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For the quantitative understanding of complex chemical reaction mechanisms, it is, in
general, necessary to accurately determine the corresponding free energy surface and
to solve the resulting continuous-time reaction rate equations for a continuous state
space. For a general (complex) reaction network, it is computationally hard to fulfill
these two requirements. However, it is possible to approximately address these
challenges in a physically consistent way. On the one hand, it may be sufficient to
consider approximate free energies if a reliable uncertainty measure can be provided.
On the other hand, a highly resolved time evolution may not be necessary to still
determine quantitative fluxes in a reaction network if one is interested in specific time
scales. In this paper, we present discrete-time kinetic simulations in discrete state space
taking free energy uncertainties into account. The method builds upon thermo-
chemical data obtained from electronic structure calculations in a condensed-phase
model. Our kinetic approach supports the analysis of general reaction networks
spanning multiple time scales, which is here demonstrated for the example of the
formose reaction. An important application of our approach is the detection of regions
in a reaction network which require further investigation, given the uncertainties
introduced by both approximate electronic structure methods and kinetic models. Such
cases can then be studied in greater detail with more sophisticated first-principles
calculations and kinetic simulations.

1 Introduction

Highly complex reaction networks underlie chemical reactions that involve
reactive species, harsh reaction conditions, or non-innocent solvents (or a
combination of all). A plethora of theoretical approaches has been developed for
the description of certain aspects of such processes.'” All these approaches make
different assumptions on the processes studied such that, from a feasibility point
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of view, none is generally applicable. To illustrate this point, we consider two
examples. On the one hand, the dynamics on a rugged energy landscape will
demand advanced sampling methods from molecular dynamics or Monte Carlo
simulations rather than a standard quantum chemical approach that considers
only a few selected stationary points on that surface.*” On the other hand, for
processes on a well-structured potential energy surface with non-shallow minima,
explicit dynamics may suffer from sampling problems and is often replaced by
kinetic models that eventually allow one to access long time and length scales
beyond the reach of explicit dynamical approaches.?

Quantum chemical methods are well suited for describing energy changes due
to changes in the electronic structure of reacting molecules if these electronic
effects govern the overall energetics of the process. Usually, structures considered
relevant as stable intermediates or transition states are optimized and their
energies are compared to identify the relevant reaction paths. Clearly, this
approach is limited, especially if carried out manually, to a rather small number
of structures only. For predictive work on systems for which little or no experi-
mental information is known, the exploration of potentially important structures
becomes an immense task. Several approaches exist to overcome this issue. In
reactive molecular dynamics simulations,’” for example, the nuclear equations
of motion are solved to explore and sample configuration space. By contrast,
heuristics-guided exploration approaches are based on rules derived from
chemical concepts.'*** By applying predefined (possibly alchemical) trans-
formation rules to create new chemical species, explorations in configuration
space are greatly accelerated. Recently, we proposed a fully automated heuristics-
guided exploration protocol*”> in which the heuristic rules rest on reactivity
descriptors derived from quantum mechanics.

It is important to understand that to theoretically grasp the kinetics of complex
reaction networks, we must be prepared to investigate an enormous number of
possible intermediates (on different potential energy surfaces) not generated by
simple conformational changes but by the sheer number of chemically different
reactants. For truly complex chemical reaction networks, no universal protocol
based on quantum chemical calculations has been established so far that would
span the whole range of steps from molecular and electronic structure optimi-
zation to detailed kinetic modeling. However, significant progress in all research
areas that would contribute to the establishment of such a protocol has already
been made. Given the algorithmic and hardware developments accomplished in
the past two decades, it should be feasible to establish such a protocol in a single,
integrated implementation.

Clearly, various choices and approximations need to be made and hence the
protocol to be established will not be unique. Still, we demand the development of
such a protocol be subjected to constraints that will make it universally appli-
cable. Besides, we are faced with the fact that quantum chemical raw data are
affected by method-inherent errors and need to be augmented by nuclear motion
and temperature corrections before they can be subjected to kinetic modeling.
Hence, if we must be prepared to make certain assumptions and approximations,
we expect from our protocol that the violation of an approximation can be
identified within the protocol and overcome by approaches beyond the realm of
the protocol's standard methods. This way, we may be able to identify possible
breaches that point to more sophisticated theoretical approaches to be applied. If
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the number of such breaches is small, then the general basis of the protocol,
which will be quantum chemical methods in our case, will remain valid. And
clearly, in view of the successes of quantum chemical reaction mechanism
elucidation, we have good reason to believe that this is possible. Obviously, this
will only be possible if we have uncertainty measures at hand that allow us to
assess the accuracy of individual simulation results. For example, Vlachos and co-
workers recently applied Bayesian statistics to predict rate constants for chemical
processes on surfaces.”

The ingredients of a general protocol for the generation and analysis of
chemical reaction networks are: (1) the automated exploration of possibly relevant
intermediates and transition states, (2) the determination of free energies for
reactions in condensed phase, (3) systematic error estimation based on, for
instance, Bayesian statistics, and (4) the kinetic modeling of the reaction network
emerging.

In this work, we apply components (2)—(4) of the general protocol to a complex
chemical reaction network in aqueous solution: the formose reaction. It is our
goal to establish protocol-inherent validation measures that keep track of the
validity of the assumptions made and that may point to advanced theoretical
approaches to deliver more reliable data if needed. Moreover, our analysis is
intended to be a general feasibility analysis of this protocol that will, as we shall
show, point to interesting future developments.

2 The formose reaction

Formose reaction is the collective term for a plethora of possible autocatalytic
oligomerization reactions of formaldehyde in aqueous solution.”*** The reaction
affords a highly complex (racemic) mixture of linear and branched mono-
saccharides (tetroses to octoses), polyols, and several degradation products. The
identification of all products poses a major analytical challenge and the exact
composition has not been elucidated yet, though over 50 products have already
been characterized.***” Due to the formation of biologically important mono-
saccharides, such as p-ribose, the formose reaction may constitute a plausible
scenario for the emergence of sugars on prebiotic earth.>®° The first step towards
the formation of sugars is the dimerization of formaldehyde, which is extremely
slow and may involve catalysis®"** or radiation-induced processes.**** The dimer
can be regenerated autocatalytically*~® and the reaction can therefore be easily
initiated. The rapid subsequent formation of sugars is likely to proceed through
an alternating series of forward and reverse aldol reactions as well as tautome-
rizations.>® Kua et al. investigated these key steps in the formose reaction
computationally and concluded that the experimentally proposed mechanism is
also plausible from a theoretical point of view.*” Rappoport et al. explored the
chemical reaction network of the formose reaction automatically based on
heuristic guidance and reproduced major reaction pathways as well as experi-
mentally observed products.”® Recently, hydride shifts and associated quantum
tunneling were found to play a major role in the formose reaction,’*** which were
not considered in the computational studies. The product ratios are very sensitive
to the reaction conditions (e.g., solvent, temperature, and pH) and the amount
and type of reactants. Catalysts significantly influence the product ratio of the
formose reaction, which was discussed in the context of the origin of
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homochirality (t-amino acids, p-sugars).**** So far, the complexity of the reaction
network has prevented experimental and theoretical kinetic studies of the entire
process.”

3 Transition state theory and thermochemistry

A reaction network of all relevant intermediates and transition states of a chem-
ical process sets the frame to study population trajectories through the network.
In solution chemistry, typically trajectories of molar concentrations are studied,
which depend on several conditions such as initial feed of reactants and
temperature. While the correlation of these conditions with the product distri-
bution can be determined quite straightforwardly by a suitable experimental
setup, it remains a challenge to analyze why a certain product distribution was
found. To resolve this issue, studying the kinetics of a chemical process is inev-
itable. Only then, intermediates relevant for the product distribution but not
contained in it can be detected. This time-resolved picture would allow us to
develop strategies to support the formation of a desired product or to suppress the
formation of unintended side products.

As experimental kinetics can only examine a limited number of chemical
species, thorough theoretical kinetic models corresponding to complex reaction
networks spanning several time scales are desired. For the construction of
a general-purpose (mass-action) kinetic model, rate constants are the essential
elements to be determined.

Conventional transition state theory (TST) provides a simple approach to
calculate rate constants for isothermal reactions. It is assumed in conventional
TST that a reaction coordinate along a Born-Oppenheimer potential energy
surface is orthogonally intersected by a hyperplane in such a way that once
crossed by a trajectory starting from a reactant state, that trajectory ends in the
corresponding product state.** This crossing point is approximated by the first-
order saddle point of a reaction coordinate. Given a canonical ensemble of
microstates, for which the number of molecules N, the temperature 7, and the
volume V are constant, the thermal rate constant k(7) of a reaction from a reactant
to a product crossing the corresponding transition state depends on the Helm-
holtz free energy difference between reactant and transition state, AAYT, through
an exponential function,*

k(T) = kBTTexp{ - %}, @)

where kg is the Boltzmann constant, R the ideal gas constant, and % the Planck
constant. Throughout this paper, we refer to a standard state of N = 6.022 x 10>
and V=1 L (indicated by a superscript asterisk to the free energy). It is a known
problem that conventional TST (a) cannot ensure recrossing-free trajectories
through the approximated dividing hyperplane (overestimation of rate constants)
and (b) cannot account for quantum effects such as tunneling (underestimation
of rate constants). Both phenomena can be accounted for in conventional TST by
introducing a fudge factor x to the right-hand side of eqn (1). Extended
approaches such as variational TST*® and quantum TST* provide ways to
circumvent these problems, but require much more information on the potential
energy surface than its low-order stationary points. However, it was shown that
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conventional TST works surprisingly well even for large molecules such as
enzymes.***

The only quantity we need to determine for the construction of a kinetic
model based on conventional TST is the Helmholtz free energy A for all inter-
mediates and transition states contained in a given reaction network. 4 is
determined by the, in our case canonical, partition function Q = Q(N,V,T)
through A(T,Q) = —kgT In Q, where all energy states of the system of N molecules
enter Q.

The direct evaluation of Q is in general not feasible. However, a well-estab-
lished procedure exists® to approximate gas-phase free energies. In the gas phase,
Q may be factorized into a product of N molecular partition functions g of N
isolated, indistinguishable, and non-interacting molecules, Q = ¢"/NI. This
factorization enables the calculation of A based on an isolated-molecule quantum
chemical calculation. A results from the internal energy U and the temperature-
weighted entropy S,

A(T,Q) = UT.Q) - TS(T,Q). (2)

For our set-up and standard state, U can be decomposed into the sum of the
temperature-independent electronic energy, Ee., the zero-point vibrational
energy, ZPE, and remaining thermal contributions to the internal energy
Urest(T’Q)i

A(T,Q) = NaEeiee + NAZPE + Ureo( T.Q) — TS(T,0), (3)

where N, is the Avogadro constant, 7> 0, and Uyes(T,Q) is calculated without the
zero-temperature contributions. A can be related to the Gibbs free energy G, G = A
+ pV, where p is the pressure. Usually, p and V are related through the ideal gas
law, p = NkgT/V, in an oversimplified way.

The molecular partition function g is usually approximated by a product of
electronic (elec), gerec, translational (trans), guans, rotational (rot), g, and
vibrational (vib), gy, contributions - deliberately neglecting the coupling of the
degrees of freedom (such as rovibrational coupling).

For the evaluation of g..., we may assume that electronically excited states are
high in energy and cannot be excited thermally at a given temperature.*> However,
for intermediates with small HOMO-LUMO gaps, this may be taken as an indi-
cation for a necessary extension of this standard approach. Hence, only spin and
orbital or point-group degeneracy needs to be taken into account.

To evaluate gans, the particle in a box model is employed to determine the
energy states associated with the translation of the center of mass of the molecule
in V.*° guans depends on the mass of the molecule and V. If we neglect the exis-
tence of isotopomers, the mass is easily calculated for the most abundant
isotopes. Recall that V is the volume for the chosen standard state.

To evaluate g, the molecule is treated as a rigid rotor.** The molecular
principal moments of inertia and the symmetry number of the molecule enter
drot- The error introduced by this assumption is severe, for instance, for micro-
solvated molecules, which feature not only internal rotational degrees of freedom,
but also their coupling with the external rotations, i.e., the moments of inertia
depend on internal rotational degrees of freedom.>*
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qvivb is usually approximated by all energy eigenvalues of harmonic oscillators
that describe the 3m — 6 normal coordinates of an m-atomic non-linear mole-
cule.” It is well known that the harmonic approximation will break down, if the
potential energy surface deviates significantly from the quadratic harmonic
potential,>*>*>>¢ for instance, for highly anharmonic modes, which are better
described as internal rotations.”” The evaluation of the contribution of these
anharmonic frequencies is computationally expensive,*** and therefore, not
feasible for the exploration of a large reaction network. If, however, reactants and
products exhibit similar harmonic vibrational frequencies, error cancellation will
occur (see, e.g., ref. 64).

The standard-state free reaction energy in solution, AA:()I, for a reaction R — P
in solution can be obtained as the sum of the standard-state free reaction energy
in the gas phase, AA;HS, and the difference of the free energies of solvation of the
reagents, AAA_, , when employing a thermodynamic cycle as illustrated in Fig. 1.

Implicit solvation models have been specifically devised to calculate A4y,
without modeling the solvent explicitly.®**” The solute is immersed into a cavity in
the continuum leading to parameter-dependent solvent-solute interactions.
Implicit solvent models vary in their description of these interactions between the
solvent and the solute.®***7° The parameters in the implicit solvation models are
determined through parametrization to experimental Gibbs free energies of
solvation.®® The Gibbs free energy of solvation is taken to be equal to the Helm-
holtz free energy of solvation,®® which neglects volume changes. This effect was
shown to be small for several test cases.”* Here, we assume that all effects asso-
ciated with the transfer of the molecule from an ideal gas phase to the solution
phase are absorbed in A4} .7 This assumption is reasonable for small, rigid
molecules, whose structures do not significantly change upon solvation. For such
molecules, modern implicit solvation models (e.g., SM12)”° exhibit a mean
unsigned error of about 2 k] mol " in comparison to experimental data.”®”> A
more pronounced error can be expected for charged species.””’>”* The error can,
however, be reduced when adding explicit solvent molecules and averaging
conformationally.”*"*

The choice of implicit solvent models limits the choice of possible tempera-
tures, because they are usually parametrized to Gibbs free energies of solvation at
ambient temperature.®® The fit to experimental data at one temperature implies
that a subdivision of the A4 into AU, and AS,, is not possible. Note,
however, that Chamberlin et al. introduced a temperature-dependent implicit
solvation model, which could expand the range of accessible temperatures.”

AA
Rgas g2 . P, gas

A4z (R) AL (P)

solv solv

v
Rsol P, sol

A14:01

Fig. 1 Thermodynamic cycle for the calculation of the standard-state Helmholtz free
reaction energy AA;, for the reaction R — P in solution (‘'sol) from gas-phase ('gas’) and

solvation (‘solv) data.
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Furthermore, many popular continuum solvation models assume that thermal
equilibrium between solute and solvent is reached instantaneously. This may be
inadequate for reactive intermediates.®"”®

In this work, a reaction or activation free energy in solution, AA;)I,
from the difference of the electronic energies, AE., the difference of the zero-
point vibrational energies, AZPE, the difference of the thermal contributions to
the free energy in the gas phase, AA;IS, and the difference of the free energies of
solvation, AAA’,

solv?

is obtained

DAL (T, Q) = NAAEqe + NAAZPE + A, (T, Q) + ADAL, (T, Quor) - (4)

5

Here, Qsoy is a place holder for the continuum modeling of AAA . We
highlight the separation of contributions that do not depend on a partition
function (AEejec, AZPE) from those that do depend on it (AA;S, A4, Recently,
we have demonstrated how the error associated with AE. can be assessed by
applying Bayesian statistics™ (see also Section 4). This error may be considered
a lower bound for the error of A4, if the error of the other contributions is
neglected. For the error estimation of A. , ZPE, and AA.  the individual
contributions must be investigated.

The model-inherent errors in Q, which is employed to calculate A;as, are
difficult to evaluate. We may assume that the error of ¢,;, is dominant. As the
harmonic approximation is a severe approximation for low-frequency modes,>*>®
the anharmonic g.;, is required to assess the effect of this approximation. The
application of scaling factors for harmonic frequencies®*® is, however, not
sufficient to obtain a reference anharmonic g, because scaling factors neither
correct the form of the quadratic harmonic potential nor the equidistance of the
energy levels. Recently, procedures were outlined how the full-dimensional
potential energy surface can be dissected as a sum of independent one-dimen-
sional potentials for each vibrational mode.***® The one-dimensional potentials
are sampled along the normal coordinates. The energy levels of the system are
obtained by solving the one-dimensional nuclear Schrodinger equations for each
mode.>**° Hence, the deviation of the harmonic ZPE from the anharmonic ZPE is
readily obtained. It is then possible to assess the error of the harmonic g, by
comparison with the anharmonic g,;, obtained by explicit summation over all
vibrational modes. This error can be considered a lower bound for the error ofA;aS
since mode-mode coupling effects and errors due to the approximations in gyans
and g, are not taken into account.

Accurate, theoretical reference data are difficult to obtain for A4 .°*%" Alter-
natively, the error of AA}, can be estimated by comparison to available experi-
mental data for benchmark sets (e.g., the Minnesota Solvation Database®?),
assuming transferability.

gas? solv

5

4 Error estimation for electronic energy
differences

Despite its shortcomings with respect to accuracy and systematic improvability,
density functional theory (DFT) is the first-principles approach of choice for truly
extensive explorations of vast reaction networks. Results obtained from different
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popular density functionals may, however, significantly deviate from experi-
mental data in a rather irregular manner.*>* If, however, one could estimate the
error of each computational result, one could assess whether conclusions drawn
from the data are reliable.

In general, it is difficult to predict the error of density functional calculations.®
To overcome this issue, Jacobsen, Sethna, Nerskov, and co-workers devised
a scheme for systematic error estimation of DFT results based on non-hybrid
density functionals.®*® By generating an ensemble of exchange-correlation
functionals, a mean and a variance could be assigned to each result (see also ref.
89 and 90).

Based on the work of Jacobsen, Sethna, Negrskov, we developed a novel
approach for the construction of reliable density functionals with Bayesian error
estimation capabilities.” Our ansatz was tailored to overcome the transferability
problem by relying on system-focused reference data and to exploit the better
accuracy of hybrid functionals.

Instead of considering only the best-fit parameter (as commonly done with
standard exchange-correlation functionals), we assign a conditional probability
distribution to a linear parameter a in the exchange-correlation functional,

] C(a)
a0, D)xexp| — z=—~ 5
plale. ) xexp( - 302 )
where ¢ is some observable (typically an energy contribution), & is some data set
containing (computational or experimental) reference results, C denotes a cost
function quadratic in a, and a, is the parameter value that minimizes C. In
practice, this distribution needs to be sampled,

palo, @) = N (ay, 0%), (6)

where A is a Gaussian distribution with mean a, and variance o> = 2C(a,)/(9>C(a)/
da*|») (for a detailed derivation see ref. 79). With the set of Nppp parameters
generated with eqn (6), @ = {ay,a,,...,ax,, }, an error estimate o for the observable
0 (e.g., an activation energy) can be calculated,

NBEE

(0 (i) = o (D))" - 7)

opee(0(i) = Nom
k=1

By a system-focused reparametrization of LC-PBEO, the long-range corrected
(LC) version of the density functional PBE0,”~** we were able to reliably estimate
errors of calculated reaction energies.” Hereinafter, we refer to such a functional
as LC*-PBEO in order to emphasize that the original parameters were modified (in
this work according to data related to the formose reaction). In our previous
study,”” we concluded that four parameters in this exchange-correlation func-
tional need to be modified to achieve accurate relative energies and reliable error
estimates for a specific chemical system.

For an accurate reparametrization, the reference dataset ¥ needs to be
representative for the system to be studied. In this study, % contains structures of
intermediates and transition states of the formose reaction. Specifically, 2 =
{(A;,B))} consists of pairs of structures on the same potential energy surface, ie.,
structures with the same number and type of atomic nuclei, the same number of
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electrons, and the same electronic spin state. Then, the electronic energy differ-
ence AFEejec,; = Eelec(Bi) — Eelec(4;) between the two structures 4; and B; of data set
entry i defines the cost function C,

2
= (MBS~ aET) (8)

€9

where AELCTFPPE and AEYT | are the relative energies obtained with the LC*-PBEO
functional and the reference method, respectively. In this study, electronic
energies from the DF-LCCSD(T0)-F12 method are chosen as reference. For further
details, Cartesian coordinates, and the reference electronic energies in 2, see the
ESL+

To assess the transferability of the reparametrized functional, the dataset ¥
was arbitrarily split into a training set and a test set with 25 and 17 entries,
respectively. By minimizing C with respect to the training set with the L-BFGS-B
algorithm,** a new set of parameter values for the LC*-PBEO functional was ob-
tained (see ESIT).

In Tables 1 and 2, the accuracy of LC*-PBEO (in comparison to standard
functionals) with respect to the training set and test set is given. It can be seen
that LC*-PBEO is significantly more accurate than most standard functionals
considered here. The optimized parameters of LC*-PBEO are close to those of
PBEO (see ESIt), which explains why the functionals are of similar accuracy. Due
to its additional parameters, and therefore, higher flexibility LC-PBEO was chosen
over PBEO for the re-parametrization. Nonetheless, with a largest absolute devi-
ation between 8-10 kJ mol %, it is clear that error estimation is still necessary.

In Fig. 2 and 3, LC*-PBEO (with +o error bars, calculated from an ensemble of
Ngge = 50 functionals as described in the ESIt) is compared to contemporary
density functionals with respect to the training set and test set, respectively.

Table 1 Largest absolute deviation (LAD), mean absolute deviation (MAD), and mean
signed deviation (MSD) of a selection of functionals, some with D3 dispersion corrections,
for the training set (in kJ mol™?

LAD MAD MSD
B3LYP 18.7 7.6 1.7
B3LYP-D3 22.2 7.0 1.6
BP86 28.5 7.3 1.8
BP86-D3 32.6 6.5 1.7
LC-PBEO 37.2 13.6 0.7
Mo06-2X 20.9 7.5 1.2
M06-2X-D3 20.8 7.4 1.2
Mo06-L 19.4 9.6 2.1
Mo06-L-D3 19.5 9.6 2.1
PBE 28.8 6.2 1.6
PBEO 13.5 5.7 1.2
PBEO-D3 16.3 5.2 1.2
TPSS 37.3 14.3 3.4
TPSS-D3 33.2 13.9 3.3
TPSSh 32.3 13.6 3.0
TPSSh-D3 29.2 13.1 2.9
LC*-PBEO 9.8 3.7 1.0
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Table 2 Largest absolute deviation (LAD), mean absolute deviation (MAD), and mean
signed deviation (MSD) of a selection of functionals, some with D3 dispersion corrections,
for the test set (in kJ mol™)

LAD MAD MSD
B3LYP 14.7 6.0 —-0.1
B3LYP-D3 20.0 6.4 0.8
BP86 19.6 6.7 0.4
BP86-D3 25.0 7.8 1.5
LC-PBEO 27.5 8.4 -1.1
Mo06-2X 12.0 4.7 -0.1
MO06-2X-D3 12.0 4.7 -0.1
MoO6-L 20.0 7.5 1.5
MO06-L-D3 20.3 7.6 1.5
PBE 19.9 6.4 0.7
PBEO 11.9 4.0 -0.1
PBEO-D3 14.7 4.0 0.5
TPSS 16.6 6.4 —-1.0
TPSS-D3 17.6 7.4 —-0.3
TPSSh 15.0 5.4 —-1.2
TPSSh-D3 15.4 6.2 —-0.4
LC*-PBEO 8.0 2.7 0.1

For both data sets, we observe that the error is at least within 4.2 kJ mol™*
(=1 kecal mol™'), unless the error estimate reported by the functional indicates
otherwise (i.e., ¢ > 4.2 k] mol ). While there are relative energies for which the
errors are underestimated (D2, D4, and D25 in the training set and D30 and D38
in the test set), considering the diversity of this reference set and the error of some
standard functionals (see also Tables 1 and 2), the accuracy of the error estima-
tion is satisfactory.

5 Kinetic modeling

For the construction of an elementary kinetic model, free activation energies from
first-principles calculations are required as explained above. From the rate
constants calculated by eqn (1), differential equations describing the time
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Fig.2 Errors of LC*-PBEO (with error bars indicating +o¢) and several standard functionals
with respect to the training set (D1-D25). The dashed lines indicate an error of
+4.2 kI mol ™.
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propagation of population densities of all chemical species can be constructed. By
integrating these differential equations, the underlying chemical process can be
modeled.

Since differential equations describing chemical processes are generally
coupled, analytical integration becomes rapidly impossible. Therefore, numerical
integration is the standard method of choice. However, given that reaction
networks may be arbitrarily large and entangled, numerical integration may
become inefficient,” especially if the underlying process spans multiple time
scales. For this purpose, a variety of approaches were designed focusing on the
simplification of kinetic models.*

5.1 Network structure and properties

We describe the structure of a reaction network by a graph of n vertices and 2/
edges. As we assume every chemical transformation to be reversible (we refer to
such a reversible elementary process as reaction pair), the graph is strictly bidi-
rectional, which explains the enforced even number of edges. Either of both edges
corresponding to a reaction pair is assigned an arbitrary but unique direction
(forward or backward). This feature is exploited for the construction of the stoi-
chiometry matrix S. It is of dimension n x [ and contains information on how
many particles S; of the i-th species are consumed or formed in the j-th
elementary reaction, ie., S; is negative if the i-th species is consumed in the
forward direction, and positive if the i-th species is formed in the forward
direction.

We assign time-dependent population densities y,(t) with i € {1,..., n} (here:
molar concentrations) to the vertices, and rate constants k™" and kP with
J € {1,..., I} to the edges. Assuming detailed balance, the rate of a reaction pair f;
reads

n

fj = k][.korward H y|[5u'\ _ kjl_:ackward ﬁ y}S'i/' ) (9)

0,855 <0 i,5;>0

Note that we only consider chemical reactions with a molecularity smaller than
or equal to 2. We consider this to be a good assumption for solution chemistry as
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long as solvent-solvent reactions are unlikely to occur (e.g., for the formose
reaction in pure formaldehyde, a trimolecular reaction of formaldehyde to 1,3,5-
trioxane could be feasible®).

5.2 Simplification of kinetic models

It is straightforward to deduce a kinetic model from the given network structure
and properties. Given the n x [ stoichiometry matrix $ and the / x 1 reaction pair
vector f = {f;} according to eqn (9), the n x 1 rate vector g can be constructed,
which represents the first derivative of the concentration vector y with respect to
time,

_d
g=qr=5" (10)

Our objective is to integrate this kinetic model such that concentration
trajectories are obtained from the initial conditions (feed of reactants, tempera-
ture) up to thermodynamic equilibrium.

For the development of our kinetic simulation algorithm, we were inspired by
two such simplification approaches, namely Markov State Models (MSMs)°”*® and
Computational Singular Perturbation (CSP).”*** MSMs were developed for
molecular dynamics simulations, where the phase space is decomposed into
microstates such that a formerly continuous trajectory becomes a jump process,
which is no longer Markovian (memoryless). Since local information is lost in
a discrete phase space, the decomposition is chosen such that transitions within
a microstate are much more likely to occur than transitions between microstates.
This way, rapid convergence to local equilibrium can be assumed for these
microstates, which recovers Markovianity. As a consequence, a kinetic model can
be constructed from these discrete microstates by counting transitions between
them. The microstates may in turn form macrostates (kinetic clusters) for which
transitions are much more likely to occur than transitions between them. These
clusters can be determined by studying the eigenvalues A; of the n x n rate matrix
K = {K;}."" Its elements K;; are a measure of the rate for a transition from the j-th
to the i-th microstate. In the case of linear kinetic models (first-order reactions
only) as studied in MSMs, the rate matrix K is time-invariant and equals the
Jacobian J = {J;},

a
Jij = a—ng[, (11)
the elements of which are defined as the first partial derivative of the rate g; of the
i-th species with respect to the concentration y; of the j-th species.

The time scale t; corresponding to the process described by the i-th eigenvalue

is inversely related to the modulus of that eigenvalue,

=" (12)

i.e., the larger the modulus of an eigenvalue, the faster the corresponding process.
If a predefined gap ¢ can be found in the eigenvalue spectrum, a time scale
separation of processes is assumed to be possible such that the rate vector can be
decomposed into fast and slow parts,
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£ = Zrast 1 Lslow- (13)

With this decomposition at hand, it is possible to dissipate the fast processes
applying a small time step 7 in the numerical integration until ggs = 0.
Subsequently, the slow processes can be modeled from the updated initial
conditions applying a much larger time step tg4ow. Clearly, the larger the
demanded spectral gap, the smaller the error introduced by assuming decoupling
of fast and slow processes.

Since the Jacobian is time-invariant in the case of linear kinetic models, the
time-scale separation is also invariant in the course of the global reaction process
and needs to be examined only once. However, in non-linear kinetic models
(as studied here), the Jacobian is a function of time due to the inclusion of
concentrations of reaction partners.”® This poses a challenge to the time-scale
separation as now a steady examination of the time gap is necessary to ensure
valid decoupling of fast and slow processes.

One of the most robust approaches in this respect is CSP.'*> The basis of CSP is
the assumption that the concentration trajectory of a chemical process is rapidly
attracted onto a slow invariant manifold Q,* which is an (n — m)-dimensional
hypersurface in concentration space, where n denotes the number of species and
m denotes the number of fast time scales. Consequently, 7, and 7,,+; are the time
scales of the slowest of the m fast processes and of the fastest of the (n — m) slow
processes, respectively. Two subspaces, the m-dimensional subspace of fast
processes and the (n — m)-dimensional subspace of slow processes, are intro-
duced, which are spanned by m n-dimensional (column) basis vectors a; (j € 1,...,
m) and (n — m) n-dimensional (column) basis vectors a; (j € m + 1,---, n),
respectively. Furthermore, a set of n-dimensional dual (row) basis vectors b”
(p €1,--+, n) is employed, which fulfill the condition b’a, = 6,,, where 6,, is the
Kronecker delta. The decomposition ansatz for the rate vector reads

8Bfast = [al e vaum][bl e .,bm]g, (14)
&slow = [am+1,~'-’an][bm+1"-"bn]g' (15)

CSP approximates the basis vectors »” and a, by an iterative refinement
procedure, where each refinement introduces an accuracy increase.'” The
refinement procedure requires the time derivatives of the basis vectors.”® There-
fore, computational savings due to the time-scale separation may be lost by
iteratively determining the basis vectors after each time step.’® However, the first
refinement does not involve time derivatives and already guarantees numerical
stability of the simplified model.**

5.3 Kinetic simulation algorithm

To continuously determine slow and fast processes in a rolling fashion, we study
the eigenvalues of the Jacobian. Given a predefined time-gap criterion ¢ (0 < & < 1),
we start from the second-smallest modulus of the eigenvalues, |4,_,|, and
compare it to the next higher modulus, |4,_,|. If |A,_1|/|A,—2| = ¢, we continue by
increasing each index by one. If |;|/|A;,_1| = e foralli e {2,..., n — 1}, our time-gap
criterion is not fulfilled and we cannot determine a spectral gap. Otherwise, the
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first eigenvalue pair fulfilling the condition |4;|/|A;_1| < € sets the number of fast
time scales, m =i — 1.

Typically, the left and right eigenvectors of the Jacobian are chosen as an
approximation for the basis vectors »” and a,, respectively, according to the CSP
formalism. This approximation corresponds to the first refinement of the CSP
basis vectors.” It follows that the eigenvalues of the Jacobian can be obtained
from our choice of CSP basis vectors,

A = b'Ja,. (16)

Here, we follow an alternative approach to determine which one of the /
reaction pairs contributes to the fast processes. We consider the largest modulus
of eigenvalues of each of the ! sub-Jacobians corresponding to the isolated reac-
tion pairs. If a dominant modulus is larger than |A,.1|/¢ (An+1 is associated with
the Jacobian of the entire reaction system), the reaction pair connected to it will
contribute to the fast processes. The idea behind this approach is that an
eigenvalue corresponding to the entire kinetic model is approximately the sum of
the eigenvalues of sub-Jacobians with similar or smaller moduli.”® With this
approach, we introduce the assumption that a reaction pair is either included in
or excluded from the fast processes, which certainly is a simplification that
requires careful investigation.

Next, we propagate the fast sub-network (i.e., the sub-network containing only
those edges corresponding to fast reaction pairs) to local equilibrium. The
stationary distribution can be determined through a non-linear optimization
algorithm'® or analytically for simpler networks. Due to the time-scale separa-
tion, it is assumed that this process occurs immediately, i.e., it is not resolved in
the course of the kinetic simulation.

Then, the actual simulation starts. The partially equilibrated concentration
Vector Ypeq(t) is propagated according to the time scale 1 0w, Which corresponds
to the fastest process of the Jacobian of the slow sub-network (ie., the sub-
network containing only those edges corresponding to slow reaction pairs). The
update of the concentration vector reads

y(t + Tl,slow) = ypeq(t) + g(t)'rl,slow~ (17)

After that, the Jacobian of the entire network is decomposed again to deter-
mine the fast and slow processes for the next time step.

Our kinetic simulation algorithm can be summarized as follows:

(1) Determine the number of fast time scales m by spectral decomposition of
the Jacobian corresponding to the kinetic model under consideration.

(2) Identify a reaction pair as a fast one if the largest modulus of eigenvalues of
its sub-Jacobian is larger than |A,,.1]/e.

(3) Propagate the fast sub-network to local equilibrium, () = Ypeq(t)-

(4) Determine the time step 14 giow by decomposing the Jacobian of the slow
sub-network.

(5) Update the partially equilibrated concentration vector according to
eqn (17), Ypeq(t) = Yt + T1,s10w)-

(6) If global equilibrium is not yet reached, repeat steps 1 to 5; otherwise, stop
the simulation.
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6 Results and discussion

The formose reaction is an example of a large and highly entangled reaction
network. The key challenge of this network is the presence of coupled reactions
spanning multiple time scales. In recent work,” we have shown how such
a network can be explored in general. Since the exploration of the formose
reaction is beyond the scope of this work, only a sub-network of the formose
reaction is investigated here. The structure coordinates are adapted from ref. 37
(see ESIt). The heuristics-guided exploration of the whole formose network is
currently being studied in our group.'*

This sub-network, which already features many conceptual challenges of the
entire formose reaction, is shown in Fig. 4. It represents a possible mechanism for
the first steps of the formose reaction as described by Kua et al.>” and comprises
six chemical species and five reaction pairs (ten elementary reactions Ri). We
obtained all free energies in single-point calculations as described in the ESLf In
water, formaldehyde (1) is in equilibrium with its hydrated form, methanediol (2).
1 dimerizes to glycolaldehyde (3), which is a reaction with a high free activation
energy (¢f Table 3). The exact mechanism of the dimerization has not been
unravelled yet.>*** From experimental studies it is, however, well known that the
dimerization proceeds very slowly. 3 can react with water to 1,1,2-ethanetriol (5).
Another possible reaction of 3 is the enolization to 1,2-ethenediol (4). The addi-
tion of 1 to 4 yields glyceraldehyde (6). This bimolecular reaction introduces
a significant entanglement in the model network. The model network does not
capture the autocatalytic nature of the formose reaction, in which 3 can be
regenerated autocatalytically from intermediates generated from 6 in subsequent
reactions.

Table 3 presents (standard-state Helmholtz) free activation energies (in solu-
tion), AA*", calculated according to eqn (4) and the resulting rate constants k
(together with error estimates) for the reactions in the model network.

It can be seen that AA®" is high (above 100 k] mol ) for most reactions, and
consequently, the reaction rates are small. In addition, most reactions have

= /
"5 0 \?/ a)
R8 R3
+1
R6| [R5 1
R4 R1
o oH )OL +H,0 HO OH
=/ " “H,0 H”H
4 1 2
R2
R10| |R9
b)
OH
HO 0

Fig. 4 (a) Possible mechanism of the first steps in the formose reaction, (b) abstract graph
representation of this reaction sub-network.
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Table 3 Free activation energies AA*" (in kI mol™!, with error estimates) and rate
constants k (in s7* and (L mol™ s%) for unimolecular and bimolecular reactions,
respectively) for the reactions in the network

Reactant(s) Product(s) A4V Tpqrr k
R1 1 2 95.4 4.8 6.7 x 10°
R2 2 1 124.9 13.2 8.1 x 107 *
R3 1+1 3 215.4 14.2 1.2 x 107
R4 3 1+1 311.1 23.0 1.9 x 10~ *?
R5 3 4 157.3 11.6 1.7 x 107
R6 4 3 130.8 10.2 7.5 x 1071
R7 3 5 100.3 3.2 9.2 x 10*
RS 5 3 119.2 12.3 8.0 x 107°
R9 1+4 6 112.5 13.4 1.2 x 1077
R10 6 1+4 185.4 23.1 2.0 x 102°

estimated errors of above 10 k] mol *, which reflects the large uncertainty of the
respective reaction rates. In Section 4, we showed that the LC*-PBEO functional
provides reliable error estimates above 4.2 k] mol '. The estimated error for
reaction R7 is below that, and therefore, most likely too small.

For the simulation we selected an absolute temperature of 298.15 K, a 1 M
solution of formaldehyde in water as initial feed, and a time-gap criterion of ¢ =
107>, For technical details of the kinetic modeling employed here, see the ESL{

For every set of free activation energies, it was found that all reaction pairs but
(R3, R4), the dimerization of formaldehyde (1) to glycolaldehyde (3), contribute to
the fast processes. Therefore, only reaction pair (R3, R4) constitutes the slow sub-
network (Fig. 5).

The concentration trajectories from the kinetic simulation of the reaction
network are shown in Fig. 6. The red curve corresponds to the trajectory obtained
from the free activation energies listed in Table 3. The black curves correspond to
the trajectories obtained from the free activation energies calculated from the
ensemble of density functionals generated by our error estimation scheme
according to eqn (6).

The simulated time scale of the global process exceeds the age of the universe
in each case. This finding should not be interpreted in absolute terms, but it
indicates that the uncatalyzed thermal formose reaction is very unlikely to occur if

0 m=—0

Fig. 5 Fast (bottom left) and slow (top right) sub-networks of the reaction network shown
in Fig. 4.
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one starts from formaldehyde (1) alone, provided that the free activation energies
and their estimated errors are reliable. It should be noted that glycolaldehyde (3)
is autocatalytically regenerated in the formose reaction, which is not considered
in our model network. This way, the dimerization of 1 to 3 (reaction R3) can be
circumvented, which leads to an acceleration of the overall process not depending
on the extremely slow reaction R3.

The concentration trajectories show clearly how sensitive rate constants are to
variations in the free activation energies. For instance, the variation in time of the
concentration trajectories of methanediol (2) spans almost 23 orders of magnitude
(a factor of 8.7 x 10> at an arbitrarily chosen concentration of y, = 0.01 mol L™").
Since only reactions R3 and R4 contribute to the time resolution of the chemical
process, uncertainties in the corresponding free activation energies need to be
responsible for this significant variation. In Table 4, properties of the fastest and
slowest concentration trajectories (Fig. 6, species 2, left-most and right-most
curves) are compared. For reaction R3, the free activation energy spans a range of
about 60 k] mol ", and for reaction R4, this range is about 100 k] mol ™", leading to
a deviation in rate constants of about 10 and 17 orders of magnitude, respectively.
Taking the concentrations of 1 and 3 (the constituents of reactions R3 and R4) at
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Fig.6 Concentration trajectories with respect to time for chemical species 1-6 according
to the reaction network shown in Fig. 4. The trajectories resulting from the free activation
energies listed in Table 3 are shown in red. The other trajectories (black) result from the
free activation energies calculated from the ensemble of density functionals generated by
the error estimation scheme. Note that the time scale of the equilibration process is
extremely large, which originates from neglecting relevant intermediates and elementary
reactions in our model network. For readability reasons, all plots start after the first global
time step 11 510w, Which depends on the sampled free activation energies, and therefore,
the onset of the trajectories is different.
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our arbitrarily chosen concentration of y, = 0.01 mol L " into account, the rates of
both reactions can be calculated. For both the fastest and slowest trajectories,
reaction R3 is much faster than reaction R4. Therefore, we assume only reaction R3
to be relevant for the kinetic simulation. The reaction time can be roughly esti-
mated by the inverse of the current reaction rate. In our case, the reaction time of
the slowest trajectory is higher than that of the fastest trajectory by a factor of
1.4 x 10*%, which is quite close to the factor of 8.7 x 10*> determined from the
concentration data of 2. Obviously, an error of this magnitude with respect to the
free activation energy is far too large to quantify concentration trajectories in terms
of absolute time. Moreover, it should be noted that the error introduced by
choosing conventional TST to calculate rates is not considered here.

Even though the uncertainty in free activation energies strongly affects abso-
lute time, it does not affect the qualitative flux of concentrations through the
network in terms of non-crossing trajectories (Fig. 7). This finding can be
explained by the distinct separation of the magnitude of the free activation
energies. In Table 4, it can be seen that the free activation energy for reaction R3
in the slowest case is even lower than that for reaction R4 in the fastest case.
Furthermore, the free activation energies and their uncertainties listed in Table 3
show that all reaction barriers are well separated from each other, which does not
allow for an alternative reaction mechanism. Clearly, for small activation energy
differences, such as found in enantioselective organocatalysis, large uncertainties
would also lead to qualitatively different results.

Qualitative validity of the kinetic simulation is also underlined by the fact that
in all cases, 1,1,2-ethanetriol (5) is the main product at chemical equilibrium. The
population dominance of 5 over 3 was also found experimentally by Kua et al.'*
However, their calculated Gibbs free activation energies for the corresponding
reaction pair (R7, R8)” (AG:, . — AGE’:S =2.5 k] mol ') are very similar to each
other. Their Gibbs free activation energies can be directly compared to our
Helmholtz free activation energies, because volume changes are neglected. Our
free activation energies for the reaction pair (R7, R8) differ significantly from each
other on average (AA%:,s — AAigig = —18.9 k] mol ). A reason for the observed
difference is the choice of computational methods for the calculations (e.g,
different density functional and solvation model). It might seem surprising that 5

Table4 Free activation energy AA*" (in kJ mol ™), rate constant k (in s~ and (L mol—1s~1) for
unimolecular and bimolecular reactions, respectively), concentrations y; and ys (in mol L™ at
y>=0.01 mol L~ and reaction rate r (in mol L~ s} for reactions R3 and R4 of the fastest and
slowest concentration trajectories (Fig. 6, species 2, left-most and right-most curves)

AR AAY, kia Kra
Fastest 183.4 259.3 4.6 x 10°2° 2.4 x 10
Slowest 243.8 357.2 1.2 x 107 1.6 x 107°°
)1 Y3 'Rz = kR3(V1)2 I'Ra = kRALVB
Fastest 1.4 x 107* 2.9 x 1072 9.3 x 107 %® 6.9 x 107%°
Slowest 7.4 x 107 1.5 x 1077 6.5 x 107" 2.5 x 107%7
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Fig. 7 Concentration trajectories with respect to reaction progress for chemical species
1-6 according to the reaction network shown in Fig. 4. The trajectories resulting from the
free activation energies listed in Table 3 are shown in red. The other trajectories (black)
result from the free activation energies calculated from the ensemble of density func-
tionals generated by the error estimation scheme. Contrary to Fig. 6, here, the trajectories
are laid on top of each other.

is the main product in our simulation even though glyceraldehyde (6) is a ther-
modynamic sink. However, one should keep in mind that the concentration
trajectory of 6 is temporarily significantly populated. To understand this finding,
we need to discriminate between fast and slow processes (Fig. 5).

Considering the fast sub-network (Fig. 5), we understand that there are two
unconnected channels to form 6, i.e., (1, 2) and (3, 4, 5). This picture is equivalent
to reaction A + B = C, where the initial concentration difference between A and B
is conserved over the course of the reaction. It follows that

A4=01+y)— 3+ yatys) (18)

is the conserved quantity in our case. If one of the two channels is unpopulated, 6
cannot be formed. This case holds in the beginning (dominant population of 1)
and in the end (dominant population of 5) of the reaction process. The slow sub-
network (Fig. 5) now connects these two channels. Since channel (1, 2) is domi-
nantly populated in the beginning of the reaction process, flux occurs towards
channel (3, 4, 5) and, hence, towards 6. The concentration of 6 increases while the
magnitude of 4 decreases. At a certain point in time, approximately when the
concentration of channel (3, 4, 5) starts becoming dominant over that of channel
(1, 2), the magnitude of 4 increases again so that the concentration of 6 decreases.
Since 4 is asymptotically decreasing with time, we employed this quantity to
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define the reaction progress in Fig. 7 as (4o — 4)/(4o — 4eq), Where 4, is 4 at time
t =0, and 4.4 is 4 at global equilibrium. Recall that here, we are studying a small
segment of a complex reaction network, where 6 can isomerize to more stable
intermediates or reacts with 1 to higher sugars. Therefore, the reflux of 6 is most
probably an artifact resulting from the particular choice of the network.

Another feature of the conservation of 4 is that the kinetic model can be
reduced to a single differential equation (see the ESIt for more details). This
differential equation can be easily integrated by any conventional numeric solver.
Here, we chose the standard fourth-order Runge-Kutta algorithm. We compared
the result to that of our CSP-type method, where we employ an explicit Euler
algorithm according to eqn (17), which is the simplest ansatz for numerical
integration and known to be unstable due to the lack of an inherent time step
selection. However, our CSP-type method provides the time step for the explicit
Euler algorithm by continuously analyzing the Jacobian. We emphasize that both
approaches to model the kinetics of the network (CSP/Euler vs. Runge-Kutta)
yield identical results.

7 Conclusions

We established a robust protocol that combines electronic structure calculations
and kinetic simulations for the accurate description of a complex kinetic network
by studying stationary points across multiple potential energy surfaces. Employ-
ing a simplified model network, we highlighted and discussed the challenges of
kinetic studies on complex chemical networks such as the formose reaction. We
showed by employing a time-scale separation approach based on Computational
Singular Perturbation®'®® how the frequently occuring stiffness (rare-event
problem) in kinetic simulations can be circumvented. As a consequence, we were
able to propagate uncertainties in the free activation energies through the
complete kinetic simulation up to global equilibrium. Since the rate constants
depend on free activation energies AA™" (in a canonical ensemble) through an
exponential function, errors in AA®" strongly affect the kinetic simulation.
Therefore, error estimates for AA*" are decisive for drawing meaningful conclu-
sions from a kinetic analysis. While reliable error estimates for electronic energies
can be obtained by Bayesian statistics as shown in Section 4, errors on other
contributions of AA*" have not been accounted for in a systematic way yet. We
proposed a strategy to also obtain error estimates for these contributions, but
defer their analysis to future work. To improve the accuracy of the kinetic simu-
lation, elementary steps with large error estimates need to be subjected to highly
accurate quantum chemical calculations such as those reported in ref. 106.

Then, the heuristics-guided exploration established for protonation reactions
in a previous study®* needs to be extended to enable the exploration of chemical
systems such as the formose reaction,'** which will facilitate a fully automated
exploration and analysis of the formose reaction.
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