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From sugars to biodiesel using microalgae
and yeast†

Jose A. Gomez, Kai Höffner and Paul I. Barton*

The economic production of algal biofuels requires novel strategies, such as microbial consortia and syn-

thetic ecologies, to boost the productivity of open pond systems. These strategies have not been fully

explored partly due to the lack of reliable and predictive process models. This study uses genome-based

metabolic networks to build a process model of a raceway pond. This process model is used as a discov-

ery tool for novel process strategies. First, an algal monoculture with flue gas sparging is modeled. Then,

an oleaginous yeast monoculture is modeled. The yeast monoculture is O2 limited and the presence of

algae in the culture would result in better resource utilization. Next, an algal/fungal raceway pond with a

feed of cellulosic glucose is explored. Finally, an oleaginous yeast that can consume a glucose/xylose mix,

resulting from the hydrolysis of lignocellulosic waste, is modeled. This model predicts biomass and lipids

productivities comparable to those reported in the literature. Assuming 50% yield loss due to contami-

nation and invasion, a simple economic analysis shows that an algae/yeast coculture can produce bio-

diesel at competitive prices, $2.01 per liter for pure glucose and $1.44 per liter for the sugar mix, whereas the

algae monoculture can do so only at very short distances from a flue gas source. This modeling frame-

work will enable the use of optimization algorithms in the design of open pond systems in the near future

and will allow the exploration of novel strategies in bioprocesses employing microbial communities.

1. Introduction

In March 2015, the United States pledged to cut its carbon
emissions by 26–28% by 2025.1 This ambitious environmental
objective is in line with the energy policy set in 2011 to guaran-
tee the United States’ energy security and reduce greenhouse
gases emissions. This energy policy includes specific actions
such as reducing oil imports, increasing energy efficiency, and
speeding up the development of biofuels.2

Biofuels are fuels generated from biomass. First-generation
biofuels are those obtained from food crops. The realization
that these biofuels were little better than traditional fossil
fuels regarding environmental impact combined with their
competition for food resources prompted research on second-
generation biofuels. Second generation biofuels are obtained
from waste biomass.3 This type of biofuels represent a great
opportunity because 349 million tons of sustainable waste
biomass are produced in the United States per year,4 and most
of this biomass is wasted. The most promising technologies for
second-generation biofuels production are based on microbial

conversion of biomass into lipids. Three types of microorgan-
isms are used for microbial biomass production: bacteria, fungi
(including higher fungi), and microalgae. Preferred character-
istics of the microorganisms are high specific growth rate, high
lipids to biomass yield, high cell density, ability to use complex
substrates, affinity to substrate, and low nutrient requirements.5

Microalgae are attractive for biofuels production from sun-
light energy because some strains naturally accumulate up to
50% dry weight in lipids.6 In addition, algae do not compete
for food resources as they can be grown on wastewater and/or
sea water,7 and they are up to one order of magnitude more
efficient than higher-order terrestrial plants in capturing sun-
light.6,8 In addition, algal biofuels have reduced CO2 emissions
compared to fossil fuels, and can become carbon neutral if all
energy inputs to the process are carbon neutral. Despite all
these advantages, algal biofuels remain to be commercialized
due to their high prices. For example, in 2013 the Department
of Defense paid $150 per gallon for 1500 gallons of jet fuel
when petroleum-based jet fuel was only $2.88 per gallon.9

Prices remain high because a low cost production method that
obtains acceptable algal biomass and lipids yields remains to
be found.

Oleaginous yeasts are also attractive for biofuels production
as they can convert lignocellulosic sugars into lipids. Some
examples of oleaginous yeast strains include Cryptococcus
albidus, Lipomyces starkeyi, Rhodotorula glutinis, Trichosporon
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pullulans, and Yarrowia lipolytica which accumulate up to 65,
63, 72, 65, and 36% lipids, respectively.10,11

Algae and yeasts can be cultivated in open pond systems or
closed photobioreactors. Closed photobioreactors have been
used successfully to produce high-value specialty chemicals,
but these systems incur high capital and operating costs.12

Therefore, they are not commercially viable to produce com-
modities such as fuels. On the other hand, open pond lipid
yields are insufficient because monocultures are vulnerable to
invasion and predation by other algae species, bacterial or
fungal infection. Oleaginous yeasts that thrive under low pH
and low temperature conditions have been successfully culti-
vated in open ponds,13 but most oleaginous yeasts are not
extremophiles. In this case, culture resilience and stability are
critical. Synthetic consortia can be designed to fill ecological
niches which would otherwise be filled by invading species.
Design of such synthetic consortia has been discussed in
Kazamia et al.14 at a qualitative level, and a quantitative
approach has been proposed in Höffner and Barton.5 In
addition, algae in open pond cultures are carbon limited due to
the low atmospheric CO2 concentration and yeasts can become
O2 limited.15 The carbon limitation has restricted the locations
where algal ponds can be economically feasible, because the
use of CO2-rich flue gas is only possible in the vicinity of power
plants.16 An alternative approach to cultivating monocultures of
yeast and algae is to grow them together and benefit from their
symbiotic interactions. Examples of this approach have been
tested at lab scale.15,17–22 The introduction of yeast enables
lignocellulosic sugars, which cannot be metabolized by most
microalgae, to be digested and can increase algal biomass by
transforming part of these carbon sources into CO2. At the
same time, yeast can benefit from the O2 produced by micro-
algae and increase lipids production. In addition, both species
together fill available ecological niches to protect against inva-
sion.14 This alternative strategy promotes installing algal/fungal
ponds near farms, where significant quantities of agricultural
waste are generated, but no flue gas is available, and transform
these wastes into lipids first, and then biodiesel.

This paper shows how an algal-fungal pond is able to
attain higher biomass productivities than the respective mono-
cultures. The substrates required for algae growth are minimal.
For algal photoautotrophic growth, CO2 is the carbon source,
energy is provided by sunlight, and small amounts of nitrogen,
phosphorus and sulfur sources need to be provided. The quan-
tity of the available substrate strongly determines the growth
rate and intracellular accumulation of desired metabolic pro-
ducts such as lipids. For yeast, a carbon source, in this case
glucose and xylose, and small amounts of nitrogen, phos-
phorus and sulfur are required. This case study shows that
yeast provides additional CO2 to algae by metabolizing sugars
and algae provides O2 to yeast. Furthermore, together yeast
and algae use available resources more efficiently, which
makes the invasion of other microorganisms less likely. This
paper uses the modeling framework presented in Höffner and
Barton,5 which is based on Dynamic Flux Balance Analysis
(DFBA)23–26 and the High-Rate Algal-Bacterial pond model.27,28

2. Methods

Design of novel algal open pond systems requires process
models, which provide quantitative predictions of interactions
between process components across different scales. Multi-
scale models, integrating genome-scale information in meta-
bolic networks with the ecological scale of the interactions
between multiple species and the process scale of bioreactors,
have been proposed in Höffner and Barton.5 These complex
models are based on multi-species dynamic flux balance
analysis and can be used for the discovery of novel and
improved microbial bioprocesses.

2.1. Dynamic flux balance analysis

Flux balance analysis (FBA) is a genome-scale, constraint-
based modeling approach. It is a widely successful framework
for metabolic engineering and analysis of metabolic net-
works.24,26 Consequently, metabolic network models of many
organisms have been developed.29 Based on genomic analysis,
a metabolism can be modeled as a network of reactions, which
must satisfy simple mass balance constraints. The network
reconstruction determines the stoichiometry of the meta-
bolism under the balanced growth assumption.26 However, this
network is often underdetermined; the fluxes of the different
substrates and metabolites can vary and yet still produce a
solution which satisfies mass balance constraints. Thus, it is
assumed that the fluxes will be such that some cellular objec-
tive is maximized. For example, an evolutionary argument can
be made that a microorganism will maximize its growth rate if
sufficient nutrients are provided.24

Dynamic flux balance analysis (DFBA) combines genome-
scale metabolic network analysis with a dynamic simulation
of the extracellular environment.23,25 At this scale,
process models of bioreactors incorporating detailed meta-
bolic reconstructions can be considered. DFBA models
have matched accurately experimental data for the cultivation
of E. coli23,30 and the competition between Rhodoferax and
Geobacter.31 In addition, DFBA has successfully modeled
experimentally observed mutualistic relationships between
D. vulgaris and M. maripaludis and between engineered yeast
strains unable to grow on minimal glucose medium separately,
and has been used to make fast predictions for combinations
of microorganisms and media not yet validated experi-
mentally.32 DFBA provides a platform for detailed design,
control, and optimization of biochemical process technologies,
such as an open pond. With DFBA, temporal and/or spatial
variations in the behavior of the community within the bio-
reactor can be simulated. This formulation provides a more
appropriate and predictive description of complex ecological
systems, in which emergent nonlinear dynamic behavior is
a common phenomenon. Furthermore, the mathematical for-
mulation allows for unstructured models of ecological species,
such as large zooplankton, for which a metabolic model is not
available.

Simulation and optimization of large multi-species and
multi-scale process models requires efficient numerical tools.
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A DFBA model results in a dynamic system with linear pro-
grams embedded.33,34 Numerical complications arise when
simulating these systems; these have recently been addressed
and efficient simulators have become available.33,35 Therefore,
simulation of large-scale multi-species metabolic reconstruc-
tions is now possible. The simulations in this paper were
performed using DFBAlab.35

2.2. High-rate algal pond model

The high-rate algal-bacterial pond model was first intro-
duced and validated experimentally by Buhr and Miller27

and then extended by Yang.28 This model considers a cocul-
ture of bacteria and algae for high-rate wastewater treatment
ponds. Their growth expressions are given by Monod type
kinetics dependent on the concentration of carbon, oxygen,
and nitrogen. In addition, they considered pond depth and
biomass concentration effects on light penetration, the
effect of ionic species on pH, and the effect of pH on dis-
solved CO2. In order to use Monod kinetic expressions, a
limiting substrate must be readily identified, and accuracy is
lost at transitions when several substrates may be limiting.
In cocultures and non-steady state environments, predicting
limiting substrates and active metabolic pathways can be a
very challenging task, if possible. In this paper we incorpor-
ate genome-scale metabolic models into the high-rate algal-
bacterial pond. When using dynamic flux balance analysis,
no a priori predictions are needed because the linear pro-
grams modeling the behavior of each species predict the
metabolic state given the extracellular conditions and ident-
ify the limiting substrates. Monod kinetics are used
indirectly by bounding the consumption of substrates as in
Hanly and Henson,30 but the actual consumption rate is cal-
culated by the linear programs after identifying a limiting
substrate.

2.3. Raceway open ponds

A raceway pond is an open pond with flow and can be mod-
elled as a plug flow reactor (PFR). In this paper, the spatial dis-
tribution of quantities in the raceway pond is approximated as
a sequence of interconnected continuous stirred tank reactors
(CSTRs). Each CSTR model includes the mass balances for the
main metabolites and an estimate of the variation of the
average light intensity during a 24 hour period. For each CSTR,
it is assumed that the broth is well mixed such that there are
no gradients in nutrients or biomass concentrations. Growth
rates of algae and yeast, and uptake and production rates
of metabolites are obtained from genome-scale metabolic
network reconstructions.

First a pond with an algae monoculture with no CO2

sparging is analyzed. Next, the productivity of this culture
is boosted with CO2 sparging and a series of three ponds
is considered. Next, a pond containing a monoculture
of oleaginous yeast is considered and the advantages of
an algae/yeast coculture are illustrated. Next, we model an

algal/yeast coculture with no flue gas sparging in a three
pond system. Finally, the case where the oleaginous yeast
can also consume xylose is considered in another three
pond system. The coculture examples illustrate the benefits
of the symbiotic relationships between yeast and algae. The
series of ponds is necessary to induce lipids production
through nitrogen starvation,13 as observed experimentally
by Rodolfi et al.36 and Breuer et al.37 Nitrogen starvation
increases lipids productivity but reduces biomass pro-
ductivity.37,38 A two phase cultivation system can achieve
good biomass and lipids productivity.39 Therefore, the
series of ponds allows biomass growth in the first pond and
lipids accumulation in the latter ones. Ammonia is used as
the single nitrogen source. Caustic soda is used to prevent
the pond from becoming too acidic.

In this case study, the model for each pond was obtained
from Yang.28 This model considers a 350 000 L outdoor
pond with a depth of 0.4 m. It is continuously harvested at a
rate of 50 000 L per day with a recycle rate of 350 000 L h−1.
A channel width of 1.2 m is assumed such that the flow velo-
city is 0.2 m s−1 to avoid sedimentation and thermal strati-
fication, as suggested by Becker.40 The Reynolds number of
this pond is of 250 000; turbulent flow is desired to keep
cells in suspension and prevent stratification.41 We discre-
tized the spatial variations of the pond by modeling it as a
sequence of nine CSTRs. For ponds connected in series, the
effluent of one pond feeds into the next and the effluent of
the last pond feeds into a clarifier, in which the water
content is reduced and subsequently the remaining
biomass is harvested and processed. The clarifier and other
downstream processes are not included in the current
model.

The average light intensity is estimated based on the
Beer–Lambert law:27,28

IaðtÞ ¼ 1
L

ðL
0

I0ðtÞ exp ð�Ke XðtÞð ÞzÞdz; ð1Þ

where Ke(X(t )) is the extinction coefficient, L is the depth of the
pond, and I0 is the surface light intensity during the photo-
period (7:00–19:00) approximated by a sinusoidal function
with maximal intensity at noon and average surface light
intensity of 18.81 MJ per m2 per day.28 To convert to mmol
photons per gDW per h, the average cell diameter used was
10 μm,42 and the average weight was estimated as 109 cells in
one gram dry weight.43 Following the calculations in Boelee
et al.,44 Imax

0 = 283 mmol per gDW per h. The dependency of Ke

on biomass concentration is modeled via a simple linear
relationship,

KeðXðtÞÞ ¼ Ke1 þ Ke2XðtÞ; ð2Þ

where X(t ) is the total biomass concentration at time t and the
values of the parameters Ke1 and Ke2 are taken from Yang.28

In addition, light available for photosynthesis cannot exceed
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the average surface light intensity of 3610 mmol photons
per (m2 × h). Therefore,

I0ðtÞ ¼ max 0; 283π sin
π t� 7ð Þ

12

� �� �� �
;

IaðtÞ ¼ I0ðtÞ � 1� e�LKeðXðtÞÞ

LKeðXðtÞÞ ;

I1ðtÞ ¼
max 0; 3610π sin

πðt� 7Þ
12

� �� �� �
400XAðtÞ ;

ImðtÞ ¼ minðIaðtÞ; I1ðtÞÞ
where Im(t ) is the light available for algae at time t in mmol
per gDW per h, XA(t ) is algal biomass concentration in g L−1

and 400 is a conversion factor from g L−1 to g m−2 based on
the geometry of this pond. The open pond is in direct contact
with the atmosphere, therefore a simple model based on film
theory is used to estimate the mass transfer across the inter-
face between air and water with parameters from Buhr and
Miller27 and Yang28 and pond mass transfer area to volume
ratio of 2.5 m2 m−3. The equilibrium concentrations for both
O2 and CO2 in water are calculated using Henry’s law. Finally,
the dissolved gas concentrations are limited by their saturation
concentration at ambient conditions.

Sparging of flue gas is modeled according to Yang.28 The
model considers that flue gas is fed at atmospheric pressure
into orifices with a diameter of 5 cm. covering the entire
bottom of the pond with a concentration of 250 orifices per m2.
Flue gas flowrates of 10, 40, 100, 500, and 2000 m3 h−1

were modeled. The flue gas composition of 13.6% CO2, 5% O2,
and the rest N2 was obtained from Brown.45 Variations of the
concentration of CO2 in the gas bubbles with respect to pond
depth were considered.

2.4. Metabolic models

Chlamydomonas reinhardtii is used as a model organism for
microalgae. The genome-scale metabolic network iRC1080 is
an up-to-date metabolic reconstruction of C. reinhardtii.46

The reconstruction consists of 2191 fluxes and 1706 unique
metabolites, and encompasses ten compartments including a
detailed reconstruction of the lipid metabolism. The model
includes photoautotrophic, heterotrophic and mixotrophic
growth options and a detailed model of the light spectrum.
The model prediction has been validated experimentally under
different environmental conditions, such as nitrogen limited
or light limited growth.46 The model includes the pathways
necessary for the biosynthesis of unsaturated fatty acids, fatty
acids, steroids, sphingolipids, glycerophospholipids, and gly-
cerolipids, and it considers the pathways related to fatty acid
elongation in the mitochondria. The model considers all indi-
vidual metabolites in these pathways including backbone
molecules, stereochemical numbering of acyl-chain positions,
acyl-chain length, and cis–trans stereoisomerisms.46 More

model details including a list of all metabolites and reactions
can be found in the ESI of Chang et al.46 and more infor-
mation in general on algal lipids synthesis in Harwood and
Guschina.47 For this paper, 125 metabolites were classified as
lipids and a lipid storage was implemented in the model. In
addition, minor modifications were done to the metabolic
network reconstruction to satisfy mass balances.

The model for the yeast organism is based on a well-
established model of Saccharomyces cerevisiae. The genome-
scale network reconstruction of the S. cerevisiae metabolism
iND750 has shown good agreement with experimental data.48

It considers 1061 unique metabolites in eight compartments
and 1266 intracellular and exchange fluxes. Furthermore, the
model correctly predicts ethanol production under anaerobic
conditions. However, S. cerevisiae is not an oleaginous yeast.
Examples of oleaginous yeasts include Cryptococcus albidus,
Lipomyces starkeyi, Rhodotorula glutinis, Trichosporon pullulans,
and Yarrowia lipolytica with lipid accumulations ranging
from 36% to 72%.10,11 A description of the lipids profiles
for different fungal species can be found in Ratledge.10 The
iND750 model considers most pathways found in fungal
species. It also considers the production of different lipids
species such as glycerolipids, glycolipids, sphingolipids, phos-
pholipids, and fatty acids. This metabolic reconstruction can
be used to model different species by adjusting the biomass
equation and adjusting the flux bounds on reactions
feeding to different pathways. In this paper, we modified the
iND750 model such that it cannot produce ethanol11 and
under low oxygen conditions it can produce acetate, formate,
succinate, and citrate, reflecting the behavior of Y. lipolytica.49

We also modified it further such that it consumed xylose
reflecting the behavior of Rhodotorula glutinis.50 Therefore,
the biomass equation was modified such that the yeast
accumulates 40% lipids.

Both modified models are provided as ESI†. Fig. 1 presents
a simplified version of both models. Yeast consumes glucose,
xylose, O2, and nutrients to obtain biomass, CO2 and water.
The metabolic reactions of glucose and xylose generate ATP
with stoichiometry defined by the metabolic model. Xylose,
glucose and nutrients are assimilated into biomass; these
growth reactions have ATP requirements with coefficients
determined by the metabolic model. Meanwhile, algae obtains
ATP from light and converts CO2 and water into glucose and
O2 through photosynthesis with some ATP requirement. This
glucose can be transformed into starch for energy storage, con-
sumed for ATP production, or assimilated with nutrients as
biomass. Under nitrogen limitations, this glucose can be
assimilated as lipids. In addition, the algae model considers a
survival ATP requirement. The red and purple arrows
show symbiotic opportunities. All ATP coefficients are deter-
mined by the metabolic model. Both models, iRC1080 and
iND750, contain in full detail all the relevant metabolic path-
ways that achieve these main reactions. The full list of meta-
bolites and reactions of iRC1080 and iND750 can be found in
the ESI of Chang et al.46 and the ESI of Duarte et al.,48

respectively.
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2.5. Kinetic parameters

The uptake kinetics for the exchange metabolites for both
microorganisms are approximated by Michaelis–Menten
kinetics:

vS ¼ vmaxS
Km þ S

� �
1

1þ I=KI

� �
βð Þ; ð3Þ

where S is a substrate of interest, I is an inhibitor and β is a
positive pH factor. The values of these constants are taken
from the literature and presented in Tables 1 and 2. The

uptake of acetate in algae was modeled according to Zhang
using the expression for growth on ammonium chloride,51 but
since this expression is slightly different from (3), the values of
its constants are not reported in Table 1. Algae are known to
survive in a pH range of 6–10 with an optimum pH of 8,
whereas yeasts survive in environments with pH ranging from
2 to 8.52 Algal carbon and nitrogen uptakes and yeast glucose
and xylose uptakes were made pH dependent with expressions
obtained from Tang et al.53 and Zhang et al.:51

β ¼ α

K1 þ KOH�

Hþ þ Hþ

KHþ

0
BB@

1
CCA;

where α, K1, KOH
−, and KH

+ are constants. Algal pH dependent
growth data under nitrogen and carbon limitations was
obtained from Franco et al.54 and Kong et al.,55 whereas yeast
parameters were adjusted such that it grew at pH levels
between 2 and 9 with maximum growth rate at pH equal to
6. Table 2 presents the constants used for these simulations.

Finally, an expression was derived for algal starch pro-
duction and consumption. Starch is the only source of energy
for algae at night. It is assumed that starch production is
dependent on light and carbon concentrations and that its
consumption is dependent on intracellular starch concen-
tration at night:

vproductionstarch ¼
9:5� 10�4 γð Þ þ Ystarchμ when I0ðtÞ � 300;

9:5� 10�4 γð Þ I0
300

� �
þ Ystarchμ otherwise;

8<
: ð4Þ

where γ ¼ min 0:1;
HCO �

3

� �
KHCO �

3
m þ HCO �

3

� �þ CO2½ �
KCO2
m þ CO2½ �

 !
βCO2

 !
;

vconsumption
starch ¼

0 when I0ðtÞ � 300;
1:4� 10�4S
Sþ 0:006

1� I0
300

� �
otherwise;

8<
: ð5Þ

where vproductionstarch and vconsumption
starch are given in mmol per gDW

per h, [HCO3
−] and [CO2] are concentrations in mmol L−1, μ is

the growth rate in mmol per gDW per h, Ystarch is the starch
fraction of the biomass growth equation, S is the intracellular
starch concentration in mmol per gDW, and βCO2

is the pH
factor for CO2 uptake in algae. The constants in eqn (4) and (5)

Table 1 Summary of uptake kinetic parameters for algae and yeast

Yeast
vmax (mmol per
gDW per h)

Km

(mmol L−1)
KI

(mmol L−1) Ref.

Glucose 22.4 4.44 EtOH: 217 Hanly et al.30

O2 2.5 0.003 None Hanly et al.30

NH4
+ 25.5 35.4 × 10−3 None Jongbloed et al.56

Xylose 12.8 32.5 EtOH: 217 Hanly et al.30

Glucose: 2.78

Algae
CO2 1.25 0.03 None Tsuzuki et al.57

O2 2.065 0.008 None Yang28

HCO3
− 1.82 0.27 None Tsuzuki et al.57

NH4
+ 0.65 3.84 × 10−4 None Hein et al.58

NO3
− 0.251 1.1 × 10−3 None Galván et al.59

Acetate N.A N.A None Zhang et al.51

Note: Ammonium uptake for yeast was approximated with that of
fungus Lactarius rufus. The weight fraction of chlorophyll (22.8 mg per
gDW) in algae was obtained from the biomass equation in the
iRC1080 model. The yeast uptake of xylose was scaled from E. coli
values.

Table 2 Constants for pH dependent uptakes of algae

Algae NH4
+, NO3

− CO2, HCO3
− Acetate

α 1.25 1.08 1
K1 1.19 1.07 1.18
KOH

− [mol L−1] 3.51 × 10−10 9.26 × 10−11 2.82 × 10−8

KH
+ [mol L−1] 3.19 × 10−7 5.9 × 10−6 6.66 × 10−8

Yeast Glucose/Xylose
α 1
K1 0.97
KOH

− [mol L−1] 2 × 10−8

KH
+ [mol L−1] 1 × 10−4

Fig. 1 Main reactions considered in the modified models iRC1080 and
iND750. The stoichiometric coefficients of ATP production and con-
sumption are determined by the metabolic models. The red and purple
arrows illustrate symbiotic relationships: the red dashed arrow shows
yeast utilizing O2 produced by algae, whereas the purple dotted and
dashed arrow shows algae consuming CO2 produced by yeast.
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were fine-tuned by running several simulations. Algae growth
rate depends on light intensity, dissolved O2, CO2, HCO3

−,
acetate, and NH4

+ concentrations. Yeast growth rate depends
on dissolved O2, glucose, and NH4

+ concentrations. Both
growth rates are determined through flux balance analysis.

2.6. Solution equilibrium

The chemical equilibrium of the system is based on Buhr and
Miller27 with parameters obtained from Robinson and
Stokes60 at 20 °C. It is assumed that the ions present in the
system are CO3

2−, H+, OH−, HCO3
−, NH4

+, Na+, and the ions
resulting from formic, acetic, succinic, and citric acids.
Ammonia is assumed to dissolve completely. Therefore, a
system of equations is obtained from the solution equilibria of
ammonia, carbon dioxide, formic, acetic, succinic, and citric
acids and water, the mass balances of ammonia, carbon,
acetate, formate, succinate, and citrate, and electroneutrality.
From this system of equations, the concentrations of all ionic
species are obtained.

2.7. DFBAlab hierarchy of objectives

Since the flux distribution associated with maximal growth is
not necessarily unique, hierarchical optimization is used to
determine unique exchange fluxes among the optimal flux dis-
tributions. DFBAlab requires the user to provide a hierarchy of
objectives for efficient integration of the dynamic system.35

Table 3 presents the objectives used for algae and yeast.

3. Results and discussion

In this section, some quantities are reported per m2 of illumi-
nated area. This is a common normalization quantity that
allows performance comparison with algal production pro-
cesses reported in the literature.

3.1. Algae monoculture without CO2 sparging

First an algae monoculture with no CO2 sparging is simulated.
It is supplemented with 146 mg per (m2 × day) of ammonia.
This amount of nitrogen is enough for the pond to be carbon
limited. Fig. 2 presents a schematic of the simulation. The
350 000 L raceway pond is approximated by nine CSTRs of
equal volume.

The results of this simulation show that all sections of the
pond have very similar concentration profiles. This is a conse-
quence of having a recycle rate 168 times greater than the
dilution rate. In fact, a plug flow reactor with a very high
recycle rate can be approximated by a single CSTR. Therefore,
we modeled the pond as a single CSTR and compared the
results with the approximation of nine CSTRs. The predicted
outflow concentration profiles of both approximations are very
similar. Therefore, all ponds in the following case studies are
modeled as single CSTRs.

Fig. 3 shows the predicted concentration profiles in the
pond at cyclic steady state. It can be seen that the predicted
biomass productivity is less than 1 g per (m2 × day). The cyclic
nature of the steady state can be observed in the concentration
profiles of O2 and CO2 as well as in the pH of the pond.
During the day, algae produces O2 and consumes CO2 which
increases the pH due to the depletion of carbonic acid; the
opposite behavior takes place at night. Due to the low pre-
dicted productivity of an algae monoculture without additional
CO2 supply, this system is not explored any further. The next
case study is that of an algae monoculture with sparging of
flue gas.

3.2. Algae monoculture with CO2 sparging

A schematic of the cultivation system can be observed in
Fig. 4. With flue gas sparging (13.6% CO2, 5% O2, and the rest
N2), biomass productivity increases greatly as more CO2 is sup-
plied into the system. Flue gas was fed into a three pond
system for 10 hours during the day at a sparging rate of 40 m3

h−1. A total of 1.04 and 0.15 g per (m2 × day) of ammonia and
sodium hydroxide, respectively, are fed into the system. Fig. 4
shows how these feeds are distributed among the three ponds.
With this feed distribution, the last pond is nitrogen starved,
and lipids production is induced.

Fig. 5 shows that this cultivation scheme can attain
biomass and lipids productivities of 34.4 and 16.2 g per
(m2 × day), respectively, which is in line with the 20–40 g per
(m2 × day) observed in several raceway ponds in the last decade

Fig. 2 Schematic of the raceway pond model. The 350 m3 pond is
approximated by nine CSTRs. There is a constant feed and outlet of
50 m3 per day and a recirculation of 350 m3 h−1.

Table 3 Hierarchy of objectives for simulation with DFBAlab

Yeast Algae

1 Maximize growth Maximize autotrophic growth
2 Maximize CO2

production
Maximize lipids production

3 Maximize glucose
consumption

Maximize starch production

4 Maximize xylose
consumption

Maximize consumption and
minimize production of CO2

5 Maximize O2
consumption

Maximize ammonium consumption

6 Maximize ammonium
consumption

Maximize HCO3
− consumption

7 Minimize acetate
production

Maximize consumption and
minimize production of O2

8 Minimize formate
production

Minimize formate production

9 Minimize citrate
production

Minimize ethanol production

10 Minimize succinate
production

Minimize acetate production

11 Minimize hydrogen production
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as reported by Fig. 20 in Williams and Laurens.38 The level of
accumulation of biomass is highly dependent on the feed rate
of flue gas, for low feed rates, and the concentration of CO2 in

this gas. The accumulation of biomass is most likely an upper
bound on what can be obtained realistically as the effects of
invading species or of toxic components in low concentrations
in the flue gas have not been included.

Fig. 6 shows how biomass and lipids concentrations
increase at each pond. Due to nitrogen starvation, the last
pond accumulates a higher weight fraction of lipids. In
addition, biomass accumulation is slower as lipid fraction
increases, as reported by Williams and Laurens.38 The carbon
atom balance is presented in Table 4; most of the carbon in
the flue gas is fixed into algal biomass.

Increasing the flue gas flowrate increases biomass con-
centration until the culture becomes light-limited. Considering
a theoretical limit in sunlight capture by algae of 10%,38 an
average sunlight energy of 6.3 × 106 kJ per (m2 × year),61 and
an average algal biomass calorific value of 24.7 kJ g−1,38 the
maximum possible yield of algae would be approximately 70 g
per (m2 × day). Table 4 shows the results when the feed rate is
increased from 40 to 100, 500, and 2000 m3 h−1, respectively.

Fig. 3 Concentration profiles of an algae monoculture pond with no
CO2 sparging. Shaded areas represent dark periods. Notice that the
results are the same for a simulation discretizing the length dimension
of the pond as nine CSTRs and one modeling the pond as a single CSTR.
(A) Predicted biomass and lipids productivity is approximately 0.78 and
0.09 g per (m2 × day), respectively. (B) The photosynthetic activity of
algae slightly increases O2 and reduces CO2 concentrations during the
day. The opposite behavior occurs at night. (C) A small amount of
HCO3

− is metabolized by the monoculture. (D) Nitrogen sources are
consumed faster during growth periods, causing their concentrations to
drop during the day. The pond is not nitrogen limited. (E) pH increases
during the day as the concentration of CO2 drops and decreases at night
as CO2 is accumulated again. The pH stays between 7 and 9.

Fig. 4 Schematic of the algal biomass cultivation system using three
raceway ponds. Each pond can be modeled as a CSTR with a volume of
350 m3. There is a constant feed and outlet of 50 m3 per day for each
pond. The last two ponds present nitrogen limitations inducing lipids
production. Sodium hydroxide is fed at a constant rate all day long,
whereas ammonia is fed from 8:00 to 18:00. Flue gas sparging occurs
only from 8:00 to 18:00.

Fig. 5 Concentration profiles of an algae cultivation system using three
raceway ponds with flue gas sparging. Shaded areas represent dark
periods. (A) Predicted biomass and lipids productivities are approxi-
mately 34.4 and 16.2 g per (m2 × day), respectively. (B) Due to algae’s
photosynthetic activity, O2 concentration increases during the day and
decreases during the night, whereas CO2 concentration decreases
during the day and increases during the night. (C) HCO3

− concentration
is highly related to pH. (D) The concentration of nitrogen drops as we
move from pond 1 to pond 3. Pond 3 is effectively nitrogen starved indu-
cing lipids production. (E) The pH of the system ranges from 6 to 10. For
pond 1, pH is mostly influenced by the concentration of NH4

+, whereas
for ponds 2 and 3, it is mostly influenced by the concentration of CO2.
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The maximum biomass productivity predicted by the model is
about 52 g per (m2 × day). As the flue gas feed rate is increased,
more carbon is lost to the atmosphere. Therefore, for this to
be a viable carbon capture alternative, sparging rates should
not be increased beyond the point where more than half of the
carbon is lost to the atmosphere.

This kind of cultivation system can only be considered in
locations able to supply considerable amounts of flue gas, for
example, near power plants. Otherwise, algae growth is carbon
limited and very low productivities can be predicted as illus-
trated by the example in section 3.1. A different strategy to deal
with this carbon limitation is to feed cellulosic glucose and/or
xylose into a pond cultivating an oleaginous yeast. Next, we
explore the productivity of an oleaginous yeast monoculture
growing on glucose and we illustrate the advantages of having
a yeast/algae coculture.

3.3. Oleaginous yeast growing on glucose

Oleaginous yeasts, such as Yarrowia lipolytica or Rhodotorula
glutinis, can be cultivated as a monoculture growing on
glucose.13 However, the maximum concentration of biomass is
limited by the mass transfer rate of O2 from the atmosphere.
For an open pond with the same characteristics as the previous

examples, DFBAlab predicts a maximum concentration of
yeast of 1.82 g L−1. However, significant amounts of acetate are
produced. The presence of acetate indicates a shortage of O2

in the system. The maximum biomass concentration attained
with no production of acetate is 1.57 g L−1. Given the higher
efficiency on the utilization of glucose when the yeast is culti-
vated with sufficient O2, the inputs of all further simulations
were tailored such that no acetate was produced.

As discussed earlier and illustrated in Fig. 1, the O2 limit-
ation in yeast and the CO2 limitation in algae create a great
opportunity. If both species are cultivated together, the yeast
can benefit from the O2 produced by the algae and the algae
can benefit from the CO2 produced by the yeast. As a proof of
concept, let us assume that both species are cultivated
together with a constant source of sunlight of 3.6 moles of
photons per (m2 × h) corresponding to 6.8 × 106 kJ per (m2 ×
year).28 A total biomass loading of 2.54 g L−1 can be attained.
A summary of these cases is presented in Table 5. It is clear
that the coculture presents advantages in resource utilization
and total biomass productivity with respect to the mono-
cultures. Next, we explore the behavior of an algal/yeast
coculture feeding pure glucose and a mix of glucose and xylose
into a raceway pond.

3.4. Algae/yeast coculture with cellulosic glucose feed

Fig. 7 presents a schematic of the cultivation system. Cellulosic
glucose is metabolized by yeast and converted to CO2 which is
then fixed by algae. A total of 94.4, 3.1, and 0.03 g per (m2 ×
day) of glucose, ammonia, and sodium hydroxide, respectively,
are fed in the system. Fig. 7 shows how these feeds are distri-
buted among the three ponds; the last pond is nitrogen
starved, and lipids production is induced.

Fig. 8 shows that this cultivation scheme can attain yeast,
algae, and lipids productivities of 34.5, 26.2, and 22.6 g per
(m2 × day), respectively. Yeast and algae accumulate lipids up
to approximately 40% and 33% dry weight, respectively. In the
coculture case resources are better utilized, making invasion
more difficult.14 Fig. 9 shows algae, yeast and lipids concen-
trations in each pond. Due to nitrogen limitations in the last
two ponds, lipids are accumulated. Table 6 presents the
carbon balance for this case; approximately 84.7% of carbon
in glucose ends in biomass.

Fig. 6 Biomass and lipids concentrations in an algae cultivation system
using three raceway ponds with flue gas sparging. The numbers on top
of the lipids bars represent the weight fraction of lipids in algal biomass.
As a consequence of nitrogen limitations in the last two ponds, the
model predicts significant lipids accumulation (up to ≈47% weight).

Table 4 Carbon balance of monoculture with flue gas sparging

Flue gas feed rate (m3 h−1) 10 40 100 500 2000

Algal biomass 76.9% 56.5% 32.1% 6.9% 1.7%
Not transferred from flue gas 16.3% 31.2% 54.0% 83.8% 93.9%
Net loss to atmosphere 6.3% 12.2% 13.8% 9.2% 4.4%
Dissolved inorganic carbon lost in outlet flow 0.5% 0.2% 0.1% 0.1% ≈0%
Formate production ≈0% ≈0% ≈0% ≈0% ≈0%
Biomass g per (m2 × day) 11.7 34.4 48.8 52.1 52.1
Lipids g per (m2 × day) 5.5 16.2 22.9 25.0 24.9
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3.5. Algae/yeast coculture with cellulosic glucose and xylose
feeds

When cellulosic biomass is hydrolized, both glucose and
xylose are obtained. Their ratio is dependent on the source of
the lignocellulosic waste. A 2 to 1 glucose to xylose ratio by
weight is typical.30 A process that can utilize both, glucose and
xylose, is desirable because the sugar mix is cheaper than pure
glucose. Some oleaginous yeasts, for example, Rhodotorula glu-
tinis, are able to metabolize xylose.50 Therefore, we simulated
the case where yeast can metabolize both glucose and xylose.

Fig. 10 presents a schematic of the cultivation system.
Cellulosic glucose and xylose are metabolized by yeast and
converted to CO2 which is then fixed by algae. A total of 62.9,
31.5, 2.8, and 0.03 g per (m2 × day) of glucose, xylose,
ammonia, and sodium hydroxide, respectively, are fed into the
system. Fig. 10 shows how these feeds are distributed among
the three ponds; the last pond is nitrogen starved, and lipids
production is induced.

Fig. 11 shows that this cultivation scheme can attain yeast,
algae, and lipids productivities of 30.2, 27.4 and 22.9 g per
(m2 × day), respectively. Yeast and algae accumulate lipids up
to approximately 40% and 39% dry weight, respectively. Fig. 12
shows algae, yeast and lipids concentrations in each pond.

Fig. 8 Concentration profiles of an algae/yeast cultivation system using
three raceway ponds with cellulosic glucose. Shaded areas represent
dark periods. (A) Predicted yeast, algae, and lipids productivities are
approximately 34.5, 26.2, and 22.6 g per (m2 × day), respectively. (B) Due
to algae’s photosynthetic activity, O2 concentration increases during the
day and decreases during the night, whereas CO2 concentration
decreases during the day and increases during the night. (C) HCO3

− and
CO3

2− concentrations remain low. (D) The concentration of nitrogen
drops as we move from Pond 1 to Pond 3. Ponds 2 and 3 have nitrogen
limitations inducing lipids production. (E) The pH of the system ranges
between 5 and 7.

Fig. 9 Yeast, algae and lipids concentrations in a cultivation system
using three raceway ponds with pure glucose feed. The numbers on top
of the Lipids bars represent the weight fraction of lipids in total biomass.
The last two ponds are nitrogen limited; therefore, the model predicts
significant lipids accumulation (up to ≈37.1% weight). Yeast grows
slower in the last two ponds due to nitrogen limitations and lower
glucose feed rates.

Fig. 7 Schematic of the algal biomass cultivation system using three
raceway ponds. Each pond can be modeled as a CSTR with a volume of
350 m3. There is a constant feed and outlet of 50 m3 per day for each
pond. Sodium hydroxide is fed at a constant rate all 24 hours a day,
whereas glucose and ammonia are fed only during daytime (12 hours).

Table 5 Inputs and outputs for yeast monocultures and yeast/algal
cocultures with constant light

Monoculture 1 Monoculture 2 Coculture

Inputs [g per (m2 × day)]
Glucose 200.6 300.9 195.4
NH3 11.4 17.1 17.4
NaOH 0 34.3 0

Outputs [g per (m2 × day)]
Yeast 89.6 104.1 87.3
Algae 0 0 57.7
Total biomass 89.6 104.1 145
Acetate 0 73.3 0

Carbon balance outputs
Yeast 62.8% 48.6% 59.6%
Algae 0% 0% 35.6%
Acetate 0% 24.8% 0%
CO2 lost to atmosphere 36.7% 26.0% 4.6%
Lost in flow 0.5% 0.6% 0.2%
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Due to nitrogen limitations in the last two ponds, lipids are
accumulated. Table 7 presents the carbon balance for this
case; approximately 80.6% of the carbon in glucose and xylose
ends in biomass.

This kind of biomass cultivation system can be
implemented at locations that generate large amounts of cellu-
losic waste, such as farms or forests. The area suitable for this
scheme is much larger than the one offered by the scheme
requiring flue gas in section 3.2.

3.6. Economic analysis

We now proceed to do a simple economic analysis based on
Table 9 of Williams and Laurens.38 First we describe the
assumptions for this economic analysis.

3.6.1. Raceway pond costs. The capital costs for a raceway
pond were estimated from Chisti.41 A plastic-lined pond
including earth works, carbon dioxide supply piping, inlets,
outlets, baffles, paddlewheel, and motor had a cost of $69 500
per hectare in 1987. Using CPI indices, this translates to
roughly $146 000/hectare in 2015 dollars.

Fig. 10 Schematic of the algal biomass cultivation system using three
raceway ponds. Each pond can be modeled as a CSTR with a volume of
350 m3. There is a constant feed and outlet of 50 m3 per day for each
pond. Sodium hydroxide is fed at a constant rate all 24 hours a day,
whereas glucose, xylose and ammonia are fed only during daytime
(12 hours).

Table 6 Carbon balance of coculture with pure glucose feed

Carbon inputs Carbon outputs

Glucose 100% Yeast biomass 51.4%
Algal biomass 33.3%
Net loss to atmosphere 15.2%
Inorganic carbon lost in flow 0.08%
Glucose lost in flow 0.02%

Fig. 11 Concentration profiles of an algae/yeast cultivation system
using three raceway ponds and glucose and xylose feeds. Shaded areas
represent dark periods. (A) Predicted yeast, algae, and lipids productiv-
ities are approximately 30.2, 27.4 and 22.9 g per (m2 × day), respectively.
(B) Due to algae’s photosynthetic activity, O2 concentration increases
during the day and decreases during the night, whereas CO2 concen-
tration decreases during the day and increases during the night. (C)
HCO3

− and CO3
2− concentrations remain low. (D) The concentration of

nitrogen drops as we move from Pond 1 to Pond 3. Ponds 2 and 3 have
severe nitrogen limitations inducing lipids production. (E) The pH of the
system ranges between 5 and 7.

Fig. 12 Yeast, algae and lipids concentrations in an algae/yeast cultiva-
tion system using three raceway ponds with glucose and xylose feeds.
The numbers on top of the Lipids bars represent the weight fraction of
lipids in total biomass. The last two ponds are nitrogen limited; there-
fore, the model predicts significant lipids accumulation (up to ≈39.8%
weight). Yeast grows slower on the last two ponds due to nitrogen limit-
ations and lower glucose and xylose feed rates.

Table 7 Carbon balance of coculture with glucose and xylose feeds

Carbon inputs Carbon outputs

Glucose 66.7% Yeast biomass 45.0%
Xylose 33.3% Algal biomass 35.7%

Net loss to atmosphere 19.2%
Inorganic carbon lost in flow 0.1%
Xylose lost in flow 0.1%
Glucose lost in flow 0.01%
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Each pond has a paddlewheel running for 24 hours. The
power consumed by the paddlewheel can be calculated using
the following equation:41

P ¼ 1:59Aρgu3f 2M
ed0:33h

ð6Þ

where P is the power in Watts, A = 850 m2, ρ ≈ 1000 kg m−3 is
the density of the culture broth, g = 9.81 m s−2, u = 0.23 m s−1

is the flow velocity, fM = 0.015 s m−1/3 is the Manning channel
roughness factor for concrete, e is the paddlewheel efficiency
estimated at about 0.17,41 and dh = 0.96 m is the hydraulic dia-
meter of the channel. This gives an estimate of 216.4 W/pond
= 5.19 kWh per (pond × day).

3.6.2. Flue gas compression. Let us assume that flue gas is
available for free. An estimated pressure drop of 1 bar per km
is predicted.62 Let us suppose that compression is done adia-
batically, with compression ratio equal to 4, and efficiency of

80%.62 From McCabe et al.,63 the following equation can be
used to calculate the power requirements of compression:

Power ¼ 0:371Taγq0
γ � 1ð Þη

Pout
Pin

� �1�1=γ

�1

" #
ð7Þ

with power in kW, q0 the flowrate in m3 s−1 at 0 °C and 1 atm,
Ta = 298 K the inlet temperature and η the efficiency. To obtain
γ, the composition of flue gas was assumed to be 81.4% N2,
13.6% CO2 and 5% O2.

45 Their heat capacities at 20 °C are
29.1, 36.9, and 29.3 J (mol × K)−1, respectively, resulting in an
average γ = 1.386. A flowrate of 1 m3 h−1 at 298 K is equivalent
to 2.545 × 10−4 m3 s−1 at 273 K. Multistage compression is
used to compress above 4 atm.

We estimated the capital costs of a centrifugal compressor
with maximum capacity of 30 000 kW using the correlations in
Table 7.2 of Towler and Sinnott.64 We calculated the compres-
sor capital costs considering a cultivation area of 900 hectares.

Table 8 Economic analysis for biodiesel production using CO2 sparging

Sparging rate (m3 h−1) 10 40 100 Units

Areal production 11.7 34.4 48.8 gDW per (m2 × d)
42.7 125.6 178.1 Tonne per (ha × yr)

Lipid content 47.4 47.1 46.9 %DW
Lipid production 20.2 59.1 83.6 Tonne per (ha × yr)
Carbohydrate production 9.0 26.6 37.8 Tonne per (ha × yr)
Protein production 13.5 39.9 56.7 Tonne per (ha × yr)
Electricity AD 34.8 103 146.5 MWh per (ha × yr)

Capital costs
Raceway pond 146 146 146 $1000 per ha
Non-pond site preparation 5 5 5 $1000 per ha
Engineering 22 22 22 $1000 per ha
Harvest 3.6 3.6 3.6 $1000 per ha
Extraction 4.6 4.6 4.6 $1000 per ha
Anaerobic digester 5.1 14.9 21.2 $1000 per ha
Total capital costs 186.2 196.1 202.4 $1000 per ha

Power requirements
Growth 21.6 21.6 21.6 MWh per (ha × yr)
Harvest 38 38 38 MWh per (ha × yr)
Dewatering 1.5 1.5 1.5 MWh per (ha × yr)
Electricity required 26.3 −41.8 −85.4 MWh per (ha × yr)

Running costs
Labor 4430 4430 4430 $ per (ha × yr)
Electricity 2640 −4191 −8557 $ per (ha × yr)
Transesterification
Power (natural gas) 93.2 272 385 $ per (ha × yr)
Methanol 927 2710 3830 $ per (ha × yr)
NaOH 462 462 462 $ per (ha × yr)
Water 145 145 145 $ per (ha × yr)
Ammonia 69.6 207 295 $ per (ha × yr)
DAP 586.2 1740 2480 $ per (ha × yr)
Anaerobic digester 1744 5160 7350 $ per (ha × yr)
Capital costs @ 10%/yr 18.6 19.6 20.2 $1000 per (ha × yr)
Total costs 29.7 30.5 31.1 $1000 per (ha × yr)
Biodiesel production ideal 16.1 47.0 66.5 kL per (ha × yr)
Biodiesel production real 8.0 23.5 33.2 kL per (ha × yr)
Biodiesel cost (0 km) 3.70 1.30 0.93 $ per L
Biodiesel cost (1 km) 4.08 1.66 1.54 $ per L
Biodiesel cost (3 km) 4.36 1.98 2.09 $ per L
Biodiesel cost (15 km) 5.02 2.66 3.25 $ per L
Biodiesel cost (63 km) 5.68 3.34 4.41 $ per L
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We considered that the compressor was made of stainless steel
due to the acids present in the flue gas, and used the factors
in Tables 7.4 and 7.5 of Towler and Sinnott.64

3.6.3. Raw materials. The price of cellulosic glucose is
$0.126/kg,65 and that of a mix of glucose and xylose is $0.07/
kg.66 From Table 4 in Davis, the price of ammonia is $0.407/kg
and of diammonium phosphate (DAP) is $0.442/kg.67 From
ICIS Chemicals, the cost of NaOH was $0.83/kg.68 The cost of
methanol and natural gas were obtained from Williams and
Laurens.38

3.6.4. Other considerations. The density of biodiesel is
0.88 kg L−1, and it is assumed that 70% of biolipid production
is equal to the production of biodiesel38 due to losses in the
esterification reaction and downstream processing inefficien-
cies. It is assumed that 0.3 cm per day corresponding to 30 L
per day per hectare of water are lost to evaporation, that all
water in the outlet stream can be recycled, and that the cost of
water is $0.05/1000 gal.67 Capital and operating costs associ-
ated to engineering, harvest, extraction, anaerobic digestion,

and labor were obtained from Williams and Laurens consider-
ing a price of electricity of 10.2 cents per kWh.69 Only 12% of
the site preparation costs reported in Table 9 of Williams and
Laurens were maintained in the analysis of this paper, as 88%
of the site area is devoted to the ponds and the site prepa-
ration costs for the pond are already considered in the pond
capital costs estimate.38 The capital costs are divided by
10 years of operation.38 It is assumed that carbohydrates and
protein are processed in an anaerobic digester (AD) and their
calorific values (17.3 and 23.9 kJ g−1, respectively) are trans-
formed to electricity with an efficiency of 26.25%.38 A ratio of
3 : 2 protein to carbohydrates is assumed.38

In the economic analysis of Williams and Laurens, protein
is sold as animal feed at $0.9/kg.38 At this price, the income
from protein exceeds the one obtained from biodiesel. If
microalgal ponds are used for large-scale production of bio-
diesel, the market for animal feed will be flooded and the
price of protein as animal feed will fall. Therefore, in this
analysis we assumed all protein was digested anaerobically.

Table 9 Economic analysis for biodiesel production with pure glucose and a glucose/xylose mix

Coculture Coculture Yeast Units

Glucose or mix Glucose Mix Mix
Yeast production 34.5 30.2 86.9 gDW per (m2 × d)
Algae production 26.2 27.3 0 gDW per (m2 × d)
Lipid production 82.5 83.6 128.7 Tonne per (ha × yr)
Carbohydrate production 55.6 50.5 75.5 Tonne per (ha × yr)
Protein production 83.4 75.8 113.2 Tonne per (ha × yr)
Electricity AD 216 196 292 MWh per (ha × yr)

Capital costs
Raceway pond 146 146 146 $1000 per ha
Non-pond site preparation 5 5 5 $1000 per ha
Engineering 22 22 22 $1000 per ha
Harvest 3.6 3.6 3.6 $1000 per ha
Extraction 4.6 4.6 4.6 $1000 per ha
Anaerobic digester 31.2 28.4 42.4 $1000 per ha
Total capital costs 212.4 209.6 223.6 $1000 per ha

Power requirements
Growth 21.6 21.6 21.6 MWh per (ha × yr)
Harvest 38 38 38 MWh per (ha × yr)
Dewatering 1.5 1.5 1.5 MWh per (ha × yr)
Electricity required −154.4 −134.6 −231.3 MWh per (ha × yr)

Running costs
Labor 4430 4430 4430 $ per (ha × yr)
Electricity −15 400 −13 500 −23 200 $ per (ha × yr)
Transesterification
Power (natural gas) 380 385 593 $ per (ha × yr)
Methanol 3780 3830 5900 $ per (ha × yr)
NaOH 90.9 90.9 0 $ per (ha × yr)
Water 145 145 145 $ per (ha × yr)
Ammonia 1300 1150 2780 $ per (ha × yr)
DAP 2360 2190 1690 $ per (ha × yr)
Sugars 43 400 24 100 50 400 $ per (ha × yr)
Anaerobic digester 4320 3930 5870 $ per (ha × yr)
Capital Costs @ 10%/yr 21.2 21.0 22.4 $1000 per (ha × yr)
Total costs 65.8 47.6 70.8 $1000 per (ha × yr)
Biodiesel production ideal 65.6 66.5 102.4 kL per (ha × yr)
Biodiesel production real 32.8 33.2 51.2 kL per (ha × yr)
Biodiesel cost 2.01 1.44 1.39 $ per L
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This allows to recover nitrogen and phosphorus such that 60%
of the nutrient inputs to the process are recycled.41

An open pond system is prone to contamination and in-
vasion by other species. In fact, in some cases contamination
can cause the desired algae strain concentration to fall by
approximately 90% in a matter of days.70 Some strategies such
as adding toxic chemicals or increasing salt concentration to
kill potential invaders, constant feeding of the desired algal
and yeast strains, and growing algae and yeast in coculture
reduce this risk. To consider contamination and invasion
risks, the final biodiesel yield was divided by two.

First, the economic analysis of the sparging alternative is
presented. From Table 8 we notice that the monoculture is
very competitive when it is very close to a source of flue gas,
but its price increases rapidly with distance. High sparging
rates are desirable because they attain higher concentrations
of biomass, making the capital costs less burdensome.
However, as distance from a flue gas source increases, higher
sparging rates incur higher operating costs.

Next we present the results for a coculture growing on pure
glucose, one growing on a mix of glucose and xylose, and a
yeast monoculture growing on a mix of glucose and xylose
(Table 9). The benefits of using a mix of sugars instead of pure
glucose is evident as the $ per L decreases approximately
≈30% with respect to pure glucose. The yeast monoculture per-
forms slightly better than the coculture, although the differ-
ence is probably within the accuracy of our cost estimates.
There are several benefits of using a coculture with respect to a
monoculture:

1. In a coculture, resources are better utilized making in-
vasion more difficult. A coculture is more resilient than a
monoculture.14

2. If CO2 generation is a concern, the coculture releases less
CO2 to the atmosphere than a yeast monoculture as algae
metabolizes CO2. In the monoculture 37% of the carbon in the
sugars is released as CO2 compared to 19% in the coculture.

3. The coculture utilizes less raw materials. In mature com-
modity industries, raw materials costs represent approximately
70% of the total cost; therefore, reducing raw materials con-
sumption is important.

Therefore, an algae/yeast coculture could be preferred over
a yeast monoculture.

The anaerobic digester produces CO2. If algae ponds are
located immediately next to the digester, minimal costs are
incurred for compressing the flue gas. Then, the price per liter
of biodiesel for a sparging rate of 100 m3 h−1 is of $0.93/L.
A mixed setup can be conceived where most of the biodiesel is
produced from a glucose/xylose mix and a few ponds produce
biodiesel using flue gas from the anaerobic digester.

4. Conclusions

DFBA can be used to model accurately complex and novel bio-
logical scenarios, for example, a microbial consortia in an
algal pond. Based on this modeling framework, the potential

of producing biodiesel in raceway ponds from algae and oleagi-
nous yeast was evaluated. Flue gas can be used to produce bio-
diesel at competitive prices only if the ponds are located very
close to the flue gas source. Meanwhile, algae/yeast cocultures
provide a method of producing biodiesel using cellulosic
sugar. Our model predicts a cost of production of biodiesel of
$2.01/L if pure glucose is used and $1.44/L if a mix of glucose
and xylose is used instead.

The results of this work suggest that algae/yeast cocultures
for biodiesel production should be considered seriously. This
alternative employs cellulosic sugars which are currently very
cheap. In this analysis we considered that lipid-extracted
biomass was utilized to produce electricity. Another option
would be to treat it and make it digestible by the consortia,
potentially reducing the operating costs of the consortia
alternative. In addition, the results in this work are not syste-
matically optimized. The optimization of this system requires
the computation of generalized derivatives for non-
smooth objective functions. The work in Khan et al.71 and
Höffner et al.72 will enable the numerical optimization of
these systems to become possible in the very near future.
However, despite the lack of optimization, the results of the
algae/yeast coculture growing on cellulosic sugars presented in
this paper are promising. We suggest experimental groups
implement the proposed microbial consortia strategy to
increase culture resilience and expand the range of substrates
that can be converted into biofuels.
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