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Outer sphere electron transfer between two ions in aqueous solution is a rare event on the

time scale of first principles molecular dynamics simulations. We have used transition path

sampling to generate an ensemble of reactive trajectories of the self-exchange reaction

between a pair of Ru2+ and Ru3+ ions in water. To distinguish between the reactant and

product states, we use as an order parameter the position of the maximally localised

Wannier center associated with the transferring electron. This allows us to align the

trajectories with respect to the moment of barrier crossing and compute statistical

averages over the path ensemble. We compare our order parameter with two typical

reaction coordinates used in applications of Marcus theory of electron transfer: the

vertical gap energy and the solvent electrostatic potential at the ions.
Introduction

Electron transfer is the fundamental process in reduction and oxidation (i.e.
redox) chemistry, taking place for example in metal corrosion, fuel cell reactions,
and photo-synthesis. Early pioneering studies of the prototypical self-exchange
reaction between two metal ions in aqueous solution, as illustrated by eqn (1),

Mn+ + M*(n+1)+ / M(n+1)+ + M*n+ (1)

have been pivotal for our understanding of electron transfer processes and the
development of Marcus' theory of electron transfer.1–4 Molecular dynamics (MD)
and Monte Carlo simulations conrmed that the free energy proles of electron
transfer reactions consist of two intersecting parabolas, as proposed by Marcus'
theory, conrming that the solvent reorganisation during electron transfer is
indeed well-described by the linear response approximation.5–11
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As with most chemical reactions, the self-exchange reaction is an activated
process, in which the system has to surpass a transition state of high (free) energy,
which renders direct sampling of an electron transfer reaction in an MD simu-
lation highly improbable. This so-called rare event problem was tackled in the
early work by using enhanced sampling techniques, such as umbrella sampling6,7

or free energy perturbation,10 which bias the simulation along an appropriate
reaction coordinate, for example the position of the electron.

Unfortunately, it is not so easy to bias the electron transfer process in
combination with a quantum-chemical many-electron description of the system,
such as with density functional theory (DFT). The reason is that the position of the
excess electron, in the reactant state, the product state, or somewhere in between,
is governed by the congurational state of the polar solvent environment, which is
difficult to capture with a reaction coordinate. The method of constrained-
DFT12–14 offers alternatively the possibility to use the electron position as the
reaction coordinate, although this constraint also connes the orbital to a certain
shape.

Instead, most DFT studies on electron transfer focus on half-reactions. With
the half-reaction approach, introduced by Warshel,5,10 and further developed for
DFT-MD simulation by Sprik and co-workers,15–20 the redox potential and reor-
ganisation free energy is computed from the average energy needed to add
(or remove) an electron to (or from) the system containing only the solvated donor
or acceptor species. This approach has been extensively applied to investigate the
redox properties of transition metals,16–19,21,22 organic molecules,20,23–25 and
proteins26,27 in explicit solvent. However, the half-reaction approach does not
provide direct information on the electron transfer between a donor and acceptor
species, such as their average distance, as the model only considers one of the two
species at once.

We have recently returned to the problem of direct simulation of electron
transfer between donor and acceptor species with DFT-MD.28 Using transition
path sampling (TPS) simulations,29,30 we can generate an ensemble of reactive
trajectories that sample the unbiased dynamics of an electron transfer process.
Analysis of the trajectories provides unique information on the transition state
ensemble, such as the donor–acceptor distance, the solvent structure in the
transition state and the dynamics of the process. Particularly interesting would be
an analysis of relevant order parameters or collective variables that correlate with
the vertical energy gap, DE, which is the reaction coordinate used in Marcus
theory. However, direct computation of DE is difficult within the DFT-MD simu-
lations, as it requires constraining the position of the electron.

Here, we analyse a DFT-MD/TPS ensemble of reactive trajectories of the self-
exchange reaction between a pair of Ru2+ and Ru3+ ions in water solvent. Rather
than computing DE, we obtain statistics of the energy to insert or delete an
electron (DEins, DEdel) to the system along the reactive trajectory. We rst sample
these two vertical gap energies for the pair of Ru2+ and Ru3+ ions in an equilibrium
simulation to reconstruct the free energy landscape, which we compare to that
obtained using the half-reaction approach. We then sample DEins and DEdel along
the reactive trajectories, and compare the sum as a reaction coordinate to the
solvent electrostatic potential and an order parameter based on the position of
the transferring electron.
292 | Faraday Discuss., 2016, 195, 291–310 This journal is © The Royal Society of Chemistry 2016
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In the following, we rst briey summarise the theory of electron transfer as
applied in half-reaction simulations, we discuss the issues associated with the use
of periodic boundary conditions, and we present the computational details of our
combined transition path sampling and DFT-MD simulations. The results are
presented in three subsections covering the redox properties obtained with the
half-reaction approach, our equilibrium DFT-MD simulations of the pair of Ru2+

and Ru3+ ions in water, and analysis of the reactive trajectories of the electron
transfer obtained with TPS. This is followed by the conclusions.
1 Methods
1.1 Theory of electron transfer

At the DFT level of theory, redox properties of ions and molecules in explicit
solvent are most conveniently computed using the half-reaction approach, which
is based on Marcus' theory of electron transfer and can be connected to the half-
reactions that take place in electrochemical cell experiments. The central quantity
to be measured is the vertical energy gap, DE, which is the energy needed to add
(or delete) an electron to (or from) the solute in a given nuclear conguration.
This gap energy plays the role of the reaction coordinate and it quanties the state
of the polarised medium when the solute is an ion. In the case of a molecular
solute, DE also captures the state of the molecule itself. In remarkably many cases
(but not always25), the response of both the polarised medium and the molecular
solute, as measured by DE, is largely linear with respect to the amount of charge
loaded to or from the solute.

Consider the reduction of an oxidant (O) to a reductant (R),

O + e� / R, (2)

and the vertical energy gap

DE ¼ ER(r
N) � EO(r

N), (3)

with Ex(r
N), x¼ (R, O), the internal energy of the system at a nuclear conguration

rN, in the reduced or oxidised state, respectively. Linear response of the system
entails that the distribution P(DE) is Gaussian, centered at an (ensemble) average
hDEix in either the reduced or oxidised state:

PxðDEÞ ¼ 1

sx

ffiffiffiffiffiffi
2p

p exp

"
�

�
DE � hDEix

�2
2sx

2

#
; (4)

with s2 the variance. The Landau free energies, as a function of the DE reaction
coordinate,

DAx(DE) ¼ �kBT ln[P(DE)], (5)

must then be parabolic and give rise to Marcus' well-known diabatic free energy
landscape, which is illustrated in Fig. 1 by the dashed curves. Here, T is the
temperature and kB is Boltzmann's constant.

The overall reaction free energy is a particularly simple function of the average
gap energies when linear response holds:
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 291–310 | 293
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Fig. 1 Schematic illustration of a parabolic free energy landscape of electron transfer. The
dashed lines depict Marcus' diabatic free energy curves, which cross at the diabatic free
energy barrier DA‡

d. The solid line shows the adiabatic free energy profile, with a somewhat
lower barrier DA‡

a, due to the coupling of the electronic reactant and product states. The
difference between DA‡

d and DA‡
a is generally much smaller than depicted here. For a half-

reaction written in the conventional reduction form (eqn (2)) and the definition of the
reaction coordinate, DE, from eqn (3), the reaction thus takes place from right to left.
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DAr ¼ 1

2

�hDEiO þ hDEiR
�
; (6)

and a similar relation holds for the third key quantity in Marcus' theory, the
reorganisation free energy:

l ¼ 1

2

�hDEiO � hDEiR
�
; (7)

This l is the free energy associated with the relaxation of the polarised medium
into the product state aer a vertical excitation, i.e. aer adding an electron to the
solute at a xed conguration. The reorganisation free energy is also associated to
the curvature of the free energy curves and to the magnitude of the uctuations of
DE in either oxidation state:

lx ¼ sx
2

2kBT
(8)

Finally, the diabatic free energy barrier, denoted in Fig. 1 at the crossing point of
the parabolas, is given as a function of the overall reaction free energy (which is
zero for a full self-exchange reaction, but not for the half-reaction) and the reor-
ganisation free energy:

DA‡
d ¼

ðlþ DArÞ2
4l

: (9)

In practice, the diabatic free energy curves are computed by sampling DE along
two equilibrium DFT-MD simulations; one in the oxidised state where the energy
needed to add an electron is computed and one in the reduced state in which the
energy to delete an electron is sampled. In Section 2.1, we will set the stage by
294 | Faraday Discuss., 2016, 195, 291–310 This journal is © The Royal Society of Chemistry 2016
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applying this approach to compute the redox properties of the Ru2+/Ru3+ couple,
which can be compared to the extensive studies on this system by Blumberger and
Sprik.17–19,22,31

As pointed out in the introduction, the half-reaction framework cannot be so
easily applied to study directly the full reaction, i.e. the electron transfer reaction
between a donor molecule and an acceptor molecule. In the full reaction case, DE
would be the energy to bring the electron from the donor to the acceptor at a xed
conguration. This DE can be decomposed into two terms: (1) the energy needed
to delete the electron from the donor, DEdel, and (2) the energy needed to insert
the electron at the acceptor, DEins. The rst term is easy to compute as long as the
transferring electron resides at the highest occupied orbital (HOMO) of the
system. But the second term cannot be computed with ground-state DFT without
additional constraints, since the electron would return to the donor in the elec-
tronic ground-state. Of course, we can compute the energy needed to insert an
electron at the acceptor before removing the electron from the donor, DEins,before,
but that energy would contain an additional interaction energy of the inserted
electron with the other electron still at the donor, plus higher order terms in
a polarisable environment.

If we consider this additional electron interaction as a correction to the
DEins,before term, the DE of moving an electron from donor to acceptor at a given
nuclear conguration can thus be computed using the half-reaction technique of
inserting an electron and deleting an electron:

DE ¼ DEdel + DEins + Ucorr. (10)

Here, and hereaer, we omit the “before” superscript; that is, the DEins refers to
the energy needed to insert an electron into the original system instead of the
system aer having deleted an electron from the donor. As an initial approxi-
mation, the correction term could be taken as the Coulomb energy between an
electron centered at the donor and an electron centered at the acceptor:

U corr ¼ 1

4p30

1

jrRuD � rRuA j
(11)

However, due to the periodic boundary conditions applied in these calculations,
the correction is somewhat more complicated, as further discussed next.

1.2 Periodic boundary conditions and nite size effects

One of the complications of DFT-MD simulations of molecular processes in
condensed materials, and in particular of half-reactions in aqueous solution, is
related to the rather small size of the systems and the periodic boundary condi-
tions to mimic the extended phase. The long-range electrostatic interactions are
computed using Ewald summation, which is of course almost always much better
than using a cutoff, but is nevertheless not without its own issues. The problem is
that the half-reaction approach is typically applied to systems that are not neutral,
and, moreover, the method requires the calculation of energy differences between
systems that carry different charges.

Although in principle a charged system embedded in innite arrays of periodic
copies would have an innite energy, Ewald summation removes the divergent
term in a manner that is commonly interpreted as adding a uniformly smeared
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 291–310 | 295
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out background charge. The density of the background charge is �q/L3 and thus
depends on the box size, L. The charged system interacts with the background
charge so that the energy of the system contains a “self-interaction” term that is
a function of the box size and shape. For a charged particle in a cubic cell, this
(Wigner) self-interaction is:

F ¼ � xMq
2

2L
(12)

with q the charge of the particle, L is the cell dimension, and xM ¼ 2.837297 the
Madelung constant of a cubic periodic system. The nite size effects due to the
Ewald potential have been extensively investigated, for example for the interac-
tion energy between two ions,32 for ionic hydration free energies,33–35 for the
reaction and reorganisation free energies in half-reaction calculations by
Sprik,19,24 and by Blumberger22 on the reorganisation free energy in (full reaction)
electron transfer.

For a charged particle dissolved in a polar medium such as water, it turns out
that the self-interaction energy is largely compensated by the screening of the
solvent, effectively reducing this L�1 dependent term by a factor of 1/3, with 3 the
dielectric constant, which is approximately 80 for ambient water. The L�1-
dependence of the solvent comes from the repulsion of the polarised solvent in
the unit cell with that in the periodic images, which solvate the periodic image of
the charged particle in their own cell, rather than the original ion.

Although the L�1-dependent self-interaction is thus largely canceled in a high-
dielectric solvent, higher order terms in L remain that arise from the nite size of
the ion, which creates a cavity with a radius R in the medium in all periodic
images. The total energy difference due to (Ewald) periodic boundary conditions
(PBC) with respect to that of a continuum Bohr model19,34,35 (B) is:

EPBC � EB ¼ xMq
2

2L3
�
�
1� 1

3

�
2pq2R2

3L3
þO

�
L�5

�
(13)

In the half-reaction approach presented above, the reaction free energy, DAr
(eqn (6)), and the reorganisation free energy, l (eqn (7)), are computed from
sampled energy differences, DE, of the system with and without an extra charge.
Sprik et al. found that for DAr the box size dependence is dominated by the L�3

term, whereas l scales as L�1. Blumberger and Lamoureux showed that for the full
electron transfer reaction, in which the electron moves from donor to acceptor,
the box size dependence of the reorganisation free energy is much less severe.
This is perhaps not surprising, since in that case only the dipole is changed, but
not the total charge.22

The dipole term depends on the distance between the donor and the acceptor.
In Fig. 2, we show the P(DEET) (top panel) and the free energy curve computed with
eqn (5) (bottom panel) computed with simple force eld MD simulations of a pair
of Ru2+ and Ru3+ aqua complexes, constrained at different donor–acceptor
distances, d, ranging from 6 to 14.5 Å, solvated in 1000 water molecules in a cubic
box with L ¼ 31.04 Å. As expected, the curves show a clear dependence on the
donor–acceptor distance.

The black curves in Fig. 2 were computed using the insertion–deletion scheme,
with DEdel+ins ¼ DEdel + DEins, i.e. the rst two terms of eqn (10), which are, within
296 | Faraday Discuss., 2016, 195, 291–310 This journal is © The Royal Society of Chemistry 2016
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Fig. 2 The apparent dependence on the distance between the Ru2+ and Ru3+ ions of the
energy gap probability (top) and the free energy curves (bottom) computedwith force field
MD simulations. The curves obtained from DEdel+ins (in black) are not distance dependent.
The lines are Gaussian (top) and parabolic (bottom) fits through the measured data
(circles). Dashed lines in the bottom panel are computed by adding to DEdel+ins the Ucorr

term of eqn (10) as explained in the text.
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the statistical accuracy, independent of the Ru–Ru distance. The missing Ucorr

term of eqn (10) can be computed as the difference in DEdel+ins between a system
containing the two ruthenium point charges (without solvent) with, and without,
periodic boundary conditions. Adding this to the DEdel+ins indeed recovers
perfectly the DEET curves, as shown by the dotted lines in the bottom panel of
Fig. 2.

For the DFT-MD simulations that we discuss hereaer, the box size depen-
dence and the Ucorr term also contain contributions due to the instantaneous
electronic polarisation. The aim of this work, however, is not to obtain quanti-
tative numbers for the redox properties, but rather, to connect the reaction
coordinates used in Marcus theory and the half-reaction method to our equilib-
rium and TPS simulations of the full electron transfer reaction.

1.3 Transition path sampling

We use an adapted 2-way TPS algorithm of shooting and shiing moves to
generate reactive trajectories, starting from an initial path obtained from a biased
MD simulations as explained hereaer. Here, reactive trajectory refers to
a trajectory that starts in the stable reactant state and ends in the stable product
state, or vice versa. The shooting move proceeds in the usual way. That is, each
new trajectory starts from a randomly chosen conguration from the previous
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 291–310 | 297
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trajectory, by adding small perturbations to all atomic momenta, and performing
twoMD simulations, one forward and one backward (by reversing all velocities) in
time (hence, “2-way TPS”). The shooting move is accepted if the new trajectory
connects the reactant and product states, or rejected otherwise. The perturbations
are done by adding random momenta from a 5 Kelvin Maxwell–Boltzmann
distribution to the original momenta, removing any total momentum, and
rescaling to the original temperature. This resulted in an average acceptance ratio
of the shooting move of 0.46. Instead of the original shiing move, we locate the
conguration on the previous trajectory that is closest to halfway for the electron
transfer process. The shooting conguration was subsequently chosen from
a xed number of saved restart les ranging from 1000 MD steps (i.e. 500 fs)
before and aer this central time frame. By using this xed number of restart les
to randomly choose the shooting conguration from, the TPS algorithm obeys
detailed balance. The actual trajectory length was not xed however, and ranged
typically between 2 and 3 ps.

The initial reactive trajectory was obtained from a 1 ps constrained MD
simulation that started from an equilibrated system, in which the six ruthenium–

oxygen distances of the hexaaqua Ru2+ complex were forced to decrease by 0.3 Å.
By the time that the constrained coordination shell becomes smaller than that of
the (free) Ru3+ complex, an electron is expelled from the Ru2+ complex and taken
up by the Ru3+ complex soon aer. A second constrained simulation was initiated
from a frame just aer the forced electron transfer took place, in which the six
Ru–O distances were kept constant. This second trajectory was used to generate
initial unconstrained reactive trajectories, by applying the TPS shooting move but
without perturbing the nuclear momenta.

The stable reactant and product states are dened by the numbers of d-elec-
trons at each of the ruthenium ions; six on one and ve on the other, or vice versa.
Counting the number of electrons is conveniently done by transforming the
occupied orbitals into maximally localised Wannier functions36,37 (MLWFs) and
computing the distances of the MLWF centers to each of the Ru ions. The MLWFs
are computed every 10 MD steps on-the-y along each TPS trajectory. We dene as
an order parameter:

xET ¼ (dRu–X � dRu0–X)/dRu–Ru0, (14)

in which Ru and Ru0 denote the two Ru ions, d is the distance and X is the MLWF
that is, of the eleven MLWF centers within a cutoff distance of the Ru nuclei,
farthest away. This order parameter is practically equal to minus one in the
reactant state with the rst Ru ion being 2+ and the second Ru0 ion is 3+; in the
product state with the charges reversed, xET z 1; and during electron transfer, xET
has a value in between. Now, we dene the reactant state as the set of congu-
rations for which xET < �0.9 and the product state as the set of congurations for
which xET > 0.9.

The TPS algorithm of generating reactive trajectories described here was
implemented using a bash script that would launch the forward and backward
DFT-MD simulations (further detailed below), accept or reject the trajectories,
choose a new starting conguration, perturb the momenta, and launch the next
simulations, and so forth.
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1.4 Density functional theory-based molecular dynamics

The DFT-MD simulations were performed using the CP2K soware package.38 The
electronic structure part of CP2K, called QUICKSTEP,39 uses the combined
Gaussian and plane-wave (GPW) method40 for the calculation of forces and
energies. The GPW method is based on the Kohn–Sham formulation of density
functional theory and employs a hybrid scheme of Gaussian and plane wave
functions. First principles simulations with CP2K sample directly the Born–
Oppenheimer surface.

In the DFT-MD simulations, the norm-conserving pseudopotentials of Goe-
decker et al. (GTH)41 were applied to replace the core electrons. We employed the
BLYP42,43 exchange–correlation functional, augmented with Grimme's D2
dispersion correction44,45 to include van der Waals interactions. The BLYP-D level
of theory has been extensively used and tested by the scientic community for the
description of various structural and dynamical properties of liquid water and
aqueous solutions (see e.g. ref. 46 and 47), including the Ru2+/3+ redox couple.17

The Gaussian basis set consisted of a double-zeta valence basis set with a single
set of polarisation functions (DZVP) optimised for the use with the GTH pseu-
dopotentials. A charge density cutoff of 280 Ry was used for the auxiliary plane-
wave basis set. For the plane-wave grid, we applied the nearest neighbour
smoothing operator NN10. A CSVR thermostat48 with a time constant of 500 fs was
used to generate an NVT ensemble. The temperature was set to 300 K. Periodic
boundary conditions were applied to a cubic box with an edge length of 12.4138 Å
for the simulations with two Ru ions and 64 water molecules. For the single ion
with 32 water molecules, the box dimension was 9.86 Å. The simulations here
were carried out on the Dutch national supercomputer Cartesius using 24
processors in parallel.
2 Results

We rst compute the redox properties of the Ru2+/Ru3+ couple using the half-
reaction approach. Next, we investigate the pair of aqueous Ru2+ and Ru3+ ions in
equilibrium. Thirdly, we analyse the reactive trajectories of the self-exchange
reaction harvested with TPS.
2.1 Redox properties using the half-reaction approach

The Ru2+/Ru3+ redox couple was one of the rst systems to which Sprik and co-
workers applied their half-reaction approach. Here we present the same redox
properties computed with the CP2K program at the BLYP+D2/DZVP/280 Ry level
of theory for a single ion with 32 water molecules in a cubic box with an edge of L
¼ 9.86 Å subject to periodic boundary conditions. Two equilibrium DFT-MD
simulations were performed, one of Ru2+ and one of Ru3+, with a length of 10 ps,
of which the last 5 ps were used to sample DE.

The P(DE) distributions are shown in the top-panel of Fig. 3. The histograms of
DE, shown by the circles are tted very well by Gaussian functions (solid lines), as
expected, however, the widths of the two distributions, measured by s, are not
exactly the same. The Ru2+/Ru3+ system is known to obey Marcus linear response
theory rather well,17–19,22,31 so the deviation seen here must be due to statistical
errors.
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 291–310 | 299
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Fig. 3 Top panel: Vertical energy gap distributions for the Ru3+ + e� / Ru2+ half-reac-
tion. The circles show the histogram values obtained from the simulation data; the solid
lines are Gaussian fit functions. Bottom panel: Free energy curves obtained from the
Gaussian functions using eqn (5).
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The derived redox properties are compiled in Table 1. The uneven standard
deviations of DE in the oxidised and reduced states leads to a signicant
discrepancy between lO and lR. We have previously seen that the uctuations in
DE are easily underestimated in the rather short DFT-MD simulations, and that l
computed from the averages (eqn (7)) is the safer estimate for the reorganisation
free energy.25 Our results are in reasonable agreement with the early work of
Blumberger and Sprik, although in that work an external chemical potential was
applied to enforce alignment of the minima of the parabolic curves, and the
parabola were tted to the combined O and R data-sets resulting in a more
symmetric free energy landscape.
Table 1 Average and standard deviations of the computed P(DE) distributions using the
half-reaction approach, together with the derived redox properties using the indicated
equations

Quantity Value [eV] Equation

hDERi �1.23 (4)
hDEOi 0.74 (4)
sR 0.18 (4)
sO 0.22 (4)
DAr �0.24 (6)
l 0.98 (7)
lR 0.64 (8)
lO 0.93 (8)
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2.2 Free energy curves of the combined Ru2+ and Ru3+ ions

Four independent DFT-MD simulations were performed for a pair of Ru2+ and
Ru3+ ions solvated by 64 water molecules in a cubic box with L¼ 12.41 Å subject to
periodic boundaries. These simulations had different starting congurations, but
they had in common that in all cases the Ru3+ complex was deprotonated. From
two of the simulations, we removed at the start the excess proton from the solvent,
yielding a total charge of +4 for the system. The other two systems had a charge of
+5. In the latter, the extra proton diffused through the solvent via the Grotthuss
mechanisms, and was not seen to jump back onto the deprotonated ruthenium
complex during the simulation. Rather than adding explicit counter ions, which
would make the sampling more cumbersome, the system has a neutralising
uniform background counter-charge via the Ewald summation, as further
detailed in the Methods section. The simulations had a length of 50 ps, of which
the last 30 ps were used for analysis.

Fig. 4 shows in the top panel the distributions, P(DEdel) (red curve), P(DEins)
(blue), and P(DEdel+ins) (black). The solid lines are Gaussian functions tted to the
histograms of the data, which are shown in circles for the system without the
solvated proton. The tted Gaussian functions are also shown for the system with
the excess proton, with dashed lines, to illustrate that the computed distributions
Fig. 4 Top panel: Distributions of DEdel, DEins, and DEdel + DEins, computed for the Ru2+ +
Ru3+ system (circles), which are fitted by Gaussian functions (lines). The solid lines show
the results for the 4+ charged system, from which the excess proton was removed; the
dashed line shows the results for the 5+ charged system. Bottom panel: Parabolic free
energy curve obtained from the Gaussian fit function (solid black line) using eqn (5) and the
final free energy curves (red) that are shifted based on ldel+ins as explained in the text.
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are remarkably independent from the total charge of the system; apart from
a small deviation between the blue curves, the distributions obtained from the
two systems are, considering the statistical uncertainty, equal to each other.

The distribution of the energy needed to insert an electron at the Ru3+ ion is
somewhat broader than that of the energy needed to delete an electron at the Ru2+

ion. This trend is in agreement with what we found earlier for the PO(DE) and
PR(DE) distributions with the half-reaction approach (see Fig. 3), although this is
probably a coincidence. The more plausible cause for the different widths is the
different coordination shells of the Ru2+ and Ru3+ ions here, the former being
coordinated by six water ligands whereas the latter contains ve water ligands and
one hydroxo ligand. This difference between the oxidised and reduced Ru ions
could indeed cause such a non-linear effect.

The rst and second moments of the distributions, together with the derived
reorganisation free energies are listed in Table 2. The average energy to delete an
electron from the system is in perfect agreement with �hDERi of the half-reaction
(Table 1) and also s matches very well. However, this must be somewhat fortu-
itous, considering the different box sizes and the effect that the nearby Ru3+

complex must have in the current case of the full reaction. Also sins is in excellent
agreement with sO of the half-reaction, however the average hDEinsi is signi-
cantly shied with respect to hDEOi. This discrepancy is mainly due to the
different coordination shells between the Ru3+ complexes, which contain
a hydroxo ligand in the current full reaction case, while for the half-reaction none
of the water ligands were deprotonated.

The lower panel of Fig. 4 shows the parabolic free energy prole obtained from
the P(DEdel+ins) distribution, using eqn (6) (solid black line). Note however, that
this prole is shied with respect to that of the actual electron transfer from Ru2+

to Ru3+, as we did not include the correction term, Ucorr, from eqn (10). But since
DAr ¼ 0 for the self-exchange reaction, the average hDEi must equal ldel+ins. Here
we neglect the uctuation part of the correction term, which is expected to be
small. In Fig. 4, the shied free energy curve is shown in red, together with its
counterpart of the reverse electron transfer reaction (red dashed). The obtained
reorganisation free energy, ldel+ins ¼ 1.73 eV is in reasonable agreement with
Table 2 Average and standard deviations of the computed P(DEdel), P(DEins), and
P(DEdel+ins) distributions, together with the derived redox properties using the indicated
equations

Quantity Value [eV] Equation

hDEdeli 1.23 (4)
hDEinsi 1.19 (4)
hDEdel+insi 2.42 (4)
sdel 0.19 (4)
sins 0.23 (4)
sdel+ins 0.30 (4)
DAr 0.0 (6)
l 2.42 (7)
ldel 0.73 (8)
lins 1.05 (8)
ldel+ins 1.73 (8)
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earlier estimates using constrained-DFT (1.62 eV),31 static quantum-chemistry
methods (1.95 eV),49 and experimental measurement (2.0 eV).50 Finally, the dia-
batic free energy barrier for the Ru2+/Ru3+ self-exchange reaction is computed
with eqn (9) to be DA‡d ¼ 0.43 eV.
2.3 Transition path sampling

We employed the TPS technique in combination with DFT-MD to generate in total
eight sequences of reactive trajectories of the self-exchange reaction between
a Ru2+ ion and a Ru3+ ion in water. During the initial constrained MD simulations
to generate an initial path (as explained in the Method section), not only an
electron transferred, but also a proton was donated by one of the aqua ligands of
the Ru3+ complex to the solvent. The rst four TPS sequences were generated with
this proton in the water solvent. The second four TPS sequences were generated
aer removal of the solvated proton. The rst seven sequences contain 50 reactive
trajectories. A typical “path tree” of such a sequence is shown in Fig. 5. The eighth
sequence contained 180 (accepted) paths. The acceptance ratio over all paths was
0.46. The simulation length of each forward or backward path ranged from 0.5 to
1.5 ps, as seen from the path tree.

Fig. 6 shows a cartoon of snapshots from a representative reactive trajectory.
The octahedrally coordinated ruthenium complexes are shown in ball-stick
representation (Ru is blue, O is red, and H is white), while the other solvent water
Fig. 5 One of the eight TPS “path trees”, showing the length of each path and the shooting
timewhere the next path branches off a previous one. Only the accepted paths are shown.
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Fig. 6 Five snapshots from a typical reactive trajectory showing the electron transfer
represented by the departure of its Wannier center (yellow sphere) from the Ru2+ ion
(right-hand-side blue sphere) in the left-most panel. In the second panel, the Wannier
center is approximately in the middle (t ¼ 0), and 45 fs later it arrives at the other Ru ion. A
proton from the right-hand-side hexaaqua complex is transferred via an intermediate
solvent water (fourth panel) to the other complex. Ligands and the intermediate H2O
molecule are shown in red and white ball-and-stick representation; other solvent mole-
cules are drawn as grey sticks.
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molecules are shown as grey sticks. In the rst panel the Wannier center is seen,
as a yellow sphere, to depart from the Ru2+ ion. The Ru3+ complex on the le side
has ve water ligands and one hydroxo ligand, which points toward the electron
donor complex and is hydrated by a solvent water molecule also drawn in ball-
stick representation. In the second panel, the Wannier center is halfway between
the donor and acceptor complexes, and 45 fs later the electron is taken up by the
acceptor species in panel 3. Panels 4 and 5 show the subsequent proton transfer
from the (hitherto) Ru2+ complex to the acceptor complex, via a bridging solvent
water molecule.

The distance between the Ru ions uctuates around 7 Å. The electron transfer
is in all reactive trajectories accompanied by the proton transfer, in no prefer-
ential order (as should be expected by time-reversibility). Further details of this
proton-coupled electron transfer mechanism are discussed in a separate publi-
cation;28 instead here we will focus on how we can connect the reactive trajectories
of the adiabatic electron transfer to the redox quantities from Marcus theory.

In order to perform a statistical analysis over the TPS sequences of reactive
trajectories, we have to align the trajectories by time. We take the moment of
electron transfer in each path as the zero of the time scale, which we compute by
tting the reaction coordinate values xET (see eqn (14)) along each trajectory by the
switch function f(t) ¼ tanh[a � (t � t0)], with the parameter t0 dening the
moment of electron transfer. Fig. 7 shows xET, which quanties the position of the
Wannier center, for three trajectories. Also the average xET over the sequence of
180 paths is shown (black line). The blue line shows a reactive event in which the
electron recrossed back toward the donor and again to the acceptor moiety.
However, such barrier recrossings are rather scarce in this electron transfer
process. Seen from the average xET, the actual electron transfer, that is, passing
from the reactant state denition to the product state denition takes about
102 fs.

Having aligned the trajectories, statistics of other order parameters can be
obtained from the TPS ensemble. Panels B and C of Fig. 7 show DEdel, DEins, and
DEdel+ins, computed from t ¼�0.5 to t¼ 0.5 ps. The uctuations seen in the three
individual path traces are very large just before and aer the electron transfer
event, however around t¼ 0 they all show a clear spike toward zero. Only for a few
304 | Faraday Discuss., 2016, 195, 291–310 This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Panel A: the Wannier center coordinate, xET showing the fast switch from �1 to 1
during electron transfer. Curves for three reactive trajectories are shown, together with the
path average. In path 50, a barrier recrossing is seen (blue line). Panels B and C show DEdel,
DEins, and DEdel+ins. Panel D: the solvent electrostatic potential at the Ru ion positions.
Panel E: DEdel+ins multiplied by xET (black line, left-hand-side axis) and the difference of the
electrostatic potentials between the acceptor and donor ions, fA � fD (red line, right-
hand-side axis).
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trajectories the DE values are zero at t ¼ 0, which probably means that our time
resolution was not ne enough to see this in the other trajectories. The horizontal
dashed line in panel C denotes the average hDEdel+insi ¼ 2.42 eV from the equi-
librium simulation (see also Table 2), which is an indication that our relatively
short 2–3 ps trajectories indeed connect the stable reactant and product states,
and do not sample only the top region of a free energy barrier.

Another interesting property, already suggested by Marcus, is the solvent
electrostatic potential, fx, x ¼ (D, A) acting on the donor (D) and acceptor (A) ions
respectively. These potentials are shown in panel D of Fig. 7. Here, the potentials
are approximated by summing the classical Coulomb interaction over all solvent
nuclei and associated Wannier centers using the minimum image convention
and neglecting the long-range part. The electrostatic potentials are remarkably
symmetric with respect to their switching at t ¼ 0. Note that all these order
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 291–310 | 305
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parameters show clearly the barrier recrossing event in path 50 (blue lines) in
agreement with the Wannier center position.

Both the DEdel+ins and fx quantities can be used as reaction coordinates for the
electron transfer process. The DEdel+ins parameter does not by itself distinguish
between the reactant and product states, as it does not change sign unlike the
original DE. This can be remedied by keeping track of which of the Ru ions is
involved in the electron deletion and insertion processes. Alternatively, the
DEdel+ins can be multiplied with xET, which is shown in panel E in Fig. 7 (black
line, le-hand-side axis) for the averaged quantities. For the electrostatic poten-
tial, we take the difference between fA and fD, which is also shown in panel E (red
line, right-hand-side axis). Both these combined order parameters switch
smoothly from the reactant state to the product state, crossing zero at t ¼ 0.

In Fig. 8, we show the correlation between the three order parameters, by
projecting 18 reactive trajectories, taken from the long sequence at an interval of
10, as green points and lines in pairs of the order parameters. The gap energy
DEdel+ins, multiplied with xET, is shown versus the Wannier center position, xET, in
the top panel, and versus the solvent potential difference, fA � fD, in the middle
panel. The bottom panel shows fA � fD versus xET. Starting with the top panel, we
notice that there is a strong correlation between the gap energy and the Wannier
center position, and that their relation is not linear. Since DE captures the linear
response of the solvent polarisation to the amount of charge displaced, the latter
being quantied here by xET, this is somewhat surprising. Note however, that xET
is obtained from the sampling of adiabatic electron transfer events only (see also
Fig. 1, in which the adiabatic prole deviates from the parabolic curves near the
barrier). If diabatic electron transfer events could have been included in the
statistics of xET at gap energies le and right from the center at DE ¼ 0, the curve
would have been more straight.

Note also that the uctuations seen in DE in the reactant and product states
(i.e. at xET ¼ �1 and xET ¼ 1 respectively) disappear at xET ¼ 0. In other words, not
only the average gap energy is zero at barrier crossing, but the gap energy for all
reactive trajectories is zero at barrier crossing. However, since DE (i.e. the solvent
polarisation) governs the electron position, and not the other way around, this
means that a simulation in which the electron position is xed in the middle, DE
would exhibit the same uctuations as it would in the reactant or product state,
whereas, vice versa, a simulation at xed DE ¼ 0, would show very little uctua-
tions in the electron position.

Panel B in Fig. 8 shows that there is a good, almost linear, correlation
between DE and the difference in solvent electrostatic potential. However, the
correlation with xET in panel C clearly shows that this potential difference does
not uniquely determine the electron position. This could be caused by the
approximate nature of the calculation of the electrostatic potential order
parameters here, using pairwise sums over nuclei and Wannier center
distances, but it could also mean that other interactions play a role. For
example, we found that the correlation of DE with the solvent electrostatic
potential computed using the atomic Mulliken charges would signicantly
improve when this electrostatic potential was multiplied by a factor depending
on the amount of charge transfer from the Ru ion to the aqua ligands in each
conguration (data not shown).
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Fig. 8 Correlation between the three reaction coordinations used here to describe the
electron transfer reaction. Panel A: the vertical gap energy DEdel+ins versus the Wannier
center position xET; panel B: DE

del+ins versus the difference between the electrostatic
potentials at the donor and acceptor ions fA � fD; and panel C: fA � fD versus xET. Green
crosses and lines denote the points visited along the reactive trajectories; data from 18
paths with an interval of 10 of the longest sequence is used. The black lines show the
average over all accepted paths.
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3 Conclusions

We have used transition path sampling combined with rst principles DFT-MD
simulations to investigate the proton-coupled electron transfer reaction taking
place between a pair of ruthenium(II/III) ions in aqueous solution. Until now, the
main approach to study this prototypical self-exchange reaction at the DFT level of
theory was by means of the half-reaction approach. Here, we rst applied this
approach to construct the diabatic free energy landscape and compute the overall
reaction and reorganisation free energies, based on Marcus' linear response
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 291–310 | 307
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theory of electron transfer. Next, we performed equilibrium DFT-MD simulations
of a pair of donor and acceptor ions in solution. As it is not possible for the full
reaction to sample the vertical gap energy, DE, of transferring the electron from
the donor ion to the acceptor ion, the gap energy was probed indirectly as the sum
of the energy needed to delete an electron from the donor ion, DEdel, and the
energy required to insert an electron at the acceptor ion, DEins. This allowed us to
compute the free energy proles of the full diabatic electron transfer reaction.

The reactive trajectories generated with DFT-MD/TPS remain always in the
electronic ground-state, and thus sample the adiabatic electron transfer land-
scape. To dene the stable reactant and product states, we used as the order
parameter, the position of the center of a maximally localised Wannier function
associated with the transferring electron. The moment of barrier crossing along
each path was set as the reference of the time scale to align the paths and compute
averages over the paths. In particular, we have computed the DEdel+ins along the
electron transfer reaction and also the solvent electrostatic potential at the
ruthenium ions, both of which are important ingredients in Marcus' theory of
electron transfer.

Correlating the Wannier center position with DEdel+ins shows that there is
a one-to-one mapping between the order parameters in the neighbourhood of the
transition state, where both order parameters pass through zero. This means that
the electron position is strictly governed by the value of DEdel+ins when it is close to
zero. The relation between these two order parameters was surprisingly non-
linear however, which we believe to be due to the sampling of only adiabatic
electron transfer events. Instead the correlation of the difference between the
electrostatic potential at the ruthenium ions shows uctuations in the electro-
static potential that are not different during electron transfer with respect to that
in the stable states. This suggests that the solvent electrostatic potential differ-
ence is not a very good reaction coordinate for electron transfer, as it does not
determine strictly the amount of electron transfer.
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