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Outer sphere electron transfer between two ions in aqueous solution is a rare event on the
time scale of first principles molecular dynamics simulations. We have used transition path
sampling to generate an ensemble of reactive trajectories of the self-exchange reaction
between a pair of Ru?* and Ru®* ions in water. To distinguish between the reactant and
product states, we use as an order parameter the position of the maximally localised
Wannier center associated with the transferring electron. This allows us to align the
trajectories with respect to the moment of barrier crossing and compute statistical
averages over the path ensemble. We compare our order parameter with two typical
reaction coordinates used in applications of Marcus theory of electron transfer: the
vertical gap energy and the solvent electrostatic potential at the ions.

Introduction

Electron transfer is the fundamental process in reduction and oxidation (i.e.
redox) chemistry, taking place for example in metal corrosion, fuel cell reactions,
and photo-synthesis. Early pioneering studies of the prototypical self-exchange
reaction between two metal ions in aqueous solution, as illustrated by eqn (1),

Mn+ + M*(n+l)+ N M(n+1)+ + M*n+ (1)

have been pivotal for our understanding of electron transfer processes and the
development of Marcus' theory of electron transfer.* Molecular dynamics (MD)
and Monte Carlo simulations confirmed that the free energy profiles of electron
transfer reactions consist of two intersecting parabolas, as proposed by Marcus'
theory, confirming that the solvent reorganisation during electron transfer is
indeed well-described by the linear response approximation.®**
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As with most chemical reactions, the self-exchange reaction is an activated
process, in which the system has to surpass a transition state of high (free) energy,
which renders direct sampling of an electron transfer reaction in an MD simu-
lation highly improbable. This so-called rare event problem was tackled in the
early work by using enhanced sampling techniques, such as umbrella sampling®’
or free energy perturbation,' which bias the simulation along an appropriate
reaction coordinate, for example the position of the electron.

Unfortunately, it is not so easy to bias the electron transfer process in
combination with a quantum-chemical many-electron description of the system,
such as with density functional theory (DFT). The reason is that the position of the
excess electron, in the reactant state, the product state, or somewhere in between,
is governed by the configurational state of the polar solvent environment, which is
difficult to capture with a reaction coordinate. The method of constrained-
DFT*>™* offers alternatively the possibility to use the electron position as the
reaction coordinate, although this constraint also confines the orbital to a certain
shape.

Instead, most DFT studies on electron transfer focus on half-reactions. With
the half-reaction approach, introduced by Warshel,>'* and further developed for
DFT-MD simulation by Sprik and co-workers,"*° the redox potential and reor-
ganisation free energy is computed from the average energy needed to add
(or remove) an electron to (or from) the system containing only the solvated donor
or acceptor species. This approach has been extensively applied to investigate the
redox properties of transition metals,'*"**"** organic molecules,****** and
proteins®**” in explicit solvent. However, the half-reaction approach does not
provide direct information on the electron transfer between a donor and acceptor
species, such as their average distance, as the model only considers one of the two
species at once.

We have recently returned to the problem of direct simulation of electron
transfer between donor and acceptor species with DFT-MD.*® Using transition
path sampling (TPS) simulations,*?° we can generate an ensemble of reactive
trajectories that sample the unbiased dynamics of an electron transfer process.
Analysis of the trajectories provides unique information on the transition state
ensemble, such as the donor-acceptor distance, the solvent structure in the
transition state and the dynamics of the process. Particularly interesting would be
an analysis of relevant order parameters or collective variables that correlate with
the vertical energy gap, AE, which is the reaction coordinate used in Marcus
theory. However, direct computation of AFE is difficult within the DFT-MD simu-
lations, as it requires constraining the position of the electron.

Here, we analyse a DFT-MD/TPS ensemble of reactive trajectories of the self-
exchange reaction between a pair of Ru”* and Ru®*" ions in water solvent. Rather
than computing AE, we obtain statistics of the energy to insert or delete an
electron (AE™, AE) to the system along the reactive trajectory. We first sample
these two vertical gap energies for the pair of Ru”>" and Ru** ions in an equilibrium
simulation to reconstruct the free energy landscape, which we compare to that
obtained using the half-reaction approach. We then sample AE™ and AE® along
the reactive trajectories, and compare the sum as a reaction coordinate to the
solvent electrostatic potential and an order parameter based on the position of
the transferring electron.
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In the following, we first briefly summarise the theory of electron transfer as
applied in half-reaction simulations, we discuss the issues associated with the use
of periodic boundary conditions, and we present the computational details of our
combined transition path sampling and DFT-MD simulations. The results are
presented in three subsections covering the redox properties obtained with the
half-reaction approach, our equilibrium DFT-MD simulations of the pair of Ru**
and Ru** ions in water, and analysis of the reactive trajectories of the electron
transfer obtained with TPS. This is followed by the conclusions.

1 Methods

1.1 Theory of electron transfer

At the DFT level of theory, redox properties of ions and molecules in explicit
solvent are most conveniently computed using the half-reaction approach, which
is based on Marcus' theory of electron transfer and can be connected to the half-
reactions that take place in electrochemical cell experiments. The central quantity
to be measured is the vertical energy gap, AE, which is the energy needed to add
(or delete) an electron to (or from) the solute in a given nuclear configuration.
This gap energy plays the role of the reaction coordinate and it quantifies the state
of the polarised medium when the solute is an ion. In the case of a molecular
solute, AE also captures the state of the molecule itself. In remarkably many cases
(but not always>), the response of both the polarised medium and the molecular
solute, as measured by AE, is largely linear with respect to the amount of charge
loaded to or from the solute.
Consider the reduction of an oxidant (O) to a reductant (R),

O+e — R, (2)
and the vertical energy gap
AE = Ex(r") — Eo(r™), 3)

with E,(r"), x = (R, 0), the internal energy of the system at a nuclear configuration
r", in the reduced or oxidised state, respectively. Linear response of the system
entails that the distribution P(AE) is Gaussian, centered at an (ensemble) average
(AE), in either the reduced or oxidised state:

1 (AE - (AE),)’
exp| —
(Y 21T 20’x2

with o> the variance. The Landau free energies, as a function of the AE reaction
coordinate,

Px(AE) = > (4)

AA(AE) = —kgT In[P(AE)], (5)

must then be parabolic and give rise to Marcus' well-known diabatic free energy
landscape, which is illustrated in Fig. 1 by the dashed curves. Here, T is the
temperature and kg is Boltzmann's constant.

The overall reaction free energy is a particularly simple function of the average
gap energies when linear response holds:
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Fig.1 Schematic illustration of a parabolic free energy landscape of electron transfer. The
dashed lines depict Marcus' diabatic free energy curves, which cross at the diabatic free
energy barrier AA%. The solid line shows the adiabatic free energy profile, with a somewhat
lower barrier AAL due to the coupling of the electronic reactant and product states. The
difference between AA} and AA} is generally much smaller than depicted here. For a half-
reaction written in the conventional reduction form (egn (2)) and the definition of the
reaction coordinate, AE, from egn (3), the reaction thus takes place from right to left.

1
A, = 2 ((AE)o + (AE)), (6)
and a similar relation holds for the third key quantity in Marcus' theory, the
reorganisation free energy:

A= L (8E), — (aE),), o)

This A is the free energy associated with the relaxation of the polarised medium
into the product state after a vertical excitation, i.e. after adding an electron to the
solute at a fixed configuration. The reorganisation free energy is also associated to
the curvature of the free energy curves and to the magnitude of the fluctuations of
AE in either oxidation state:

o’

Finally, the diabatic free energy barrier, denoted in Fig. 1 at the crossing point of
the parabolas, is given as a function of the overall reaction free energy (which is
zero for a full self-exchange reaction, but not for the half-reaction) and the reor-
ganisation free energy:

. (A+n4,)
N ©)

In practice, the diabatic free energy curves are computed by sampling AE along
two equilibrium DFT-MD simulations; one in the oxidised state where the energy
needed to add an electron is computed and one in the reduced state in which the
energy to delete an electron is sampled. In Section 2.1, we will set the stage by
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applying this approach to compute the redox properties of the Ru**/Ru’* couple,
which can be compared to the extensive studies on this system by Blumberger and
Sprik.17—19,22,31

As pointed out in the introduction, the half-reaction framework cannot be so
easily applied to study directly the full reaction, i.e. the electron transfer reaction
between a donor molecule and an acceptor molecule. In the full reaction case, AE
would be the energy to bring the electron from the donor to the acceptor at a fixed
configuration. This AE can be decomposed into two terms: (1) the energy needed
to delete the electron from the donor, AE?, and (2) the energy needed to insert
the electron at the acceptor, AE™, The first term is easy to compute as long as the
transferring electron resides at the highest occupied orbital (HOMO) of the
system. But the second term cannot be computed with ground-state DFT without
additional constraints, since the electron would return to the donor in the elec-
tronic ground-state. Of course, we can compute the energy needed to insert an
electron at the acceptor before removing the electron from the donor, AE™Pefore
but that energy would contain an additional interaction energy of the inserted
electron with the other electron still at the donor, plus higher order terms in
a polarisable environment.

If we consider this additional electron interaction as a correction to the
AE™sPefore teym | the AE of moving an electron from donor to acceptor at a given
nuclear configuration can thus be computed using the half-reaction technique of
inserting an electron and deleting an electron:

AE = AE™ + AE™ + U™, (10)

Here, and hereafter, we omit the “before” superscript; that is, the AE™ refers to
the energy needed to insert an electron into the original system instead of the
system after having deleted an electron from the donor. As an initial approxi-
mation, the correction term could be taken as the Coulomb energy between an
electron centered at the donor and an electron centered at the acceptor:

1 1
yeor —

o 47'58() ‘rRuD — rRuA|

(11)

However, due to the periodic boundary conditions applied in these calculations,
the correction is somewhat more complicated, as further discussed next.

1.2 Periodic boundary conditions and finite size effects

One of the complications of DFT-MD simulations of molecular processes in
condensed materials, and in particular of half-reactions in aqueous solution, is
related to the rather small size of the systems and the periodic boundary condi-
tions to mimic the extended phase. The long-range electrostatic interactions are
computed using Ewald summation, which is of course almost always much better
than using a cutoff, but is nevertheless not without its own issues. The problem is
that the half-reaction approach is typically applied to systems that are not neutral,
and, moreover, the method requires the calculation of energy differences between
systems that carry different charges.

Although in principle a charged system embedded in infinite arrays of periodic
copies would have an infinite energy, Ewald summation removes the divergent
term in a manner that is commonly interpreted as adding a uniformly smeared
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out background charge. The density of the background charge is —g/L* and thus
depends on the box size, L. The charged system interacts with the background
charge so that the energy of the system contains a “self-interaction” term that is
a function of the box size and shape. For a charged particle in a cubic cell, this
(Wigner) self-interaction is:

__ Emg’

2L (12)

with g the charge of the particle, L is the cell dimension, and &y, = 2.837297 the
Madelung constant of a cubic periodic system. The finite size effects due to the
Ewald potential have been extensively investigated, for example for the interac-
tion energy between two ions,** for ionic hydration free energies,**>* for the
reaction and reorganisation free energies in half-reaction calculations by
Sprik,**?* and by Blumberger® on the reorganisation free energy in (full reaction)
electron transfer.

For a charged particle dissolved in a polar medium such as water, it turns out
that the self-interaction energy is largely compensated by the screening of the
solvent, effectively reducing this L~* dependent term by a factor of 1/, with ¢ the
dielectric constant, which is approximately 80 for ambient water. The L *-
dependence of the solvent comes from the repulsion of the polarised solvent in
the unit cell with that in the periodic images, which solvate the periodic image of
the charged particle in their own cell, rather than the original ion.

Although the L™ "-dependent self-interaction is thus largely canceled in a high-
dielectric solvent, higher order terms in L remain that arise from the finite size of
the ion, which creates a cavity with a radius R in the medium in all periodic
images. The total energy difference due to (Ewald) periodic boundary conditions
(PBC) with respect to that of a continuum Bohr model****3* (B) is:

Emq’ 1\ 27tg* R? _
EPBC - EB = §2L£ - 1 - E 3L3 + O(L 5) (13)

In the half-reaction approach presented above, the reaction free energy, AA,
(eqn (6)), and the reorganisation free energy, A (eqn (7)), are computed from
sampled energy differences, AE, of the system with and without an extra charge.
Sprik et al. found that for A4, the box size dependence is dominated by the L™*
term, whereas A scales as L~ '. Blumberger and Lamoureux showed that for the full
electron transfer reaction, in which the electron moves from donor to acceptor,
the box size dependence of the reorganisation free energy is much less severe.
This is perhaps not surprising, since in that case only the dipole is changed, but
not the total charge.”

The dipole term depends on the distance between the donor and the acceptor.
In Fig. 2, we show the P(AE"") (top panel) and the free energy curve computed with
eqn (5) (bottom panel) computed with simple force field MD simulations of a pair
of Ru** and Ru®*" aqua complexes, constrained at different donor-acceptor
distances, d, ranging from 6 to 14.5 A, solvated in 1000 water molecules in a cubic
box with L = 31.04 A. As expected, the curves show a clear dependence on the
donor-acceptor distance.

The black curves in Fig. 2 were computed using the insertion-deletion scheme,
with AEIs — Ap9e! + AF™™S je. the first two terms of eqn (10), which are, within

296 | Faraday Discuss., 2016, 195, 291-310 This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6fd00132g

Open Access Article. Published on 05 October 2016. Downloaded on 11/6/2025 11:37:33 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

Paper Faraday Discussions

LI B B R R LA I N B O S L |
= * AF‘ICMN
0.04 - ° AE" d=6.0 A
- AE™ d=7.5 A
~ ° AE" d=9.0 A
9 F AE" d=115 A
& 0.02f Td=145A
0.00
3 —
>
N
I F
l f—

2 3 1 S5 6 7

Fig.2 The apparent dependence on the distance between the Ru®* and Ru** ions of the
energy gap probability (top) and the free energy curves (bottom) computed with force field
MD simulations. The curves obtained from AE9®*™ (in black) are not distance dependent.
The lines are Gaussian (top) and parabolic (bottom) fits through the measured data
(circles). Dashed lines in the bottom panel are computed by adding to AE¥*NS the (<
term of eqn (10) as explained in the text.

the statistical accuracy, independent of the Ru-Ru distance. The missing U™
term of eqn (10) can be computed as the difference in AE?"1™ between a system
containing the two ruthenium point charges (without solvent) with, and without,
periodic boundary conditions. Adding this to the AE‘"™ indeed recovers
perfectly the AEFT curves, as shown by the dotted lines in the bottom panel of
Fig. 2.

For the DFT-MD simulations that we discuss hereafter, the box size depen-
dence and the U term also contain contributions due to the instantaneous
electronic polarisation. The aim of this work, however, is not to obtain quanti-
tative numbers for the redox properties, but rather, to connect the reaction
coordinates used in Marcus theory and the half-reaction method to our equilib-
rium and TPS simulations of the full electron transfer reaction.

1.3 Transition path sampling

We use an adapted 2-way TPS algorithm of shooting and shifting moves to
generate reactive trajectories, starting from an initial path obtained from a biased
MD simulations as explained hereafter. Here, reactive trajectory refers to
a trajectory that starts in the stable reactant state and ends in the stable product
state, or vice versa. The shooting move proceeds in the usual way. That is, each
new trajectory starts from a randomly chosen configuration from the previous
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trajectory, by adding small perturbations to all atomic momenta, and performing
two MD simulations, one forward and one backward (by reversing all velocities) in
time (hence, “2-way TPS”). The shooting move is accepted if the new trajectory
connects the reactant and product states, or rejected otherwise. The perturbations
are done by adding random momenta from a 5 Kelvin Maxwell-Boltzmann
distribution to the original momenta, removing any total momentum, and
rescaling to the original temperature. This resulted in an average acceptance ratio
of the shooting move of 0.46. Instead of the original shifting move, we locate the
configuration on the previous trajectory that is closest to halfway for the electron
transfer process. The shooting configuration was subsequently chosen from
a fixed number of saved restart files ranging from 1000 MD steps (i.e. 500 fs)
before and after this central time frame. By using this fixed number of restart files
to randomly choose the shooting configuration from, the TPS algorithm obeys
detailed balance. The actual trajectory length was not fixed however, and ranged
typically between 2 and 3 ps.

The initial reactive trajectory was obtained from a 1 ps constrained MD
simulation that started from an equilibrated system, in which the six ruthenium-
oxygen distances of the hexaaqua Ru®" complex were forced to decrease by 0.3 A.
By the time that the constrained coordination shell becomes smaller than that of
the (free) Ru** complex, an electron is expelled from the Ru*" complex and taken
up by the Ru** complex soon after. A second constrained simulation was initiated
from a frame just after the forced electron transfer took place, in which the six
Ru-O distances were kept constant. This second trajectory was used to generate
initial unconstrained reactive trajectories, by applying the TPS shooting move but
without perturbing the nuclear momenta.

The stable reactant and product states are defined by the numbers of d-elec-
trons at each of the ruthenium ions; six on one and five on the other, or vice versa.
Counting the number of electrons is conveniently done by transforming the
occupied orbitals into maximally localised Wannier functions®**” (MLWFs) and
computing the distances of the MLWF centers to each of the Ru ions. The MLWFs
are computed every 10 MD steps on-the-fly along each TPS trajectory. We define as
an order parameter:

£t = (dru_x — dru-x)/dRuRw> (14)

in which Ru and Ru’ denote the two Ru ions, d is the distance and X is the MLWF
that is, of the eleven MLWF centers within a cutoff distance of the Ru nuclei,
farthest away. This order parameter is practically equal to minus one in the
reactant state with the first Ru ion being 2+ and the second Ru’ ion is 3+; in the
product state with the charges reversed, £gr = 1; and during electron transfer, {gr
has a value in between. Now, we define the reactant state as the set of configu-
rations for which £¢r < —0.9 and the product state as the set of configurations for
which £gp > 0.9.

The TPS algorithm of generating reactive trajectories described here was
implemented using a bash script that would launch the forward and backward
DFT-MD simulations (further detailed below), accept or reject the trajectories,
choose a new starting configuration, perturb the momenta, and launch the next
simulations, and so forth.
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1.4 Density functional theory-based molecular dynamics

The DFT-MD simulations were performed using the CP2K software package.*® The
electronic structure part of CP2K, called QUICKSTEP,* uses the combined
Gaussian and plane-wave (GPW) method® for the calculation of forces and
energies. The GPW method is based on the Kohn-Sham formulation of density
functional theory and employs a hybrid scheme of Gaussian and plane wave
functions. First principles simulations with CP2K sample directly the Born-
Oppenheimer surface.

In the DFT-MD simulations, the norm-conserving pseudopotentials of Goe-
decker et al. (GTH)* were applied to replace the core electrons. We employed the
BLYP*»* exchange-correlation functional, augmented with Grimme's D2
dispersion correction**** to include van der Waals interactions. The BLYP-D level
of theory has been extensively used and tested by the scientific community for the
description of various structural and dynamical properties of liquid water and
aqueous solutions (see e.g. ref. 46 and 47), including the Ru*>"*" redox couple.?’
The Gaussian basis set consisted of a double-zeta valence basis set with a single
set of polarisation functions (DZVP) optimised for the use with the GTH pseu-
dopotentials. A charge density cutoff of 280 Ry was used for the auxiliary plane-
wave basis set. For the plane-wave grid, we applied the nearest neighbour
smoothing operator NN10. A CSVR thermostat*® with a time constant of 500 fs was
used to generate an NVT ensemble. The temperature was set to 300 K. Periodic
boundary conditions were applied to a cubic box with an edge length of 12.4138 A
for the simulations with two Ru ions and 64 water molecules. For the single ion
with 32 water molecules, the box dimension was 9.86 A. The simulations here
were carried out on the Dutch national supercomputer Cartesius using 24
processors in parallel.

2 Results

We first compute the redox properties of the Ru®>*/Ru®*" couple using the half-
reaction approach. Next, we investigate the pair of aqueous Ru®>* and Ru®** ions in
equilibrium. Thirdly, we analyse the reactive trajectories of the self-exchange
reaction harvested with TPS.

2.1 Redox properties using the half-reaction approach

The Ru**/Ru®*" redox couple was one of the first systems to which Sprik and co-
workers applied their half-reaction approach. Here we present the same redox
properties computed with the CP2K program at the BLYP+D2/DZVP/280 Ry level
of theory for a single ion with 32 water molecules in a cubic box with an edge of L
= 9.86 A subject to periodic boundary conditions. Two equilibrium DFT-MD
simulations were performed, one of Ru®>" and one of Ru**, with a length of 10 ps,
of which the last 5 ps were used to sample AE.

The P(AE) distributions are shown in the top-panel of Fig. 3. The histograms of
AE, shown by the circles are fitted very well by Gaussian functions (solid lines), as
expected, however, the widths of the two distributions, measured by ¢, are not
exactly the same. The Ru®>"/Ru®" system is known to obey Marcus linear response
theory rather well,"”***>%" so the deviation seen here must be due to statistical
errors.
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Fig. 3 Top panel: Vertical energy gap distributions for the Ru®* + e~ — Ru?* half-reac-
tion. The circles show the histogram values obtained from the simulation data; the solid
lines are Gaussian fit functions. Bottom panel: Free energy curves obtained from the
Gaussian functions using eqgn (5).

The derived redox properties are compiled in Table 1. The uneven standard
deviations of AE in the oxidised and reduced states leads to a significant
discrepancy between Ao and Az. We have previously seen that the fluctuations in
AE are easily underestimated in the rather short DFT-MD simulations, and that 4
computed from the averages (eqn (7)) is the safer estimate for the reorganisation
free energy.”® Our results are in reasonable agreement with the early work of
Blumberger and Sprik, although in that work an external chemical potential was
applied to enforce alignment of the minima of the parabolic curves, and the
parabola were fitted to the combined O and R data-sets resulting in a more
symmetric free energy landscape.

Table 1 Average and standard deviations of the computed P(AE) distributions using the
half-reaction approach, together with the derived redox properties using the indicated
equations

Quantity Value [eV] Equation
(AEg) -1.23 (@)
(AEo) 0.74 4
or 0.18 (@)
oo 0.22 (4)
AA, —0.24 (6)
A 0.98 )
Ix 0.64 (8)
o 0.93 (8)
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2.2 Free energy curves of the combined Ru”* and Ru** ions

Four independent DFT-MD simulations were performed for a pair of Ru** and
Ru®" ions solvated by 64 water molecules in a cubic box with L = 12.41 A subject to
periodic boundaries. These simulations had different starting configurations, but
they had in common that in all cases the Ru*" complex was deprotonated. From
two of the simulations, we removed at the start the excess proton from the solvent,
yielding a total charge of +4 for the system. The other two systems had a charge of
+5. In the latter, the extra proton diffused through the solvent via the Grotthuss
mechanisms, and was not seen to jump back onto the deprotonated ruthenium
complex during the simulation. Rather than adding explicit counter ions, which
would make the sampling more cumbersome, the system has a neutralising
uniform background counter-charge via the Ewald summation, as further
detailed in the Methods section. The simulations had a length of 50 ps, of which
the last 30 ps were used for analysis.

Fig. 4 shows in the top panel the distributions, P(AE) (red curve), P(AE™)
(blue), and P(AE*"* ™) (black). The solid lines are Gaussian functions fitted to the
histograms of the data, which are shown in circles for the system without the
solvated proton. The fitted Gaussian functions are also shown for the system with
the excess proton, with dashed lines, to illustrate that the computed distributions

20 — AEdclum _
— AEdcl

ins

F |7 AE A g

P(AE) [eV]

AA [eV]

AE [eV]

Fig.4 Top panel: Distributions of AEY®, AE™, and AE®® + AE™, computed for the Ru* +
Ru®* system (circles), which are fitted by Gaussian functions (lines). The solid lines show
the results for the 4+ charged system, from which the excess proton was removed; the
dashed line shows the results for the 5+ charged system. Bottom panel: Parabolic free
energy curve obtained from the Gaussian fit function (solid black line) using eqn (5) and the
final free energy curves (red) that are shifted based on Ageisins @s explained in the text.
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are remarkably independent from the total charge of the system; apart from
a small deviation between the blue curves, the distributions obtained from the
two systems are, considering the statistical uncertainty, equal to each other.

The distribution of the energy needed to insert an electron at the Ru®" ion is
somewhat broader than that of the energy needed to delete an electron at the Ru**
ion. This trend is in agreement with what we found earlier for the P5(AE) and
Pr(AE) distributions with the half-reaction approach (see Fig. 3), although this is
probably a coincidence. The more plausible cause for the different widths is the
different coordination shells of the Ru** and Ru** ions here, the former being
coordinated by six water ligands whereas the latter contains five water ligands and
one hydroxo ligand. This difference between the oxidised and reduced Ru ions
could indeed cause such a non-linear effect.

The first and second moments of the distributions, together with the derived
reorganisation free energies are listed in Table 2. The average energy to delete an
electron from the system is in perfect agreement with —(AEg) of the half-reaction
(Table 1) and also o matches very well. However, this must be somewhat fortu-
itous, considering the different box sizes and the effect that the nearby Ru**
complex must have in the current case of the full reaction. Also oy, is in excellent
agreement with o, of the half-reaction, however the average (AE™) is signifi-
cantly shifted with respect to (AEq). This discrepancy is mainly due to the
different coordination shells between the Ru’" complexes, which contain
a hydroxo ligand in the current full reaction case, while for the half-reaction none
of the water ligands were deprotonated.

The lower panel of Fig. 4 shows the parabolic free energy profile obtained from
the P(AEY"™) distribution, using eqn (6) (solid black line). Note however, that
this profile is shifted with respect to that of the actual electron transfer from Ru”*
to Ru*", as we did not include the correction term, U°°", from eqn (10). But since
AA, = 0 for the self-exchange reaction, the average (AE) must equal Agep+ins. Here
we neglect the fluctuation part of the correction term, which is expected to be
small. In Fig. 4, the shifted free energy curve is shown in red, together with its
counterpart of the reverse electron transfer reaction (red dashed). The obtained
reorganisation free energy, Agel+ins = 1.73 €V is in reasonable agreement with

Table 2 Average and standard deviations of the computed P(AEY®), P(AE™), and
P(AEYe™Ns) distributions, together with the derived redox properties using the indicated
equations

Quantity Value [eV] Equation
(AR 1.23 (4)
(AE™S) 1.19 (4)
(AEdetins) 2.42 (4)
Tdel 0.19 (4)
ins 0.23 (4)
Odel+ins 0.30 (4)
AA, 0.0 (6)
A 2.42 )
Adel 0.73 (8)
Ains 1.05 (8)
AchJrins 1.73 (8)

302 | Faraday Discuss., 2016, 195, 291-310 This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6fd00132g

Open Access Article. Published on 05 October 2016. Downloaded on 11/6/2025 11:37:33 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

Paper Faraday Discussions

earlier estimates using constrained-DFT (1.62 eV),*' static quantum-chemistry
methods (1.95 eV),* and experimental measurement (2.0 eV).* Finally, the dia-
batic free energy barrier for the Ru**/Ru’* self-exchange reaction is computed
with eqn (9) to be A4} = 0.43 eV.

2.3 Transition path sampling

We employed the TPS technique in combination with DFT-MD to generate in total
eight sequences of reactive trajectories of the self-exchange reaction between
aRu®" ion and a Ru®" ion in water. During the initial constrained MD simulations
to generate an initial path (as explained in the Method section), not only an
electron transferred, but also a proton was donated by one of the aqua ligands of
the Ru®* complex to the solvent. The first four TPS sequences were generated with
this proton in the water solvent. The second four TPS sequences were generated
after removal of the solvated proton. The first seven sequences contain 50 reactive
trajectories. A typical “path tree” of such a sequence is shown in Fig. 5. The eighth
sequence contained 180 (accepted) paths. The acceptance ratio over all paths was
0.46. The simulation length of each forward or backward path ranged from 0.5 to
1.5 ps, as seen from the path tree.

Fig. 6 shows a cartoon of snapshots from a representative reactive trajectory.
The octahedrally coordinated ruthenium complexes are shown in ball-stick
representation (Ru is blue, O is red, and H is white), while the other solvent water

10 —

20+~ —— - ;

cclory

30 1 - =

reactive traj
L

40 L —

S0 L 4

-2000 -1000 0 1000 2000
Time [fs)

Fig.5 One of the eight TPS "path trees”, showing the length of each path and the shooting
time where the next path branches off a previous one. Only the accepted paths are shown.
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1=0fs 4 t=55fs 1=80fs

Fig. 6 Five snapshots from a typical reactive trajectory showing the electron transfer
represented by the departure of its Wannier center (yellow sphere) from the Ru2* ion
(right-hand-side blue sphere) in the left-most panel. In the second panel, the Wannier
center is approximately in the middle (t = 0), and 45 fs later it arrives at the other Ru ion. A
proton from the right-hand-side hexaaqua complex is transferred via an intermediate
solvent water (fourth panel) to the other complex. Ligands and the intermediate H,O
molecule are shown in red and white ball-and-stick representation; other solvent mole-
cules are drawn as grey sticks.

molecules are shown as grey sticks. In the first panel the Wannier center is seen,
as a yellow sphere, to depart from the Ru>" ion. The Ru** complex on the left side
has five water ligands and one hydroxo ligand, which points toward the electron
donor complex and is hydrated by a solvent water molecule also drawn in ball-
stick representation. In the second panel, the Wannier center is halfway between
the donor and acceptor complexes, and 45 fs later the electron is taken up by the
acceptor species in panel 3. Panels 4 and 5 show the subsequent proton transfer
from the (hitherto) Ru** complex to the acceptor complex, via a bridging solvent
water molecule.

The distance between the Ru ions fluctuates around 7 A. The electron transfer
is in all reactive trajectories accompanied by the proton transfer, in no prefer-
ential order (as should be expected by time-reversibility). Further details of this
proton-coupled electron transfer mechanism are discussed in a separate publi-
cation;*® instead here we will focus on how we can connect the reactive trajectories
of the adiabatic electron transfer to the redox quantities from Marcus theory.

In order to perform a statistical analysis over the TPS sequences of reactive
trajectories, we have to align the trajectories by time. We take the moment of
electron transfer in each path as the zero of the time scale, which we compute by
fitting the reaction coordinate values gy (see eqn (14)) along each trajectory by the
switch function f{t) = tanh[a x (¢ — %y)], with the parameter ¢, defining the
moment of electron transfer. Fig. 7 shows £, which quantifies the position of the
Wannier center, for three trajectories. Also the average égr over the sequence of
180 paths is shown (black line). The blue line shows a reactive event in which the
electron recrossed back toward the donor and again to the acceptor moiety.
However, such barrier recrossings are rather scarce in this electron transfer
process. Seen from the average £gr, the actual electron transfer, that is, passing
from the reactant state definition to the product state definition takes about
10” fs.

Having aligned the trajectories, statistics of other order parameters can be
obtained from the TPS ensemble. Panels B and C of Fig. 7 show AE?, AE™ and
AETns computed from ¢ = —0.5 to ¢ = 0.5 ps. The fluctuations seen in the three
individual path traces are very large just before and after the electron transfer
event, however around ¢ = 0 they all show a clear spike toward zero. Only for a few
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Fig. 7 Panel A: the Wannier center coordinate, £égt showing the fast switch from —1to 1
during electron transfer. Curves for three reactive trajectories are shown, together with the
path average. In path 50, a barrier recrossing is seen (blue line). Panels B and C show AE®®!,
AE™, and AE®®™I™ panel D: the solvent electrostatic potential at the Ru ion positions.
Panel E: AE9*1™s myltiplied by £¢t (black line, left-hand-side axis) and the difference of the
electrostatic potentials between the acceptor and donor ions, ¢4 — ¢p (red line, right-
hand-side axis).

trajectories the AE values are zero at ¢ = 0, which probably means that our time
resolution was not fine enough to see this in the other trajectories. The horizontal
dashed line in panel C denotes the average (AE"™) = 2.42 eV from the equi-
librium simulation (see also Table 2), which is an indication that our relatively
short 2-3 ps trajectories indeed connect the stable reactant and product states,
and do not sample only the top region of a free energy barrier.

Another interesting property, already suggested by Marcus, is the solvent
electrostatic potential, ¢,, x = (D, A) acting on the donor (D) and acceptor (A) ions
respectively. These potentials are shown in panel D of Fig. 7. Here, the potentials
are approximated by summing the classical Coulomb interaction over all solvent
nuclei and associated Wannier centers using the minimum image convention
and neglecting the long-range part. The electrostatic potentials are remarkably
symmetric with respect to their switching at ¢ = 0. Note that all these order
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parameters show clearly the barrier recrossing event in path 50 (blue lines) in
agreement with the Wannier center position.

Both the AE%™™ and ¢, quantities can be used as reaction coordinates for the
electron transfer process. The AE%™™ parameter does not by itself distinguish
between the reactant and product states, as it does not change sign unlike the
original AE. This can be remedied by keeping track of which of the Ru ions is
involved in the electron deletion and insertion processes. Alternatively, the
AEYM can be multiplied with £gr, which is shown in panel E in Fig. 7 (black
line, left-hand-side axis) for the averaged quantities. For the electrostatic poten-
tial, we take the difference between ¢, and ¢p, which is also shown in panel E (red
line, right-hand-side axis). Both these combined order parameters switch
smoothly from the reactant state to the product state, crossing zero at t = 0.

In Fig. 8, we show the correlation between the three order parameters, by
projecting 18 reactive trajectories, taken from the long sequence at an interval of
10, as green points and lines in pairs of the order parameters. The gap energy
Agdettins multiplied with £gr, is shown versus the Wannier center position, &gy, in
the top panel, and versus the solvent potential difference, ¢, — ¢p, in the middle
panel. The bottom panel shows ¢ — ¢p versus Egr. Starting with the top panel, we
notice that there is a strong correlation between the gap energy and the Wannier
center position, and that their relation is not linear. Since AE captures the linear
response of the solvent polarisation to the amount of charge displaced, the latter
being quantified here by £gr, this is somewhat surprising. Note however, that gy
is obtained from the sampling of adiabatic electron transfer events only (see also
Fig. 1, in which the adiabatic profile deviates from the parabolic curves near the
barrier). If diabatic electron transfer events could have been included in the
statistics of £gr at gap energies left and right from the center at AE = 0, the curve
would have been more straight.

Note also that the fluctuations seen in AE in the reactant and product states
(i.e. at Egp = —1 and &g = 1 respectively) disappear at &g = 0. In other words, not
only the average gap energy is zero at barrier crossing, but the gap energy for all
reactive trajectories is zero at barrier crossing. However, since AE (i.e. the solvent
polarisation) governs the electron position, and not the other way around, this
means that a simulation in which the electron position is fixed in the middle, AE
would exhibit the same fluctuations as it would in the reactant or product state,
whereas, vice versa, a simulation at fixed AE = 0, would show very little fluctua-
tions in the electron position.

Panel B in Fig. 8 shows that there is a good, almost linear, correlation
between AE and the difference in solvent electrostatic potential. However, the
correlation with £gr in panel C clearly shows that this potential difference does
not uniquely determine the electron position. This could be caused by the
approximate nature of the calculation of the electrostatic potential order
parameters here, using pairwise sums over nuclei and Wannier center
distances, but it could also mean that other interactions play a role. For
example, we found that the correlation of AE with the solvent electrostatic
potential computed using the atomic Mulliken charges would significantly
improve when this electrostatic potential was multiplied by a factor depending
on the amount of charge transfer from the Ru ion to the aqua ligands in each
configuration (data not shown).
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Fig. 8 Correlation between the three reaction coordinations used here to describe the
electron transfer reaction. Panel A: the vertical gap energy AEYHINS versys the Wannier
center position £er; panel B: AE%YNS versys the difference between the electrostatic
potentials at the donor and acceptor ions ¢ — ¢p; and panel C: ¢ — ¢p versus Egt. Green
crosses and lines denote the points visited along the reactive trajectories; data from 18
paths with an interval of 10 of the longest sequence is used. The black lines show the
average over all accepted paths.

3 Conclusions

We have used transition path sampling combined with first principles DFT-MD
simulations to investigate the proton-coupled electron transfer reaction taking
place between a pair of ruthenium(n/m) ions in aqueous solution. Until now, the
main approach to study this prototypical self-exchange reaction at the DFT level of
theory was by means of the half-reaction approach. Here, we first applied this
approach to construct the diabatic free energy landscape and compute the overall
reaction and reorganisation free energies, based on Marcus' linear response
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theory of electron transfer. Next, we performed equilibrium DFT-MD simulations
of a pair of donor and acceptor ions in solution. As it is not possible for the full
reaction to sample the vertical gap energy, AE, of transferring the electron from
the donor ion to the acceptor ion, the gap energy was probed indirectly as the sum
of the energy needed to delete an electron from the donor ion, AE®! and the
energy required to insert an electron at the acceptor ion, AE™, This allowed us to
compute the free energy profiles of the full diabatic electron transfer reaction.

The reactive trajectories generated with DFT-MD/TPS remain always in the
electronic ground-state, and thus sample the adiabatic electron transfer land-
scape. To define the stable reactant and product states, we used as the order
parameter, the position of the center of a maximally localised Wannier function
associated with the transferring electron. The moment of barrier crossing along
each path was set as the reference of the time scale to align the paths and compute
averages over the paths. In particular, we have computed the AEY"* ™ along the
electron transfer reaction and also the solvent electrostatic potential at the
ruthenium ions, both of which are important ingredients in Marcus' theory of
electron transfer.

Correlating the Wannier center position with AEY™™ shows that there is
a one-to-one mapping between the order parameters in the neighbourhood of the
transition state, where both order parameters pass through zero. This means that
the electron position is strictly governed by the value of AE9°"*1™ when it is close to
zero. The relation between these two order parameters was surprisingly non-
linear however, which we believe to be due to the sampling of only adiabatic
electron transfer events. Instead the correlation of the difference between the
electrostatic potential at the ruthenium ions shows fluctuations in the electro-
static potential that are not different during electron transfer with respect to that
in the stable states. This suggests that the solvent electrostatic potential differ-
ence is not a very good reaction coordinate for electron transfer, as it does not
determine strictly the amount of electron transfer.

Acknowledgements

This work is part of the Industrial Partnership Programme (IPP) ‘Computational
sciences for energy research’ of the Foundation for Fundamental Research on
Matter (FOM), which is part of the Netherlands Organisation for Scientific
Research (NWO). This research programme is co-financed by Shell Global Solu-
tions International B.V. The calculations were carried out on the Dutch national e-
infrastructure with the support of the SURF Cooperative.

References

1 R. A. Marcus, J. Chem. Phys., 1956, 24, 966.

2 R. A. Marcus, J. Chem. Phys., 1956, 24, 979-989.

3 R. A. Marcus, Discuss. Faraday Soc., 1960, 29, 21-31.

4 R. A. Marcus, J. Chem. Phys., 1965, 43, 679-701.

5 A. Warshel, J. Phys. Chem., 1982, 86, 2218.

6 J. K. Hwang and A. Warshel, J. Am. Chem. Soc., 1987, 109, 715.

7 R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein and R. W. Impey,
J. Chem. Phys., 1988, 89, 3248-3257.

308 | Faraday Discuss., 2016, 195, 291-310 This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6fd00132g

Open Access Article. Published on 05 October 2016. Downloaded on 11/6/2025 11:37:33 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

Paper Faraday Discussions

8 E. A. Carter and J. T. Hynes, J. Phys. Chem., 1989, 93, 2184-2187.
9 M. Tachiya, J. Phys. Chem., 1989, 93, 7050-7052.

10 G. King and A. Warshel, J. Chem. Phys., 1990, 93, 8682.

11 J. S. Bader, R. A. Kuharski and D. Chandler, J. Chem. Phys., 1990, 93, 230-236.

12 Q. Wu and T. Van Voorhis, Phys. Rev. Lett., 2005, 72, 024502.

13 H. Oberhofer and J. Blumberger, J. Chem. Phys., 2009, 131, 064101.

14 T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng and Q. Wu,
Annu. Rev. Phys. Chem., 2010, 61, 149-170.

15 I Tavernelli, R. Vuilleumier and M. Sprik, Phys. Rev. Lett., 2002, 88, 213002.

16 J. Blumberger, L. Bernasconi, I. Tavernelli, R. Vuilleumier and M. Sprik, J. Am.
Chem. Soc., 2004, 126, 3928-3938.

17 J. Blumberger and M. Sprik, J. Phys. Chem. B, 2005, 109, 6793-6804.

18 J. Blumberger and M. Sprik, Theor. Chem. Acc., 2006, 115, 113-126.

19 R. Ayala and M. Sprik, J. Chem. Theory Comput., 2006, 2, 1403-1415.

20 F. Costanzo, M. Sulpizi, R. G. D. Valle and M. Sprik, J. Chem. Phys., 2011, 134,
244508.

21 P. H.-L. Sit, M. Cococcioni and N. Marzari, Phys. Rev. Lett., 2006, 97, 028303.

22 J. Blumberger and G. Lamoureux, Mol. Phys., 2008, 106, 1597-1611.

23 J. VandeVondele, R. Lynden-Bell, E. J. Meijer and M. Sprik, J. Phys. Chem. B,
2006, 110, 3614-3623.

24 J. Cheng, M. Sulpizi and M. Sprik, J. Chem. Phys., 2009, 131, 154504.

25 M. Kili¢ and B. Ensing, J. Chem. Theory Comput., 2013, 9, 3889-3899.

26 J. Blumberger and M. L. Klein, J. Am. Chem. Soc., 2006, 128, 13854.

27 J. Blumberger, Phys. Chem. Chem. Phys., 2008, 10, 5651.

28 B. Ensing, Manuscript submitted.

29 P. G. Bolhuis, D. Chandler, C. Dellago and P. L. Geissler, Annu. Rev. Phys.
Chem., 2002, 53, 291-318.

30 C. Dellago and P. G. Bolhuis, Mol. Simul., 2004, 30, 795-799.

31 H. Oberhofer and J. Blumberger, Angew. Chem., 2010, 122, 3713-3716.

32 F. Figueirido, G. S. Del Buono and R. M. Levy, J. Chem. Phys., 1995, 103, 6133.

33 G. Hummer, L. R. Pratt and A. E. Garcia, J. Phys. Chem., 1996, 100, 1206-1215.

34 G. Hummer, L. R. Pratt and A. E. Garcia, J. Chem. Phys., 1997, 107, 9275-9277.

35 P. H. Hiinenberger and J. A. McCammon, J. Chem. Phys., 1999, 110, 1856-1872.

36 N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza and D. Vanderbilt, Rev. Mod.
Phys., 2012, 84, 1419.

37 A. Ambrosetti and P. L. Silvestrelli, Introduction to Maximally Localized
Wannier Functions, in Reviews in Computational Chemistry, ed. A. L. Parrill
and K. B. Lipkowitz, John Wiley & Sons, Inc, Hoboken, NJ, 2016, vol. 29, ch. 6.

38 The CP2K developers group, http://www.cp2k.org.

39 J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and
J. Hutter, Comput. Phys. Commun., 2005, 167, 103-128.

40 G. Lippert, J. Hutter and M. Parrinello, Mol. Phys., 1997, 92, 477-488.

41 S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B: Condens. Matter Mater. Phys.,
1996, 54, 1703.

42 A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.

43 C.T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys.,
1988, 37, 785-789.

44 S. Grimme, J. Comput. Chem., 2004, 25, 1463-1473.

45 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 291-310 | 309


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6fd00132g

Open Access Article. Published on 05 October 2016. Downloaded on 11/6/2025 11:37:33 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

Faraday Discussions Paper

46 J. Schmidt, J. VandeVondele, I.-F. W. Kuo, D. Sebastiani, J. I. Siepmann,
J. Hutter and C. J. Mundy, J. Phys. Chem. B, 2009, 113, 11959-11964.

47 M. ]. Gillan, D. Alfe and A. Michaelides, J. Chem. Phys., 2016, 144, 130901.

48 G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 2007, 126, 014101.

49 F. P. Rotzinger, J. Chem. Soc., Dalton Trans., 2002, 719-728.

50 P. Bernhard, L. Helm, A. Ludi and A. E. Merbach, J. Am. Chem. Soc., 1985, 107,
312-317.

310 | Faraday Discuss., 2016, 195, 291-310 This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6fd00132g

	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory

	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory

	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory
	Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory




