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Probabilistic diagram for designing chemicals with
reduced potency to incur cytotoxicity+i
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Aditya Gudibanda,® Julie B. Zimmerman? and Paul T. Anastas*?

Toxicity is a concern with many chemicals currently in commerce, and with new chemicals that are intro-
duced each year. The standard approach to testing chemicals is to run studies in laboratory animals (e.g.
rats, mice, dogs), but because of the expense of these studies and concerns for animal welfare, few
chemicals besides pharmaceuticals and pesticides are fully tested. Over the last decade there have been
significant developments in the field of computational toxicology which combines in vitro tests and com-
putational models. The ultimate goal of this field is to test all chemicals in a rapid, cost effective manner
with minimal use of animals. One of the simplest measures of toxicity is provided by high-throughput
in vitro cytotoxicity assays, which measure the concentration of a chemical that kills particular types of
cells. Chemicals that are cytotoxic at low concentrations tend to be more toxic to animals than chemicals
that are less cytotoxic. We employed molecular characteristics derived from density functional theory
(DFT) and predicted values of log(octanol-water partition coefficient) (log P) to construct a design vari-
able space, and built a predictive model for cytotoxicity based on U.S. EPA Toxicity ForeCaster (ToxCast)
data tested up to 100 pM using a Naive Bayesian algorithm. External evaluation showed that the area
under the curve (AUC) for the receiver operating characteristic (ROC) of the model to be 0.81. Using this
model, we provide probabilistic design rules to help synthetic chemists minimize the chance that a newly
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1. Introduction

Despite the tremendous benefits of modern, man-made
chemicals and the products they go into, some of these chemi-
cals possess unintended biological activities that pose a threat
to public health and the environment. In order to reduce the
chance of undesirable health effects induced by chemicals,
one can carry out toxicology studies, traditionally using labora-
tory animals such as rats, mice or dogs. However, these studies
are expensive (millions of dollars per chemical) and require
the sacrifice of large numbers of animals. As a result, many
chemicals are put on the market with little to no toxicity
testing.! It is estimated that about 83% of chemicals in com-
merce lack safety data.> This has motivated the development
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synthesized chemical will be cytotoxic.

of new in vitro and in silico methods to evaluate chemical toxi-
city and safety. Ideally, a new approach would allow all chemi-
cals to be adequately tested, and do so at a reasonable cost
and with minimal use of experimental animals.

In vitro high throughput screening (HTS) methods have
emerged as an efficient technology to examine how chemicals
disrupt biological pathways and lead to adverse health out-
comes. A paradigm shift from in vivo to in vitro and in silico
testing was described by the U.S. National Research Council
(NRC) in their report on Toxicity Testing in the 21st Century.®
In order to evaluate practical approaches to implement the
“Tox21” vision, U.S. National Toxicological Program (NTP), the
U.S. Environmental Protection Agency (EPA) and the NIH
National Center for Advancing Translational Sciences (NCATS)
collaboratively forged a research partnership. This Tox21 part-
nership is using HTS methods to test thousands of chemicals
in a wide variety of cells, pathways and technologies, relevant
to many aspects of chemical toxicity.*

Large data sets (thousands of chemicals, hundreds of
measurements per chemical) are ideal for developing machine
learning predictive models.’®'* While the Tox21 collaborators
are primarily focused on predicting toxicity of largely-untested
existing chemicals,'* these data sets can also be used in the
area of green chemistry to help develop rules to apply in the
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design of newer, safer chemicals."® Owing to the difference in
research goals, the two fields apply separate biases in how
models are developed. For computational toxicology, high pre-
dictive power for toxicity is the paramount object. A model can
be as complex as is needed to achieve high accuracy, as long as
the training data is not overfitted. The physical meanings of
the input variables or model descriptors are often of secondary
concerns. In contrast, green design'® pays heavy attention to
the physical meanings of the computed molecular descriptors,
their numerical accuracy, and the ability to map them to vari-
ables which synthetic chemists have control. The variables in
the toxicity model are to be used as yardsticks for chemists in
designing molecules. Physical observables and chemically
intuitive variables are much preferable to more abstract global
descriptions of chemical structure. A sufficiently accurate toxi-
city model that includes easy-to-interpret control variables will
greatly aid in the green design process.

Current examples of green design research have modeled
acute aquatic toxicity'>'® and mutagenicity/carcinogenicity"®
endpoints. In this current report, we focus on in vitro cytotoxicity
as a good testing ground for the development of green design
rules associated with chemical toxicity. First, the data sets for
cytotoxicity are larger, more uniform in protocol, and less noisy
than any existing in vivo toxicity data sets. Second, cytotoxicity is
on its own a valuable measure for safety assessment. It is nor-
mally performed in the early stage of drug development as a
first filter."” It can also, to certain degree, serve as an indicator
of the range of doses where one might see in vivo toxicity."®"
There exists high research interest in predictive modeling for the
cytotoxicity endpoint.*** Therefore, it would be useful to be
able to design commercial chemicals with reduced cytotoxicity
potency. (Note that all chemicals are cytotoxic, and what matters
is the concentration or dose that is required to cause it.)

There are three main challenging tasks in green design in
the context of toxicity. The first one is to select and generate
physically meaningful design variables that have an effect on
the underlying mechanisms responsible for the toxicity end-
point of interest. The second one is to construct a sufficiently
predictive model of toxicity based on these design variables. The
third one is to devise a method to present the design-variable/
toxicity mapping in a way that provides an easy way to guide
safer molecular design. This current project addresses all three
of these issues in the context of a particular mode of toxicity,
namely cytotoxicity. We produce a probabilistic design diagram
as a methodological addition to existing molecular design tools.
This diagram renders the convenience of searching for solutions
in the physical property space for a customerized likelihood of
not causing cytotoxicity in human cells (named as benign prob-
ability hereafter). This diagram, we believe, offers advantages in
its use for guiding the design of safer chemicals.

2. Methods

2.1. Cytotoxicity data resource

U.S. EPA Toxicity ForeCaster (ToxCast) program> phase I and
II chemical library contains a diverse collection of chemicals
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profiled across 821 in vitro endpoints. Among these assays, we
chose 37 that are related to cytotoxicity in this study, listed in
Table 1.

2.2. Chemical selection

Chemicals were initially selected from the ToxCast library if
they had been tested in more than 90% of the assays in
Table 1. (Note that these chemicals have also been tested in
the majority of assays in the overall ToxCast program: see
Fig. S1 in ESIf). Within this group of chemicals, three criteria
were set to select candidates for modeling cytotoxicity.

1. Single compound with a definite structure, excluding
geometrical and optical isomers and mixtures;

2. Containing no metal elements;

3. Molecular weight < 1000.

A total of 1006 chemicals met these criteria. These chemi-
cals were further broken down into two classes. A chemical
tested to be positive in two or more cytotoxicity assays
(Table 1) was labeled as “active”.>® Otherwise it was designated
as “inactive”. The chemical hit rates distribution is provided in
Fig. S2 in ESI.} Note that in these assays, we typically tested up
to 100 pM, so cytotoxicity at higher concentrations would not
be seen. Therefore, we are strictly modeling “cytotoxicity below
100 pM”. This classification strategy resulted in two balanced
classes with a membership ratio of 0.96. All chemical data
were evenly split into a training and testing set for the purpose
of model cross-validation and external evaluation. Selected
chemicals were first desalted using the open source chemistry
toolbox OpenBabel.*” Then 3D structures with the lowest
energy conformer were generated using ChemAxon Marvin cal-
culator plugins.?®

2.3. Generation and selection of design variables

Six design variables were employed in this study: molecular
softness (SOF), electrophilicity index (EPH), ionization poten-
tial (IP), electron affinity in the aqueous phase (EA.aq), polari-
zability (PLRZ) and logP. These variables are physically
meaningful and chemically intuitive. The mapping between
these variables and the variables over which the chemists have
direct control in synthesis is an important topic in green
chemistry. log P was calculated using the ChemAxon Marvin
calculator plugin.”® The remaining variables were computed
based on DFT implemented in Gaussian 09 rev.D.01.>° Boese
and Martin’s t-dependent hybrid functional®® and basis set
6-31+G(d) were used for full geometry optimization. Vertical IP
and electron affinity (EA) were calculated in vacuum. The
species with an extra electron were then transferred into the
implicit aqueous environment based on the universal sol-
vation model®' to obtain vertical EA.aq. SOF and EPH were
derived according the following formulas.§**

§ Numerical values of design variables used in the study are available upon
request.

This journal is © The Royal Society of Chemistry 2016
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Table 1 Description for cytotoxicity-related assays

View Article Online

Paper

Assay name Biological process Organism Tissue Cell type
ACEA_T47D_80 h_negative Cell proliferation Human Breast T47D
APR_HepG2_CellLoss_24 h_dn Cell death Human Liver HepG2
APR_HepG2_CellLoss_72 h_dn Cell death Human Liver HepG2
BSK_3C_proliferation_down Cell proliferation Human Vascular Umbilical vein endothelium
BSK_3C_SRB_down Cell death Human Vascular Umbilical vein endothelium
BSK_3C_Vis_down Cell morphology Human Vascular Umbilical vein endothelium
BSK_4H_SRB_down Cell death Human Vascular Umbilical vein endothelium
BSK_BE3C_SRB_down Cell death Human Lung Bronchial epithelial cell
BSK_CASM3C_proliferation_down Cell proliferation Human Vascular Umbilical vein endothelium and
coronary artery smooth muscle cells
BSK_CASM3C_SRB_down Cell death Human Vascular Umbilical vein endothelium and
coronary artery smooth muscle cells
BSK_hDFCGF_proliferation_down Cell proliferation Human Skin Foreskin fibroblast
BSK_hDFCGF_SRB_down Cell death Human Skin Foreskin fibroblast
BSK_KF3CT_SRB_down Cell death Human Skin Keratinocytes and foreskin fibroblasts
BSK_LPS_SRB_down Cell death Human Vascular Umbilical vein endothelium and
peripheral blood mononuclear cells
BSK_SAg_PBMCCytotoxicity_down Cell death Human Vascular Umbilical vein endothelium and
peripheral blood mononuclear cells
BSK_SAg_proliferation_down Cell proliferation Human Vascular Umbilical vein endothelium and
peripheral blood mononuclear cells
BSK_SAg_SRB_down Cell death Human Vascular Umbilical vein endothelium and
peripheral blood mononuclear cells
Tox21_AR_BLA_antagonist_viability Cell proliferation Human Kidney HEK293T
Tox21_ERa_BLA_antagonist_viability Cell proliferation Human Kidney HEK293T
Tox21_GR_BLA_antagonist_viability Cell proliferation Human Cervix HelLa
Tox21_MitochondrialToxicity_viability Cell proliferation Human Liver HepG2
Tox21_FXR_BLA_antagonist_viability Cell proliferation Human Kidney HEK293T
Tox21_PPARd_BLA_antagonist_viability Cell proliferation Human Kidney HEK293T
Tox21_PPARg_BLA_antagonist_viability Cell proliferation Human Kidney HEK293
Tox21_VDR_BLA_antagonist_viability Cell proliferation Human Kidney HEK293T
Tox21_ARE_BLA_agonist_viability Cell proliferation Human Liver HepG2
Tox21_HSE_BLA_agonist_viability Cell proliferation Human Cervix HelLa
Tox21_p53_BLA_p1_viability Cell proliferation Human Intestinal HCT116
Tox21_FXR_BLA_agonist_viability Cell proliferation Human Kidney HEK293T
Tox21_PPARd_BLA_agonist_viability Cell proliferation Human Kidney HEK293T
Tox21_p53_BLA_p2_viability Cell proliferation Human Intestinal HCT116
Tox21_p53_BLA_p3_viability Cell proliferation Human Intestinal HCT116
Tox21_p53_BLA_p4_viability Cell proliferation Human Intestinal HCT116
Tox21_p53_BLA_p5_viability Cell proliferation Human Intestinal HCT116
Tox21_VDR_BLA_agonist_viability Cell proliferation Human Kidney HEK293T
Tox21_ESRE_BLA_viability Cell proliferation Human Cervix HelLa
Tox21_NFkB_BLA_agonist_viability Cell proliferation Human Cervix ME-180
SOF = 1/(IP — EA)
EPH = (IP + EA)?/8(IP — EA) 08 1
0.7 S e, S
ROC AUC ***? was calculated based on the distributions of ok i A
the “active” and “inactive” chemicals in the training set to & ’ . : ¢
advise variable selection. Fig. 1 shows that the six variables 2 05 : ; ;
possess differentiated information in distinguishing between 004 i E i
the “active” and “inactive” chemicals. The histogram for each 8 03 : ! :
design variable is provided in Fig. S3 in ESL} To examine the 0a : : :
dependency between the design variables, we computed the - E ; ;
maximal information coefficients.>*> Notice (see Fig. 2) that IP, 0.1 : ; y
EPH and EA.aq contain higher degree of mutual information 0.0 : : :
compared to the rest of the matrix elements. Simultaneously, ”LC)>L & 5 Lc? 5’7 f«;‘:
w Q =

the same three variables are ranked as the weakest predictors in
the ROC analysis (Fig. 1). Thus, they form a less predictive
group and were therefore excluded from further consideration.

This journal is © The Royal Society of Chemistry 2016

Fig. 1 ROC AUC between “active” and “inactive” chemicals in the train-
ing set. Selected design variables were inked in purple.
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Fig. 2 Heatmap matrix for maximum information coefficients.

The remaining three design variables SOF, PLRZ and log P were
retained for the Niive Bayesian model construction.

2.4. Predictive model construction and design guidelines
extraction

The Niive Bayesian classifier’® is an effective probabilistic clas-
sifier based on Bayes’ theorem (eqn (3)) with independence
assumptions between features.

2(X|0)7(6)

OX) = T xi0)2(0)d0

(3)
where ¢ denotes parameter, X denotes random variable, 7(0|X)
denotes posterior probability, z(f) denotes prior probability,
7(X|6) denotes the likelihood function, and the denominator
integral denotes the marginal likelihood.

In this study, the parameter 6 represents the class identifier
and X represents the design variables obtained from the
previous section. Our interest is to calculate the posterior or
benign probability #(0]|X), the probability for a chemical to be
“inactive”. The challenge resides in estimating the likelihood
function without the complete knowledge of the interactions
between the X;. The independence assumption allows one to
express the likelihood function as a product of the conditional
probabilities for each individual design variable. To examine
the appropriateness of employing this assumption, mutual
information (eqn (4)) between design variables was computed
as shown in Fig. 2. The three selected variables (PLRZ, SOF
and log P) showed marginal dependency between each other.
Therefore, the independent assumption can be reasonably
adopted.

IX,Y) = ij(x,y) lg(ﬁ&

(x)p(y))d"dy )

where p(x,y) is the joint probability density function of X and
Y, and p(x) and p(y) are the marginal probabilities. Implement-
ing the independence assumption also makes the probability
function conveniently retrievable by solving its inverse func-
tion. In other words, for a given posterior probability, it is
possible to go back to find corresponding solutions in the

4464 | Green Chem., 2016, 18, 4461-4467
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design variable space. The complete solution set is valuable in
the design of safer, green molecules.

The model construction, data analysis and the graphical
visualization in this study were coded using the Python pro-
gramming language,®”*® libraries and packages.***°

3. Results and discussion

3.1. Mechanistic rationale for design variables

Creating and choosing appropriate design variables that
encode the principles governing the mechanisms that lead to
specific toxicity endpoints is the essence of green molecular
design. It requires a chemo-physical theory to construct a
design variable space that can effectively reflect the molecular
initiation of toxicological events. The molecular basis for
chemicals to incur toxicity is through intermolecular inter-
actions between chemicals and critical biological targets.?” For
instance, covalent modification to proteins, especially thiol
groups, has been recognized as a trigger for cellular toxi-
city.*®*® In some instances chemical agents need to pass
through cell membranes to reach their biological targets. In
other cases, chemicals may cause cell lethality by destabilizing
cell membranes themselves. Electrostatic interactions between
chemicals and cellular membranes often contribute to this
type of effect.”

Given potential molecular mechanisms through which
chemicals can invoke toxicity, the next step is to collect design
variables that properly describe or control those mechanisms.
For instance, the hydrophobicity of a molecule is usually an
important indicator of cell membrane permeability. log P is
frequently used as a simple descriptor for molecular hydro-
phobicity in quantitative structure-activity relationship models
(QSARs) to predict acute aquatic toxicity.”* Cell membrane per-
meability can have two consequences. The direct one is that
disruption of the membranes themselves is toxic, leading to
necrosis. Alternatively, a chemical can pass through the cell
membrane to enter cellular interior or interact with receptors
on the membrane surface to exert a wide range of effects.
These can be specific, receptor-mediated effects, which alter
cell signaling, or non-specific effects which are more likely to
lead to cell stress and cytotoxicity. The physical nature of these
non-specific interactions is often mediated by induced electric
dipole moments and dispersion forces. Polarizability is a
physical quantity that describes the relative tendency of mole-
cular electron cloud distortion under the influence of an exter-
nal electric field. It quantifies the energy alteration upon
molecular attractions.’> Therefore, it is reasonable to include
polarizability in modeling cytotoxicity. Hard-soft acid-base
(HSAB) theory estimates the tendency for chemicals to form
covalent bonds, which is linked to the toxic potential of
certain chemicals.> Molecular softness built upon DFT pro-
vides a means to quantify this tendency.’® Thus, molecular
softness was included in the design variable space in this
study.

This journal is © The Royal Society of Chemistry 2016
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Note that the exact primary cause of cytotoxicity is difficult
to discover. We have thoroughly analyzed the correspondence
between specific molecular interactions, generalized cell-stress
and cytotoxicity in this data set*® with multiple assays for each
of multiple cell-stress processes (mitochondrial disruption,
oxidative stress, ER stress, heat shock, apoptosis, etc.). What
we almost universally see is that multiple cell stress assays are
activated at roughly the same concentration (within the uncer-
tainty of the assays themselves). We rarely ever see cytotoxicity
in the absence of these more general cell stress markers, and
only in the presence of some particular target activity (e.g. a
receptor or enzyme). So we find (in most cases) that when cyto-
toxicity happens (in time and concentration), many or most of
these other processes are also occurring, meaning that it is
difficult to pull apart the specific cause-effect relationships
between different cell-stress processes and cytotoxicity.

3.2. Performance evaluation for the predictive model

We used the following measures to evaluate the performance
of the predictive model.

Precision = true positive/(true positive + false positive) (5)
Recall = true positive/(true positive + false negative)  (6)
F1 score = 2(precision x recall)/(precision + recall)  (7)

We define “inactive” chemicals as positive in this study
because they represent the group of interest from the perspec-
tive of green chemical design. Therefore, type I error deserves
the best attention to be avoided. Precision signifies the success
rate in identifying true positives out of all predicted positives.
It is a very important criterion in model evaluation according
to the precautionary principles - the probability that chemical
is truly safe given that it is predicted to be safe should be maxi-
mized. Recall assesses the ability of a model to make positive
predictions. Both of these variables depend on the positive
ratio in the data set. F1 score as the harmonic mean between
precision and recall represents a balanced assessment to the
model performance. ROC AUC measures the overall ability for
a model to separate “inactive” chemicals from “active” ones.

The Niive Bayesian model was trained on ~500 chemicals
with 10-fold cross validation and externally tested on the
remaining ~500 chemicals. The model performance is sum-
marized in Table 2.

It is easy to notice from Table 2 that the three performance
indicators are in reasonable agreement. Also, the cross-vali-
dation and external evaluation results agree well with each
other, indicating a lack of overfitting. While it would be sur-
prising to see overfitting with only three predictor variables in
such a large and diverse chemical set, it is gratifying to achieve

Table 2 Model performance evaluation

Measure Precision F1 score ROC AUC
Cross validation 0.77 0.77 0.82
External evaluation 0.78 0.77 0.81

This journal is © The Royal Society of Chemistry 2016
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this level of predictivity. To best of the authors’ knowledge,
there are no other reports in the molecular design literature
that have achieved this level of predictivity in the complete
sample space. The high predictivity of this model indicates
that a large majority of cytotoxicity is driven by relatively
simple and non-specific molecular interactions rather than by
a wide range of specific receptor-mediated mechanisms. It
further suggests that the predictive model can be used for
green design, at least to minimize the risk of cytotoxicity below
100 pM.

3.3. Probabilistic design diagram

Because of the Niive Bayes assumption, the inverse function
of the Bayesian model (eqn (3)) can be derived with relative
ease. To present the undetermined format of the solutions, we
proposed a probabilistic diagram built upon a parametric
description of function solution space.>”

There are three advantages to using this probabilistic
diagram to guide safer molecular design. Firstly, unlike the
recursive partition strategy'®'® where only partial solutions
were provided, this diagram-based approach reveals the com-
plete solution in the design variable space. This feature does
not only boost the elegance of the model but also broadens its
utility. For instance, chemists may be subject to constraints on
certain design variables due to specified functional require-
ments. In those scenarios, a complete solution renders a
higher flexibility for the users to seek solutions in the less
restricted regions in the design variable space. Secondly,
instead of setting a simple yes/no criterion, this diagram esti-
mates probabilities for a chemical to be “inactive” (not cyto-
toxic in this study). This is considered to be a more realistic
approximation of complex systems such as biology. Probabil-
ities can make the chemists aware of the change in cytotoxicity
potential while adjusting design variable values. Thus, it pro-
vides quantitative information in the decision making process.
Thirdly, the diagram can be used in two directions, estimating
benign probability or seeking solutions in the design variable
space. As shown in Fig. 3, a sample solution is indicated by
the dotted lines. In this case, one wants to design a chemical
with about 82% probability of not invoking cytotoxicity. For
certain functional reasons, the polarizability has been set near
12 em® mol™". Given those conditions, the designer connects
two points on the probability and PLRZ axes to arrive at a
specific point on R; axis. Now one sees multiple options for
the combination of log P and SOF to satisfy the two constraints
above. The example on the graph illustrates one option: 2.8 for
log P and 0.105 eV for SOF. The resultant molecule corres-
ponds to propylparaben, a naturally occurring chemical that
has been approved by US Food and Drug Administration (FDA)
for safe use in cosmetics. Other possible solutions may exist
and all can be found on the design diagram. In a word, the
design diagram presents all the possible solutions in the
design variable space for any particular chosen benign prob-
ability. Alternatively, it is possible to walk from the opposite
direction on the graph. One can pre-assign values to all of the
design variable axes and connect them to reach a resultant

Green Chem., 2016, 18, 4461-4467 | 4465
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Fig. 3 Probabilistic design diagram for chemicals with customizable
reduction of cytotoxicity potentials. The benign probability axis is
printed purple while other design variables axes are printed black. Ry
indicates an auxiliary axis. The numerical range of each design variable
axis are calculated using 5 to 95 percentiles of numerical data to
produce probabilities corresponding to the range of the benign prob-
ability axis. Benign probability above 50% is considered for the green
molecular design purpose.

benign probability. This feature allows one to assess the
benign probability for an existing or new chemical with
defined design variable values.

4. Conclusions

This study outlines a probabilistic strategy for safer chemical
design. Cytotoxicity was chosen as a demonstration endpoint.
By building design variables using physically meaningful and
chemically intuitive attributes, employing the Niive Bayesian
algorithm which allows for easy function inversion and pres-
enting the full solution in the design space using a probabil-
istic diagram, this research addressed the three main
challenges in molecular design at once. The resultant prob-
abilistic diagram can guide the design of chemicals with a cus-
tomized probability to reduce the risk of incurring cytotoxicity.
This approach renders high level flexibility to chemists when
seeking solutions in the design variable space. The probabilis-
tic scales are useful in assessing the quantitative impact on
benign probability while altering the numerical values of the
design variables in practice. It is an expansion of the existing
molecular design methods and will serve as a ground work for
future green design research.
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