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An efficient Passerini tetrazole reaction (PT-3CR)†

Ajay L. Chandgude and Alexander Dömling*

A sonication accelerated, catalyst free, simple, high yielding and

efficient method for the Passerini-type three-component reaction

(PT-3CR) has been developed. It comprises the reaction of an alde-

hyde/ketone, an isocyanide and a TMS-azide in methanol : water

(1 : 1) as the solvent system. The use of sonication not only acceler-

ated the rate of the reaction but also provided good to excellent

quantitative yields. This reaction is applicable to a broad scope of

aldehydes/ketones and isocyanides.

Introduction

Tetrazole scaffolds are extensively used in medicinal chemistry
and in industries like agriculture, explosives and photo-
graphy.1 1,5-Disubstituted tetrazoles are important ring
systems, having applications as bio-active agents or in drugs
like cilostazol, pentylenetetrazole, latamoxef, BMS-317180 and
cis-amide bond isosteres in peptides (Fig. 1). This propels the
need for efficient synthetic methods for tetrazoles.2 Different
reactions have been developed for the direct access to diverse
1,5-disubstituted tetrazoles, but three- and four-component
reactions (MCR) are mostly preferred due to their convergent,
atom-efficient and flexible nature.3 Multi-component reactions
are considered ideal syntheses, and that’s why their use in syn-
thetic chemistry is increasing tremendously.4

In 1921, a three-component reaction between carboxylic
acids, oxo components and isocyanides for the synthesis of
α-acyloxy amide was discovered by Passerini (P-3CR).5,7c In
1961, Ugi reported the synthesis of tetrazoles via a Passerini-
type 3CR (PT-3CR) for the first time using HN3 and Al(N3)3.

6

Even though the use of HN3 or NaN3 in Passerini reactions for
the synthesis of tetrazoles was reported, the highly toxic and

explosive nature of HN3 and NaN3 limit its application.7 The
use of TMSN3 as a safe substitute for HN3 was then introduced
by Hulme.8 However the use of TMSN3 as an azide source in
the PT-3CR resulted in a very low yield, and the TMS-ether was
found as a major product instead. Similarly protected amino
aldehydes in DCM also resulted in generally low yields9 and
the described reaction times were up to 96 hours.9a Reported
PT-3CRs are not very suitable for aromatic aldehydes.7 The use
of different Lewis acids as catalysts, like AlCl3, to activate alde-
hydes forms inseparable mixtures of the desired product with
α-hydroxy-amide, with a maximum yield of 30%.10 Zhu and co-
workers used TMSN3 as a test reaction component in the asym-
metric PT-3CR; nevertheless, they could not avoid the for-
mation of α-hydroxy-amide.7b

To the best of our knowledge, no efficient, diverse and high
yielding PT-3CR reaction has yet been reported. We report
herein a sonication-promoted catalyst free, TMSN3-modified
PT-3CR using methanol : water (1 : 1) as solvent with diverse
scope and affording good to excellent yields.

Fig. 1 Some bio-active agents/drugs containing the tetrazole moiety.
†Electronic supplementary information (ESI) available. See DOI: 10.1039/
c6gc00910g
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Results and discussion

We started our investigation by using tert-butyl isocyanide,
phenylacetaldehyde and TMSN3 as starting materials (Table 1).
We hypothesized that the use of fluoride ion sources like
TBAF, CsF and KF could trigger TMSN3 activation.11 However,
when the reaction was carried out with TBAF with different sol-
vents like DCM or water, or in neat, the product was formed
only in trace amounts (Table 1, entries 1–3). Surprisingly,
using methanol as a solvent increased the isolated yield to
25%. Carrying out the reaction with alternative F-sources, such
as KF in DCM or CsF in DCM, methanol and water, resulted
only in small amounts of product formation.

The use of iodine, to trap TMS as TMSI, also failed to
improve the reaction yield. 17% product formed when the reac-
tion was carried out in water without any additive. TBAF in
methanol : water (1 : 1) enhanced the yield up to 63%; however
comparable yields were obtained when the reaction was
carried out without TBAF in the same solvent system. Thus we
concluded that the use of TBAF is not fruitful, whereas the
solvent system has a major impact.

We foresaw that the accelerating effect of sonication could
potentially speed up the reaction and increase yields. Ultra-
sound in general12 and also in the context of MCR12d is often
used in organic synthesis due to its advantages such as
increasing the reaction efficacy while decreasing waste bypro-
ducts, short reaction times, cleaner reactions, easier experi-

mental procedures and having low energy requirements.
Recently, the popularity of sonication-assisted synthesis as a
green synthetic approach has significantly increased and has
resulted in a plethora of ‘better’ reactions.13 Ultrasound in
chemical reactions works via a physical phenomenon called
acoustic cavitation, which forms, expands and collapses
gaseous and vaporous cavities in an ultrasound irradiated
liquid. The mechanical effect of cavitation destroys the attrac-
tive forces of molecules in the liquid phase and so accelerates
reaction rates by facilitating mass transfer in the micro-
environment.13 To our delight, the use of sonication not only
accelerated the reaction from 12 to two hours, but provided
excellent quantitative yields using methanol : water (1 : 1) as
the solvent system, noteworthily without the necessity of any
previously used additive (Table 1, entry 14). We used a simple
ultrasonic cleaning bath which is the most widely available
and cheapest source of ultrasonic irradiation. A recent study
has shown that both ultrasonic cleaning baths and ultrasonic
probe systems are efficient in Passerini reactions.14 The ultra-
sonic cleaning bath offers further advantages; for example, the
reaction vessel can be put directly into the bath without any
adaptation. This is in contrast to the ultrasonic probe system,
which is more expensive and also requires special vessels,
making it inconvenient to use.

Lastly, reactions under sonication in DCM or in neat con-
ditions provided smaller yields, of 34% and 31% respectively,
and the formation of TMS-ether as a side product was
observed. The use of pure water as the solvent under soni-
cation conditions provided the product in 71% yield. The use
of 1 equivalent of TMSN3 avoids the danger of forming hydra-
zide from excess azide. This catalyst free reaction doesn’t
require any work-up.

With these optimized conditions in hand, we next exam-
ined the generality of this PT-3CR by reacting different alde-
hydes with different isocyanides (Table 2). Good to excellent
yields were obtained with linear and branched aliphatic alde-
hydes. Aromatic aldehydes are also compatible substrates for
this process (Table 2, entries 15–22). Electron donating
(methoxy) and withdrawing groups (Cl, Br, NO2) at different
positions like ortho, meta and para are valid, providing moder-
ate to good yields. Paraformaldehyde also reacts when pure
water was used as the solvent. Reaction with one or six equi-
valents of paraformaldehyde in a methanol : water system only
forms mono-substituted tetrazole. The reaction of benzyl iso-
cyanide with aliphatic aldehydes gave excellent yields.

Isocyanides, easy to deprotect in acidic and basic con-
ditions, are compatible with the developed methodology
(Table 2, entries 2, 4 and 5). The functional group tolerance of
the isocyanide (Table 2, entries 5–6 and 8–10), in this protocol
provides multiple opportunities for various further chemical
manipulations. For example, the compatibility of 1,1-diethoxy-
2-isocyanoethane as the isocyanide component could be used
in further reactions as aldehyde or halogen functional groups
for coupling reactions.

We also explored the scope of ketones in the developed
method (Table 2, entries 23 and 24). Cyclohexanone gives a

Table 1 Optimization of reaction conditionsa

Entry Catalyst Solvent
Time
(h)

Product
yieldb (%)

1 TBAFc — 12 Trace
2 TBAFd DCM 12 Trace
3 TBAFc H2O 12 Trace
4 TBAFc MeOH 12 25
5 KFe DCM 12 nd
6 CsF f DCM 12 nd
7 CsF f MeOH 12 nd
8 CsF f H2O 12 nd
9 I2

f DCM 12 nd
10 I2

f H2O 12 nd
11 H2O 12 17
12 TBAFc MeOH : H2O (1 : 1) 12 63
13 MeOH : H2O (1 : 1) 12 64
14 Sonication MeOH : H2O (1 : 1) 2 97
15 Sonicationg — 3 31
16 Sonication DCM 2 34
17 Sonication H2O 2 71

a The reaction was carried out with phenylacetaldehyde (1 mmol), tert-
butyl isocyanide (1 mmol), and TMSN3 (1 mmol) at room temperature.
b Yield of isolated product. c 1 equivalent TBAF·3H2O.

d 1 equivalent
TBAF in 1 M THF. e 1 equivalent KF. f 1 equivalent CsF. g Reaction
carried out at 70 °C. nd = not determined.
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good yield of 84%. The important building block piperidone is
also compatible with the reaction.

Fused tetrazoles are important scaffolds as they possess a
wide spectrum of activity and vast industrial applications. As
functional groups bearing isocyanides are compatible in our

developed method, we foresaw a quick and easy access to
fused tetrazoles. According to our synthetic plan, the use of
functionalized PT-3CR product for post modification would
allow an anticipated cyclization process. (1-(2-Bromobenzyl)-
1H-tetrazol-5-yl)methanol (3i), when refluxed with copper(II)
triflate in the presence of base, formed 5,11-dihydrobenzo[f ]-
tetrazolo[5,1-c][1,4]oxazepine in 89% yield (Scheme 1).

Conclusions

In conclusion, we have developed a novel, efficient, safe and
general sonication assisted Passerini tetrazole reaction
(PT-3CR) to access 5-(1-hydroxyalkyl)tetrazoles in good to excel-
lent yields. The herein described Passerini tetrazole procedure
provides multiple advantages over previously described pro-
cedures. The reaction does not use highly toxic and explosive
staring materials like HN3, Al(N3)3 or NaN3. This catalyst free
reaction avoids the use of any dangerous or adverse catalysts
such as the Al–salen chiral complexes or AlCl3. Sonifiaction
was found to provide superior reaction conditions, resulting in
high conversion and giving high yields of Passerini products
and no TMS-ether side products, as often observed previously.
Sonification is also well known to be compatible with upscal-
ing procedures. The scope of the reaction could be dramati-
cally extended, including aliphatic, aromatic aldehydes and
also ketones. Due to the extended functional group compatibil-
ity of the reaction, many new scaffolds amenable by post-
condensation reactions can be foreseen, as we have illustrated
by the synthesis of a Cu-mediated fused tetrazole. Altogether,
we believe that our procedure is superior to all previously
reported Passerini tetrazole reactions and will be the method
of choice for the future.
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