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Mechanisms of rare transitions between long-lived stable states are often analyzed in
terms of commitment probabilities, determined from swarms of short molecular
dynamics trajectories. Here, we present a computer simulation method to determine
rate constants from such short trajectories combined with free energy calculations. The
method, akin to the Bennett—Chandler approach for the calculation of reaction rate
constants, requires the definition of a valid reaction coordinate and can be applied to
both under- and overdamped dynamics. We verify the correctness of the algorithm
using a one-dimensional random walker in a double-well potential and demonstrate its
applicability to complex transitions in condensed systems by calculating cavitation rates
for water at negative pressures.

1 Introduction

Many processes occurring in molecular systems are dominated by rare transitions
between long-lived states.” Examples include nucleation during first-order phase
transitions, chemical reactions in solution, and conformational changes of bio-
logical macromolecules. Understanding the molecular mechanism of such tran-
sitions is challenging due to the large number of interacting degrees of freedom
and the resulting complex collective behavior. In analyzing rare transitions in
complex systems, the goal is to find a reaction coordinate, i.e., a dynamically
meaningful variable that captures the essential physics of the transition and is
capable of quantifying its progress. Once a reaction coordinate is known it may be
used to construct low-dimensional mechanistic models®* and, furthermore,
enhance the sampling of transition pathways and the calculation of rate
constants.>™®

A good reaction coordinate should be able to tell us what is likely to happen
next. Hence, the quality of a reaction coordinate can be assessed in terms of the
committor, .e., the probability of a given configuration to first reach the product
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rather than the reactant region. In fact, it has been noted®™** that the committor
itself is the perfect reaction coordinate since, by its very definition, it measures
the progress of reaction. However, knowledge of the committor as a function of
the configuration does not automatically yield any insight into the nature of the
collective variables that are relevant for the transition. Nevertheless, the com-
mittor is very useful in the analysis of reaction mechanisms, because it permits to
test reaction coordinates postulated based on physical reasoning or on the
analysis of reactive trajectories.’>'* Also, several methods for the automatic
extraction and optimization of reaction coordinates based on the committor have
been proposed.®**"”

From a good reaction coordinate one expects that its value completely deter-
mines the committor, or, in other words, that iso-surfaces of the reaction coor-
dinate are also iso-surfaces of the committor. Whether this is the case can be
tested by computing the committor for configurations with a given value of the
reaction coordinate. This can be done by initiating multiple short trajectories
from these configurations and counting how many of them reach the product
state before the reactant state. Frequently, such calculations are combined with
an estimate of the free energy as a function of the reaction coordinate, which,
provided the reaction coordinate reflects the underlying mechanism, provides
information on the nature of the transition state, i.e., of the dynamical bottleneck
the system needs to cross during the transition. If committor calculations are
carried out also near the transition state region, the dynamical information ob-
tained from the fleeting trajectories can be combined with the free energy land-
scape to determine rate constants for the transition, as has been recently
suggested by Daru and Stirling.** Their divided saddle theory, which may be
viewed as generalization of the celebrated Bennett-Chandler method for the
calculation of rate constants,"?® provides an efficient way to determine rate
constants by post-processing information harvested in free energy and committor
calculations.

In this article, we present an alternative way to extract reaction rate constants
from committor trajectories and the free energy profile. Like the Bennett-
Chandler method and the divided saddle theory, the method is based on
a factorization of the rate constant expression into two factors, one that can be
expressed in terms of the free energy and another one that contains dynamical
information. In our approach, the factorization is applied on the level of the time
correlation function of the populations of the stable states between which the
transition occurs. From the linear regime of this correlation function the rate
constant is then extracted. Since the time correlation function is considered
instead of the reactive flux, which requires a well-defined time-derivative of the
reaction coordinate at the interface, the method can be applied equally well to
the under- and over-damped case. The shape of the time correlation function,
which is evaluated from the committor trajectories, provides additional insight
into the barrier crossing dynamics. In the following, we will first outline the
algorithm (details of the derivation are provided in the Appendix) and then
demonstrate the application of the method to two test cases: a Brownian walker
in a one-dimensional double well potential and cavitation of water at negative
pressures.
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2 S-shooting algorithm

The goal of the algorithm presented here is to determine the rate constant of
transitions between two long-lived states, A and B, which can be viewed as the
reactant and the product state, respectively. We assume that we are able to
distinguish between these two states using a reaction coordinate g(x) that tracks
the progress of the transition, i.e., a suitable collective variable defined for each
microscopic configuration x. In practice, g(x) can vary considerably in its
complexity depending on the investigated system: it can be as simple as a Carte-
sian coordinate in cases where the underlying (free) energy landscape is known
(as is the case for a Brownian walker in a double well potential in Section 3.1) or
can be based upon detecting the largest cluster of a nucleating phase in the case
of first-order phase transitions (see Section 3.2).

2.1 Time correlation function and reaction rate constant

The method presented here is rooted in the Bennett-Chandler approach,*?* in
which the transition rate constant is expressed in terms of the time correlation
function of the populations of the stable states. To introduce this correlation
function, we first define the characteristic functions for states A and B, which
indicate if the system is in the respective state or not,

{1 if xed

ha(x) = 0 else

(1)
and hg(x) is defined analogously for region B. In all cases considered in this work,
the underlying free energy landscapes determining the behavior of the systems
exhibit a barrier dividing the two states. We assume that the regions A and B
correspond to the ranges A = (— =, g,) and B = (gg, ®) of the reaction coordinate,
respectively, and g, < gg. Accordingly, we define the characteristic functions as
ha(x) =1 — 0[q(x) — ga] and hg(x) = 1 — 0[qs — q(x)], where 6(q) is the Heaviside
step function. The time correlation function

(ha(0)hg(2))
(ha)

encodes the conditional probability to find the system in B at time ¢ provided it
was in A at time 0. In the above expression, %z(¢) is a shorthand for A(x,), where x,
is the microscopic state of the system at time ¢, and the angular brackets (...)
denote equilibrium averages. The equilibrium probability of finding the system in
A can be expressed as

Cag(t) = (2)

dxe PN}, (5 qA
_ Jdxe A () :J dge #F @, 3)

{ha) = T dxe #H0)

—®

where 8 = 1/kgT with the Boltzmann constant kg and temperature T, and H(x) is
the total energy of the system. The free energy F(q) is related to the probability
density p(q) = (6[g — gq(x)]) of the reaction coordinate by F(q) = —kgT In p(g). After
initial transient behavior related to the details of the dynamics and the specific
definition of the stable states, the time correlation function Cyg(?) is expected to
enter a linear regime and its time derivative gives the reaction rate constant kg,
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dCag(?)
—a (4)

kAB =

The rate constant kg, for the inverse reaction from B to A is obtained by
applying detailed balance, kgs = kag(%a)/(hs). Together, the forward and back-
ward rate constants determine the reaction time T, = (kag + kga) ', the time scale
at which a non-equilibrium population of states A and B decays to equilibrium.

2.2 S-ensemble

The S-shooting algorithm presented here introduces an additional region, S,
located such that any trajectory transitioning from A to B must cross S (see Fig. 1).
As illustrated in the figure, there are various possibilities to define region S, which
plays essentially the same role as the saddle region in divided saddle theory."® If A
and B are adjacent and separated by a dividing surface, S could be located entirely
in A or B or include parts of both regions. In this case, it is only required that the
dividing surface is part of S. If regions A and B are not adjacent but rather
separated from each other, region S can be in A or B or somewhere in between.
The only requirement is that no trajectory can connect A with B without visiting S.
Although the particular definition of S does not affect the validity of the expres-
sions we will derive in the following, its particular location will have an effect on
the statistical accuracy of the rate constant estimation. To make the rate calcu-
lation efficient, region S should include the transition state region, from which
both stable states are accessible with non-vanishing probability.

Since any trajectory which gives a non-zero contribution to the correlation
function Cap(t) has at least one configuration in S by construction, it should be
possible to express Cyp(2) as path average in the ensemble of trajectories touching
S. We call this ensemble of trajectories the S-ensemble. In the following we
consider discretized trajectories x(t) = {xo, X1, Xy, -*-, xp} with fixed length © = LAt
consisting of L + 1 configurations separated by the time step A¢. Such trajectories
may result, for instance, from a molecular dynamics simulation. The probability

a) \ b) A\ g\ W\
\\\ \\\ \ O\ \ \ \ \
B Vo \

\ S \.\ \\\ \ \ \ \
\ \ \\ \\ \ \ \ \
\ \ \ ‘\ \
| \ |

Fig. 1 Schematic representation of the S-shooting approach. In addition to the reactant
state, g(x) < ga and the product state, g(x) > gg, we introduce a state S, defined by g2"" <
g(x) < g2"®, which is chosen such that any trajectory crossing from A to B or vice versa must
cross S. As long as this criterion is obeyed, any arrangement of A, B and S is valid. (a)
Regions A and B are separated by a dividing surface (dashed line) and S overlaps with both
stable states. Regions defined in this manner are used to obtain cavitation rates in water
under tension in Section 3.2. (b) Region S is located between the stable states A and B,
adjacent to both. (c) Region S is located between the stable states A and B, where these
regions are separated by areas not corresponding to any of the three states. We employ
this setup to compute the reaction rate constant for a Brownian walker in a double-well
potential in Section 3.1.
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density Ps[x(t)] of trajectories x(t) that have at least one configuration in S is then

given by

_ _ Px(@)]Hs[x(7)] 5)
J () Plx ()] Hs[x(7)]”

Ps[x(1)]

where [ @x(t) indicates a summation over all trajectories x(r) and the path
function Hg[x(t)] gives unity if the trajectory x(r) has at least one configuration in S
and zero otherwise. The integral in the denominator on the right-hand side of the
equation normalizes the distribution. In the above equation,
I-1
Plx(7)] = p(xo) Hp(xi—>xi+1) is the probability of a trajectory x(t) in the uncon-
i=0

strained ensemble of trajectories. In writing this expression, we have assumed
that the initial conditions x, are distributed according to the equilibrium prob-
ability density p(x,), and that the dynamics are Markovian such that the total path
probability can be written as the product of short time transition probabilities
plx; = xu4). In the ensemble of eqn (5), the path indicator function Hg[x(7)]
assigns a vanishing statistical weight to any trajectory x() that has no point in S,
thereby restricting the S-ensemble to trajectories visiting S.

As shown in detail in Appendix A.1, the time correlation function Cyg(¢) can be
expressed in terms of path averages in the S-ensemble,

L+1 (hs)
CAB(Z) <hA(0)hB(Z)>S <NS [X(T)Ds <hA> . (6)

Here, (...)s denotes a path average over trajectories x(t) in the S-ensemble and
Ng[x(7)] is the number of configurations of x(t) in S (out of L + 1 total configura-
tions). The characteristic function /g for region S is defined analogously to eqn (1).
Conveniently, all quantities appearing in the equation above are either obtained
from a free energy computation along g, namely (%,) and (ks), or from sampling
the trajectories touching S. Note that by considering trajectories of length 7 in the
S-ensemble, the path average (4(0)h5(t))s appearing in eqn (6) can be evaluated
for all times 0 = ¢t = 7.

2.3 Sampling the S-ensemble

In order to make the equation above useful for the calculation of the time
correlation function Cup(t), and hence for computing the transition rate
constant k,g, one needs an efficient way to sample the S-ensemble of trajec-
tories. The ratio (hs)/(ha) of equilibrium probabilities needed in eqn (6) can be
obtained by free energy calculation methods, e.g., umbrella sampling. By
doing so, one also obtains a set of configurations x; € S distributed according
to their equilibrium probabilities. Each of these configurations can be viewed
as a time-slice of a path which has at least one configuration in S, and
consequently these configurations can be used as shooting points from which
trajectories touching S are generated. So, let us consider the following algo-
rithm to create trajectories of length L + 1 that are guaranteed to have at least
one configuration in S:

Step 1. Generate a state x in S from the equilibrium probability distribution
restricted to S,

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 195, 345-364 | 349
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 p(x)hs(x)
P50) = Tl () )

Step 2. Select an integer number n between 0 and L at random. The state x
created in the previous step is now considered to be x,, that is, the nth configu-
ration of the trajectory to be created.

Step 3. Starting from x,, perform L — n dynamics steps forward and n steps
backward in time to create a trajectory starting at x, which consists of L + 1
configurations.

The algorithm outlined above can generate all possible trajectories which have
at least one configuration in S and, as such, all trajectories occurring in the
desired S-ensemble. However, a closer analysis of the probability to generate
a particular trajectory x(t) using this procedure indicates that the resulting
trajectories are not distributed according to the path probability density Ps[x(7)].
Rather, they are distributed according to a path probability density Pg[x(t)], which
gives a larger statistical weight to trajectories with many configurations lying in S.
Since a trajectory x(tr) with Ng[x(t)] configurations in S has Ng[x(t)] possible
shooting points from which it can be generated and all of them are selected with
the same probability, the probability of x(t) is proportional to Ng[x(7)], i.e., Pg[x(7)]
o Ng[x(t)]Ps[x(7)]. In order to account for the different weights assigned to
trajectories by the procedure outlined above, eqn (6) needs to be modified to
recover the correlation function Cyp(t) in terms of averages in the ensemble of
trajectories produced by the algorithm:

Can(t) = (L + 1)<hA(0)hB([)> (hs)

NS @] /o Uha) ®

Here, (...) denotes an average in the ensemble Pg[x(t)] generated by the algo-
rithm. A detailed derivation of this result is provided in Appendix A.2.

So far, we have assumed that the starting points x € S harvested from free
energy calculation methods are distributed according to their Boltzmann weight.
However, in many cases these configurations are sampled under the influence of
a bias, for instance by employing a parabolic potential in umbrella sampling. By
expressing the time correlation function Cap(t) in terms of path averages over the
ensemble Pyx(7)] of trajectories generated by shooting from points obtained
using a bias potential, eqn (8) can be easily generalized (see Appendix A.3).

2.4 Improving sampling by shifting the pathway origins

The computation of the correlation function Cap(¢) in the ensemble Pg[x(t)] can be
performed more efficiently by treating long trajectories as a collection of shorter
pathways with shifted starting points. Imagine generating one pathway consisting
of 2L + 1 configurations from a starting configuration x in S by propagating L steps
in the forward and in the backward direction. From the resulting long trajectory,
one can extract a total L + 1 shorter trajectories of length L + 1, one starting in x,,
one in x; and so on up to the trajectory starting at the shooting point x;, = x (see
Fig. 2). Each of these trajectories contains at least one point in S, namely the
shooting point x, and is thus a member of the desired ensemble. Moreover, each
of the resulting trajectories is created with the same probability by the algorithm
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Fig.2 Along pathway consisting of 2L + 1 time-slices (top) can be viewed as the envelope
of L + 1 trajectories of length L (below). Note that each of the paths contains at least one

configuration in S, namely the original shooting point x, and is thus a member of the
S-ensemble.

(see eqn (28) in the Appendix), so one can simply average over these pathways by
way of the improved algorithm outlined below:
Step 1. Generate a state x from the probability distribution

p(x)hs(x)

P = T ap(os ()

9

Step 2. Starting from x, perform L dynamics steps forward and L steps back-
ward in time. Here, 1 = LAt is the maximum length for which the correlation
function Cag(f) is to be computed. In practice, L should be chosen to be sulffi-
ciently large such that the system commits to either state A or state B when the
trajectory is initiated from a point inside S.

Step 3. Run over all L + 1 possible trajectories that still envelop the original
shooting point x;, with the initial points x,...,x;, and compute Ng[x(t)] for each
trajectory.

Step 4. Update the path average appearing in eqn (8) and repeat.

Once the path average (1,(0)hg(t)/Ns[x(1)])c has been determined according to
this method, it can be combined with the ratio (4s)/(%,), determined from the free
energy calculation, to yield the time correlation function Cap(t). The transition
rate constant k,p is then obtained from Cap(¢) by numerical differentiation (or fit
of a straight line) in its linear regime (provided it exists).

3 Results and discussion
3.1 Brownian walker in a double-well

We demonstrate the algorithm by applying it to a simple model for an activated
process, namely, a one-dimensional Brownian walker in a double-well potential.
For this model, the correlation function (%,(0)g(t))s can be computed in a direct
simulation, providing a point of comparison to the results of biased and unbiased
S-shooting. The system is supposed to obey over-damped Langevin dynamics,

Xip1 = X; + BDF(x,)At + V2DA(E, (10)
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where g is the inverse temperature, D is the diffusion constant, F(x) = —dU(x)/dx is
the force exerted on the particle by the underlying double-well potential

Ux) = (* = 1)%, (11)

and ¢ is delta-correlated Gaussian white noise with zero mean and unit variance.
The chosen parameters are D = 1.0, 3 = 4.0 and At = 0.001. The regions A, S and B
are defined as x < —0.4, —0.1 < x < 0.1 and 0.4 < x, respectively (a schematic
representation of the chosen region boundaries is shown in Fig. 1c).

As a reference, we obtain the correlation function (f,(0)hp(¢))s from a single
long trajectory produced by a straightforward Brownian dynamics simulation of
5 x 10° time steps. This is done by averaging over all trajectory segments of length
7 = 0.5 with at least one point in S. Then, we compute the correlation function
(ha(0)hg(2))s by S-shooting, integrating forward and backward in time from points
in S sampled by a Monte Carlo simulation with random displacements drawn
from a Gaussian distribution. The whole procedure was repeated by carrying out
this Monte Carlo simulation under the influence of a bias Uy = x%/2, thereby
obtaining the starting points for biased S-shooting. In terms of averages obtained
in the ensemble of trajectories sampled by the algorithm, the correlation function
is given by

(7 (0)15(1)/ Ns[x(7)])

<hA(0)hB(t)>S - <1/Ns[x(f)]>(; (12)
in the case without bias [see eqn (32)] and by
<hA(0)hB([)>s _ <hA(0)hB(I)/B[X(T)]>B (13)

(1/Blx()])y

in the case with bias [see eqn (40)].

The agreement between the two variants of S-shooting and the straightforward
simulation is shown in Fig. 3 and 4. After an initial transient, the correlation
function (h,(0)hg(f))s enters a linear regime. Consequently, its time derivative
exhibits a plateau whose value can be used in the estimate for the reaction rate
constant k,g. Using the averages (hs) = 0.00407 and (%,) = 0.487 obtained from

T T T T T T T T T
Brownian dynamics

S-shooting (unbiased)
0.1k S-shooting (bias)

0.5

Fig. 3 Correlation function (ha(0)hg(t))s for a Brownian walker in a double-well potential.
The estimates for the correlation function obtained by the S-shooting method (red and
blue lines) agree perfectly with the results of the straightforward Brownian dynamics
simulation (black line).
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;E“ 0.2 Brownian dynamics
S | S-shooting (unbiased) |
<5 S-shooting (bias)
AR -
5 O
0 L 1 L | L 1 L

Fig. 4 Numerical time derivative d(ha(0)hg(t))s/dt of the correlation function. Note the
plateau emerging after the initial transient behavior at t = 0.3; this value enters the
computation of kag.

the straightforward simulation as well as the path average (Ng[x(7)])s = 24.58, we
obtain the rate constant k,z = 0.056.

Analysis of the convergence of the rate constants as a function of the number
of generated pathways indicates that the statistical error in the rate constants
obtained by S-shooting is similar to that of divided saddle theory (provided the
same method is used for the free energy calculation). Both methods extract the
reaction rate constants from the same set of dynamical trajectories such that this
equivalence of their efficiencies is not so surprising. Since divided saddle theory
has been shown' to compare well with the reactive flux method of Bennett and
Chandler using the effective positive flux approach for the calculation of the
transmission coefficient,” this is the case also for the S-shooting method.

3.2 Cavitation in water under tension

Liquids can sustain remarkably strong tensions due to the free energetic cost
associated with the formation of a liquid-vapor interface which impedes an
immediate transition to the vapor phase. Water, in particular, can exist in such
a metastable state for a long time before decaying into the vapor phase via cavi-
tation, i.e., bubble nucleation, which has implications for the behavior of various
biological systems®® and for technical applications.””*® As a further demon-
stration of S-shooting, we now use it to compute the cavitation rate, ie., the
number of cavitation events per unit time and unit volume, of liquid water at
different negative pressures (the cavitation free energy and cavitation rates were
first obtained in ref. 29). Specifically, we consider a system of N = 2000 water
molecules interacting via the TIP4P/2005 potential®** with long range forces
treated with Ewald sums. This system is exposed to pressures ranging from p =
—105 MPa to p = —165 MPa at a temperature of T = 296.4 K, where the equation of
state is known at moderate negative pressures from experiments.**

To compute the free energy of bubble formation, one must be able to detect
bubbles and determine their size for any molecular configuration of this system.
This is accomplished using a grid-based procedure that is calibrated to give
a thermodynamically consistent estimate for the volume of a bubble.** The
bubble volume obtained in this way corresponds to the average increase in system
volume due to the presence of a bubble compared to the unconstrained
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metastable liquid at the same conditions. We use the volume of the largest bubble
present in the system, v, as the reaction coordinate. The free energy, F(v), as
a function of the bubble volume v is given by F(v) = —In[ryp(v)], where p(v) is the
probability density of encountering a configuration with a largest bubble of size v
and v, is an arbitrary constant volume required to make the argument of the
logarithm dimensionless. We computed p(v), and from it the free energy F(v), by
employing hybrid Monte Carlo®**** umbrella sampling®® with “hard” windows in
the isobaric-isothermal ensemble.

Free energy profiles F(v) computed for several pressures are shown in Fig. 5.
The shape of these curves can be understood in the general framework of classical
nucleation theory. The tension applied to the metastable liquid favors the
formation and subsequent growth of bubbles through a gain in mechanical work,
pv, by expanding the system under tension. This contribution, in conjunction
with the free energy cost of forming the interface (Ay, where A is the surface of the
bubble and 7 is the surface tension), leads to a barrier in the free energy which
separates the metastable liquid from the vapor (shown in Fig. 5). Once the system
overcomes this barrier, it transitions to the vapor phase, which, in contrast to the
liquid, cannot sustain tension. Consequently, there is no stable basin on the
vapor side of the free energy barrier.

In order to apply the S-shooting formalism to the calculation of bubble
nucleation rates, we need to define the stable regions A and B as well as the
transition region S. Based on the computed free energy profiles, we define the
region S to be located around the top of the free barrier and regions A and B left
and right of the barrier. A schematic representation of the regions A, B and S
employed here is shown in Fig. 1a and a detailed list of the region boundaries is
given in Table 1. Once the regions are defined, the averages (h,) and (hs) needed
for the rate calculation can be determined from the free energy profiles. Next, we
need to generate dynamical trajectories from region S in order to compute the
correlation function (h,(0)hg(t))s. Starting from configurations in the region S
generated in the free energy calculations, we create pathways by propagating the
system backward and forward in time at constant pressure® and temperature®”**

F T T T T T T T T T T ]
80 -
I p =-120 MPa |
60 -
i_
& T
=4 p=-135MPa |
i _
20 -
p =-150 MPa ]
0 p =-165 MPa 4
1 1
0 2 4 6 8 10
3
v/nm
Fig. 5 Free energy F = —Inlvgp(V)] as a function of the volume v of the largest bubble,

where vq is an arbitrary constant volume, for various pressures. Due to the gain in
mechanical work pv associated with the formation of a bubble, the height of the barrier
and the size of the critical bubble decrease with increasing tension. Curves are shifted such
that the lowest point in the liquid basin aligns for all pressures.
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Table 1 Cavitation rates, J, for various pressures p

(V)" (hs){a)

p/MPa A/nm®  B/nm®  S/nm’ 1/(Ns)s nm? JP/mm~3 ps~?

—-105 »<103 »>103 10.1<r<10.5 2.63 x 10> 3.77 x 107*°  1.98 x 107
—120 v<6.25 v>6.25 6.05<r<6.45 2.40 x 107> 2.54 x 107>’  1.05 x 10 8
—135 »<4.075 v>4.075 3.85<v<4.3 2.03 x107° 8.92x 107  2.81 x 107
—150 »<3.06 v»>3.06 295<r<3.17 3.42x10° 1.30x10""  6.81x 10"
—165 v <2.095 v>2.095 1.985<p<2.205 2.89 x 10> 2.19 x 10° 9.75 x 101

“ The equilibrium probability ratio (As)/(ha) was obtained from the free energy data shown
in Fig. 5 and (V) is the average volume of the metastable liquid at the appropriate pressure.
b The cavitation rate J is obtained by combining the equilibrium probability ratio with a fit to
the long-time tail of the time derivative of the correlation function from Fig. 7.

using a time-reversible integrator.***' In order to keep the computational cost
manageable, the trajectories used in the rate computation are propagated until
they reach a fixed value along the reaction coordinate, rather than for a fixed time.
These fixed values were chosen such that they correspond to being approximately
10 kgT lower than the top of the free energy barrier, at which point trajectories are
unlikely to re-cross the barrier.t Since this approach leads to trajectories of
varying length, trajectories shorter than the desired trajectory length 2L + 1 were
padded with their final value on either side of the barrier when computing the
correlation function Cag(f).

Correlation functions (44(0)A5(t))s, obtained via eqn (32) from trajectories in
the ensemble Pg[x(7)], are shown in Fig. 6. Since the state S fully overlaps with the
adjacent states A and B, one encounters non-finite contributions to the correla-
tion (h,(0)hg(t))s even for short times, leading to a steep slope for small ¢ (in
contrast to the shape of (h5(0)A5(t))s observed in Section 3.1). Its time derivative,

0.1 — T T T T T
L p=-120 MPa i
0.08 p =-135 MPa
K [ p=-150 MPa
= 0.06}- P=-165MPa .
o
< -
S
;&0.04— T
v F
0.02 -
0 PR R N R RS B
0 5 10 15 20 25 30

t/ps

Fig. 6 Correlation function (ha(0)hg(t))s. Note the difference in shape compared to Fig. 3
due to the different boundaries of the states A and B.

t For the two lowest tensions investigated, p = —105 MPa and p = —120 MPa, we extrapolated the free
energy to higher bubble volumes to determine the limiting value of the order parameter.
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Fig. 7 Time derivative d(ha(0)hg(t))s/dt of the correlation function depicted in Fig. 6. A fit
to the emerging plateau for long times is used in the computation of cavitation rates.

shown in Fig. 7, exhibits transient behavior followed by the emergence of
a plateau for longer times. The resulting cavitation rates J = kap/(V), which span
almost 40 orders of magnitude over the investigated range of pressures, are
presented in Table 1.

4 Conclusion

In the study of rare transitions between long-lived stable states, one often uses
large numbers of short molecular dynamics trajectories to determine committors
or estimate diffusion coefficients along some collective variable of interest. Here
we have presented an algorithm to calculate reaction rate constants by combining
dynamical information extracted from such brief trajectories with the results of
free energy calculations. For the method to be computationally efficient, the
trajectories need to be initiated close to the transition state region such that they
have a non-negligible probability to connect the stable states. Hence, the method
follows the central idea of the Bennett-Chandler approach,***® in which one first
computes the transition state theory approximation of the reaction rate constant
based on the free energy, and then applies a dynamical correction obtained from
short trajectories started on a dividing surface separating the stable states. Our
approach uses the same information as the divided saddle theory of Daru and
Stirling,"® but processes it in a different way to yield the time correlation function
of the stable state populations, from which the reaction rate constant is obtained
by taking a time derivative. Knowledge of the correlation function also yields
information about the barrier crossing dynamics and permits to verify whether
the kinetics follows the exponential behavior expected from the phenomenolog-
ical rate equations.

Just like the Bennett-Chandler approach and divided saddle theory, the new
method, which is equally applicable to under- and overdamped dynamics, also
requires a priori knowledge of a reaction coordinate. The reaction coordinate
needs to provide an at least rough measure for the progress of the transition and it
can be either continuous or discrete, such as the size of the largest crystalline
cluster usually used in crystallization studies. As an illustration, we have applied
the procedure to a Brownian walker in a double well potential and to cavitation in
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water at negative pressures, demonstrating that it can be used to determine
reaction rate constants in complex condensed environments.

A Derivation of the time correlation function in
the S-shooting formalism
A.1 The time correlation function in the S-ensemble

The time correlation function

(ha(0)hs (1))
<hA>
which equals the conditional probability to find the system in B at time ¢ provided

it was in A at time 0, can be written as an average in the ensemble P[x(7)] of
trajectories x(z) of length © = t:

Cas(t) = (14)

J @x(2) P[x(2)]ha (x0) s (x1)
f dxop(x0)ha (x0) '

where the notation | &x(t) indicates a summation over all pathways x(t), x, is the
microscopic state (which we also call configuration or point) of the system at time
t, and the probability density of a trajectory consisting of L + 1 configurations is
given by

Cap(t) = (15)

L-1

Plx(x)] = plxo) [ (x> xi1): (16)

i=l

Here, p(x,) is the equilibrium probability density of the configuration x, in the
thermodynamic ensemble of interest and p(x; — x;.4) is the probability density of
reaching configuration x;; when the system in configuration x; is propagated by
one step. The time correlation function Cag(¢) contains all the information needed
to determine the rate constant k,p for transitions from A to B, which is equal to
the time derivative of Cxg(t) in its linear regime. If transitions from A to B are rare,
it is difficult to determine Cyg(t) from straightforward molecular dynamics
simulations. In the following we present an algorithm to determine C,p(t) that is
not affected by this limitation.

Although the integral in eqn (15) extends over all possible trajectories, the non-
vanishing contributions to the correlation function C,g(¢) stem from trajectories
that start in A and reach the product state B by the time ¢. As such, one can obtain
the correlation function Cag(f) by sampling from a constrained ensemble,
provided that the constrained ensemble contains all trajectories going from A to
B. To define such an ensemble, we introduce the additional region S located such
that any trajectory transitioning from A to B necessarily crosses S, i.e., has at least
one point in S (see Fig. 1). The correlation function can then be written as

(ha(0)h(1)) _ (ha(0)hs (1) Hs[x(c)])

Canl) = = = N . (17)

Here, the path function Hg[x(7)] is unity if the trajectory x(z) has at least one
point in S and zero otherwise. We can insert Hg[x(z)] = 1 in the average above
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without changing the correlation function, because if both %,(0) = 1 and %g(¢) =
then Hg[x(7)] = 1, and if 1,(0) = 0 or hg(f) = 0 the value of Hg[x(t)] does not matter.
Multiplying and dividing by (Hs[x(7)]) one obtains

(ha(0)hs () Hs[x(0)]) (Hs[x(x)]) _ (Hs[x(1)])

CAB(I) = <Hs[x(‘f)]> <hA> - <hA(O)hB(t)>S <hA> (18)

Here, (R)s = (R[x(t)]Hs[x(7)])/(Hs[x(7)]) is the average for an arbitrary path

property R[x(7)] in the ensemble Pg[x(7)] of paths with at least one point in the
region S,

Plx(v)]Hs[x(1)]
J @x(x) Plx(7)| Hs[x(7)]’

where the denominator normalizes the distribution. Since any reactive trajec-
tory, ie., any trajectory connecting A and B, has to have points in S, the
ensemble Pg[x(t)] contains all reactive trajectories, albeit with a statistical
weight that differs from that in the equilibrium trajectory ensemble P[x()] by
the factor (Hg[x(7)]), the probability of an equilibrium trajectory of length  to
visit S.

In order to evaluate Cag(¢) according to eqn (18) using trajectories sampled
from Pg[x(t)], we write eqn (18) as

Psx(7)] = (19)

(Hs[x(0)]) (hs)
. (hs)  (ha)’

where (hs) = J ' p(g)dq is the equilibrium population of the region S, such that
qglin

Cas (1) = (ha(0)hs(1))s (20)

the ratio (hs)/(ha) can be obtained from the free energy F(q) = —kgT In p(q)
computed as a function of the reaction coordinate g. Since (%4(0)%g(¢))s can be
determined as a path average over the ensemble Pg[x(7)], all that is still needed to
compute Cap(?) is the ratio (Hg[x(1)])/(hs). Since the dynamics is microscopically
reversible and thus fulfills detailed balance, one can express the average (hg) as
a path average,

L-1

(hs) = deip(xi)hs(xi) = J@x(r)p(xo) HP(X/—’X/+1)/ZS(X;)7 (21)
=0
evaluated at an arbitrary point x; along the trajectories. Since if is(x;) = 1 for at
least one point of the trajectory x(t) also Hs[x(t)] = 1, we can insert Hg[x(t)] into the
average (hg(x;)) without changing its value and we obtain

(Hslx(@)]) _ (Hsx(@))) _ 1

sy UhsHsx(@)]) ~ Uishs (22)

But since all configurations x; along a path occur with the same likelihood (see
eqn (21)), one can simply average (hs(x;))s over all L + 1 time slices:

T 2 S0l = sl 3)
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where Ng[x(7)] = Zhs(xi) is the number of configurations in S. Consequently,

i=0
(hs)s is the fraction of configurations x; of a given path x(t) located in the region S.
Inserting this result into eqn (20) yields the time-correlation function Cag(f)
expressed in terms of path averages obtained in the ensemble of trajectories
visiting S,
L —+ 1 <hs>

Cas(t) = (hA(O)hB(t»sm W.

(24)

A.2 Relation to the ensemble generated by S-shooting

The algorithm presented in the main text generates trajectories by picking
shooting points x in S according to the probability density
_phs) _ plx)hs(x) 5)

Tdup(x)hs(x) ~ (hs)
and subsequently propagating these configurations forward and backward in
time. But which ensemble is generated by this algorithm? Since every trajectory
x(t) visiting S, and as such all reactive trajectories, has at least one configuration
in S by definition, it can be generated by shooting from points in S. However, in
order to verify whether the algorithm generates the desired ensemble, one has to
determine how these trajectories are weighted with respect to one another, i.e.,
one has to inspect the likelihood with which the algorithm generates a particular
trajectory. In particular, in doing that one has to take into account that trajec-
tories with multiple points in S have more than one way to be generated by the
algorithm.

Consider a trajectory x(t) = {Xo,**, Xi, s Xiy » > X} With Ne[x(7)]
configurations in region S. (Two examples of such trajectories are shown in
Fig. 8.) Here, the Ng[x(t)] subscripts iy,i,,...,inx(x) are the indices of the
configurations of the trajectory x(z) that are in S. In the shooting algorithm
presented in the main text, the trajectory x(r) can be generated by shooting
from each of these Ng[x()] points. Let us now consider the probability density
that the trajectory x(z) is generated from the first one of these points, x; . For
this to happen, configuration x; must first be selected from ps(x;) and then
designated to be the i;-th configuration along the trajectory by drawing the
index i; with probability 1/(L + 1) from the integers 0 to L. Starting from x; , one
then propagates the dynamics for L — 7, steps in the forward and i; steps in the
backward direction using the rules of the underlying dynamics, such that the
probability density p[x(t);x;] to generate exactly trajectory x(z) from configu-
ration x;, is given by

ps(x)

i1 L-1

Hp(fm —X) HP(X:'—’XI'H)» (26)

i=0 i=i;

plx(t);x;] =

where ¥ is the configuration x with reversed momenta (because the first product
corresponds to propagating the system backward in time). Since the dynamics is
microscopically reversible, the transition probability obeys detailed balance; in
particular,
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Fig. 8 When shooting points are picked from the region S according to the probability
density ps(x), pathways with a larger number Ns[x(z)] of configurations in S are more likely
to be created. This overcounting of pathways must be corrected for when computing path
averages.

p(xir)p(Xie1 = X)) = p(xX)p(X; = Xiv1), (27)

where we took advantage of the fact that the Hamiltonian does not change when
the momenta of a configuration are reversed, i.e., p(x) = p(x). Applying eqn (27) to
eqn (26) repeatedly, the equilibrium probability density p(x; ), initially applied to
x;, is shifted to the first configuration x, of the trajectory:

hs(xy) = 1
plx(e);x;] = T+ D)) p(xo gl’ i Xis1) mP[x(r)}, (28)

where Ag(x; ) = 1 since the shooting point x; is in S by construction. The equation
above shows that the likelihood of generating x(t) is independent of the chosen
shooting point and the probability of generating the trajectory from configuration
x;, is the same as that of generating it from any of the other possible shooting
points x;, to x;, .. Hence, the total likelihood to generate a particular trajectory

x(z) by shootmg from points in S is just Ng[x(7)] times the likelihood of generating
it by shooting from one specific point in S:

Ns[x ()] Plx(z)] Hs [x(7)]
(L + 1)(hs) ’

where we inserted Hg[x(7)] in the first line to emphasize that this algorithm only
creates trajectories with at least one configuration in S.

The ensemble Pg[x(t)] can be expressed in terms of the ensemble Pg[x(t)] of
trajectories visiting S,

Pglx(r)] =

(29)

Plx(0)|Hs[x(c)] [ 2x(x)Plx(x)]Hs[x(r)]
@Dx(7) Plx(2) | Hs [x(1)] (L + 1)(hs)
(Hs[x()])

(L+1)¢hs)

Pglx(7)] = Ns [X(T)]j

— Ns[x(e)]Ps[x(0)] (30)

Thus, the likelihood to generate a particular trajectory x(t) in the ensemble
Pg[x(7)] generated by the shooting algorithm is related to the likelihood in the
ensemble Pg[x(1)] of trajectories visiting S via Pg[x(t)] « Ng[x(t)]Ps[x(7)], i.e., in the
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ensemble Pg[x(7)], pathways with multiple points in S have a likelihood that is too
high compared to the ensemble Pg[x(7)].

Since Pg[x(7)] is normalized [see eqn (22) and (23)], we can now express path
averages in the desired ensemble in terms of Pg[x(t)]. The average (R[x(t)])s of an
arbitrary path property R[x(7)] is given by

_ J2x(@D)RIx(0)] Ps[x()]
<R[X(T)]>S - J“ @X(T)Ps[x(f)] (31)
which, by inserting eqn (30), can be re-written as
(RIx(2)]) — J2x(@)(RIx(@)]/Ns[x(@)])) Po[x(1)] _ (Rx(@)]/Ns[x(x)])g (32)

J@x(x)(1/Ns[x(1)]) Pa[x()] (1/Ns[x(1))g

Using this expression for averages in the ensemble of pathways visiting S we
can rewrite the expression for C,g(f) in eqn (6) in terms of averages in the

ensemble Pg[x(7)]:
Cunlt) = n O)n(0)s o 128
(p ) OO/ @D, (Nl (k)
(U/Ns[x(D)])g  (Ns[x(D)/Ns[x(D)])g (ha)

G (ha)
thus obtaining eqn (8).

A.3 Biased sampling of shooting points

The computation of the correlation function C,g(t) via eqn (6) assumes that the
starting points of the trajectories are distributed in S according to their Boltz-
mann weight. Below, we describe how eqn (6) has to be adapted when the initial
points are sampled from a biased distribution instead, that is, the shooting points
x are generated according to

pB(x) = ps(x)b(x), (34)

where the weight b(x) assigned to a configuration due to the bias potential Uy(x) is
given by
b e BU(¥)
= T~ - 35
(x) deps (x)efﬁl,’b(/\") ( )

The generation probability p[x(c);x;] for a path x(r) by shooting from a specific
point x; in S is then given by [see eqn (28)]
1

plx(1)ix;] = mp[x(f)]b(xg) (36)

As in the previous section, the subscripts i; to iy, are the indices of the
Ng[x(7)] configurations of the trajectory x(z) that are in S. Since the path x(t) can be
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generated from any configuration in S, the total generation probability of a path
with Ng[x(t)] points in S is

_ _Bix()]
PB[X(T)] - (L+ 1)<hS> P[X(T)L (37]
Ns[x(7)]
where Blx(1)] = Z b(x;) and the sum runs over all points in S. Since the

j=t
trajectories are generated by shooting from points located in S, each of the
resulting pathways has at least one configuration in S, which allows us to rewrite
the equation above as

Blx(1)]

Plx(r)] = mP[X(T)]Hs[X(T)] (38)

and, by inserting eqn (22) and (23), one obtains
Blx(7)]  Plx(t)]Hslx(r)] _ Blx(1)]

PO s D s O @)

Since we aim to formulate the correlation function Cag(f) in terms of path
averages in the ensemble Pg[x(t)], we now express the path average (R[x(7)])s in
terms of averages calculated in the ensemble Pg[x(7)],

[ 2x(2) RIx(2)] Palox (1)) (N ()]} / Blx(0)]
[ 2x(x) Py [x()] (Ns[x(x)])s / Blx(2)]

(Rix(1)])s = j@x(v)R[x(r)]Ps x(2)] =
Rx(1)
<B[x<r>1>B

(o

where we divided by [ Zx[t]Ps[x(7)] = 1 in the second line. Note that since the bias
sum B[x(7)] appears both in the numerator and the denominator, the above
expression does not change when the bias is not normalized, ie., when
Ns[x(7)]
Blx(7)] = Z exp[—fUp(x;)] is used for convenience.
=
Using eqn (40) to rewrite eqn (6), we obtain Cyp(¢) in terms of biased averages:

</’ZA~(0)hB(Z)>
Can(t) = (i (O)hn())g e ) gy A B S )

(Ns[x(1)])s (ha) <1\fs[X(T)]> (ha)
Blx(7)] /g

(40)

When shooting points are obtained from an unbiased distribution, then
B[x(1)] = Ng[x(7)] and eqn (8) is recovered.
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