenge for data-integrative safety assessments in a regulatory
context is the appropriate communication of large chemical–
biological data sets to regulators and the general public. Thus,
in order to fully implement novel in vitro screening approaches
into science-based decision-making, we will inevitably need to
increasingly rely on computational toxicology and bioinfor-
matics for data processing and visualization.

The data presented in this study indicate that multi-para-
metric in vitro screenings utilizing iPSC-derived cell types
coupled to computational analysis using ToxPi and clustering
visualizations can indeed improve the data-assisted confidence
in conventional, manufacturing class-derived petroleum sub-
stance groupings. Importantly, in vitro screening data indepen-
dently established the groupings of petroleum substances that

closely match the manufacturing process and physico-chemi-
cal property-based groupings already in use for registration
(Fig. 3). As such, bioactivity profiling provided an increased
resolution and increased confidence as compared to physico-
chemical property-derived groupings, in which the gas oil
groups were indistinguishable, but well separated from RAEs
and HFOs (Fig. 4A and B). Moreover, correlation of biological
and volatility ToxPi scores indicated improved clustering of
petroleum substance groups as compared to volatility alone
(Fig. 4C). Chemical–biological data-integrative ToxPi analysis
may represent the best of both worlds, indicating sharp segre-
gation of all petroleum substance groups, except for SRGOs
and VHGOs. However, based on similarities in their physico-
chemical characteristics, this overlap was in fact anticipated.27

It should be noted that while global rankings provided reason-
able groupings, a qualitative comparison of the actual bioactiv-

Fig. 6 Petroleum substances induce group-specific differentially expressed genes. Targeted gene expression analysis using TempO-Seq, was
applied to determine petroleum substance and group-specific effects on hepatic gene expression patterns. ma plots show the change in the
average level of each transcript of the s1500+ gene set for a representative straight-run gas oil (CON-02) and a heavy fuel oil (A087/13) relative to
the respective averages determined for dmso controls (a), with differentially expressed genes (degs) highlighted in red. Although the specific differ-
entially expressed genes varied among the different petroleum substances, the overall treatment effect was found to be correlated (r2 = 0.49) (b).
Data points in b represent individual transcripts, and the different colors indicate if each gene is common (pink) or unique (aqua, black) to CON-02
and A087/13. Principal components analysis of global changes in gene expression revealed a clustering trend of petroleum substances, with the
heavy fuel oil separating significantly from the other chemicals (c). [Deg = differentially expressed genes; ns = not significant; VHGO = vacuum &
hydrotreated gas oils; SRGO = straight run gas oils; HFO = heavy fuel oils].
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ity profiles should be taken into account, providing a support-
ing basis for clustering UVCBs together. Clustering based on
bioactivity profiles has the potential to segregate agents that
may share a similar ToxPi score, but differ significantly in
their biological effect from other correlated substances, as was
the case for the VHGO CON-20.

The transcriptomic analysis of hepatocytes treated with five
petroleum extracts from three product groups revealed that
principal component analysis of global patterns in differential
gene expression can provide corroborating evidence for the
groupings determined by phenotypic screenings, and thus
indicate its potential utility in data-informed decision making.
In addition, targeted high-throughput transcriptomics analysis
may eventually provide additional mechanistic insights into
toxicological effects through pathway analysis; however, more
studies need to be conducted in order to fully evaluate the
mechanistic signatures obtained through gene expression-
based pathway analyses.

Conclusions

In summary, we demonstrate an experimental approach to
grouping complex substances for read across using chemical–
biological data integration. This study directly follows from the
NRC recommendations1 to demonstrate how novel data
streams could be used as primary data in human health
assessments or to fill data gaps across a broad range of
domains, including health. We show that petroleum sub-
stances, prototypical high-production volume UVCBs, can be
categorized using global similarities in their bioactivity pro-
files using multi-parametric HCS of iPSC-derived cardio-
myocytes and hepatocytes. In combination with high-
throughput transcriptomics analysis, interpretation of these
multidimensional data sets is not limited to biological prop-
erty-derived groupings for regulatory applications, but may
eventually also be informative for mechanistic toxicity evalu-
ations. Together, our findings strengthen the argument that
high-content in vitro screens combined with computational
data integration and visualization possess the potential to
improve chemical–biological read-across applications, particu-
larly with regard to the regulatory challenge that is represented
by UVCBs, and as such may represent feasible alternatives to
minimize the need for unwarranted traditional toxicity testing
in animals in regulatory submissions, especially in situations
of chemical alternatives assessment.8,12,39,40
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