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The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical
intersections is analyzed for a two-state two-mode model chosen to represent the
S,(r*)-Si(n7c*) conical intersection in pyrazine (the system) which is bilinearly coupled
to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system-
bath coupling is modeled by the Drude spectral function. The equation of motion for
the reduced density matrix of the system is solved numerically exactly with the
hierarchy equation of motion method using graphics-processor-unit (GPU) technology.
The simulations are valid for arbitrary strength of the system-bath coupling and
arbitrary bath memory relaxation time. The present computational studies overcome
the limitations of weak system-bath coupling and short memory relaxation time
inherent in previous simulations based on multi-level Redfield theory [A. Kuhl and
W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state
populations and time-dependent reduced probability densities of the coupling and
tuning modes of the conical intersection have been obtained. It is found that even weak
coupling to the bath effectively suppresses the irregular fluctuations of the electronic
populations of the isolated two-mode conical intersection. While the population of the
upper adiabatic electronic state (S,) is very efficiently quenched by the system-—bath
coupling, the population of the diabatic mm* electronic state exhibits long-lived
oscillations driven by coherent motion of the tuning mode. Counterintuitively, the
coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning
mode as a result of effective damping of the highly excited coupling mode, which
reduces the strong mode—mode coupling inherent to the conical intersection. The
present results extend previous studies of the dissipative dynamics at conical
intersections to the nonperturbative regime of system—bath coupling. They pave the
way for future first-principles simulations of femtosecond time-resolved four-wave-
mixing spectra of chromophores in condensed phases which are nonperturbative in the
system dynamics, the system—bath coupling as well as the field-matter coupling.
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. Introduction

The nonequilibrium dynamics of quantum systems which are interacting with
a large (macroscopic) environment in thermal equilibrium is a problem with
a long history in condensed-matter physics and chemistry, see, e.g.,'” and
references therein. In the present work, we are addressing the question of how the
complex nonadiabatic dynamics occurring at conical intersections of electronic
potential-energy (PE) surfaces of polyatomic molecules®** is affected by weak to
moderate coupling to a condensed-phase environment. Conical intersections are
hypersurfaces of exact degeneracy of adiabatic PE surfaces and are universally
encountered in polyatomic molecules.”*** The simplest model of a conical
intersection involves two electronic states and two vibrational modes which span
the so-called branching space of the conical intersection.’® In the case of
a symmetry-allowed conical intersection, these vibrational modes can be classi-
fied as coupling and tuning modes."” The singularity of the non-Born-Oppen-
heimer coupling elements at the seam of intersection and the pronounced local
anharmonicity of the adiabatic PE surfaces cause exceptionally strong electronic
inter-state couplings as well as vibrational mode-mode couplings. The interplay
of these couplings gives rise to ultrafast radiationless relaxation processes
following preparation of the upper electronic state by optical excitation.*™*

In most applications explored in the physics literature, the quantum system of
interest is simple and exhibits trivial dynamics when being isolated, such as
anuclear spin™? or a harmonic oscillator.? Conical intersections, on the other hand,
are multi-level systems with a complex internal dynamics. Even for minimal two-
state two-mode models of conical intersections, the Hilbert space required for the
description of the photoinduced dynamics can be quite large and the numerical
diagonalization of the Hamiltonian can be challenging. Due to the intricate
internal dynamics of conical intersections, the physics of energy and phase
relaxation due to coupling to an environment can be much richer than the physics
of a few-level system or a harmonic oscillator coupled to the same environment.

Early studies of the effects of an external bath on the photoinduced dynamics
of two-mode and three-mode conical intersections were performed by Gerdts and
Manthe,"® Kihl and Domcke™?® and Baltzer and Stock,”** assuming bilinear
coupling of the active modes of the conical intersection to a harmonic bath with
ohmic spectral density. The dissipative dynamics of these systems was numeri-
cally simulated with multi-level Redfield theory®*** which is valid within the limits
of weak system-bath coupling and short memory relaxation time of the bath.
Kosloff, Ratner and coworkers performed similar computational studies of
conical intersections coupled to a bath, considering Lindblad-type relaxation
operators or a bath of two-level systems.**?*® Starting from multi-mode conical
intersection Hamiltonians in the diabatic representation, Gindensperger, Bur-
ghardt and Cederbaum developed an effective-mode formalism which leads to
a hierarchy of system-bath couplings.””** In this approach, the short-time
dynamics of the multi-mode conical intersection can be accurately reproduced
with the inclusion of just a few effective bath modes. Burghardt and Hynes** and
Malhado and Hynes*** studied the effect of a dissipative solvent mode, described
by a generalized Langevin equation, on the dynamics of a conical intersection
related to retinal photoisomerization.
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Herein, we employed the hierarchy equation of motion (HEOM) method
developed by Tanimura and coworkers*~** to simulate the dynamics of a conical
intersection in a dissipative environment. The HEOM method is a numerical
technique for the solution of the Liouville equation of motion for the reduced
density matrix of system-bath models. It is based on the construction and
numerical solution of a hierarchy of master equations.*® An alternative formula-
tion of the HEOM method is based on Fokker-Planck equations.** The HEOM
method is the most powerful method currently available for the numerically exact
solution of master equations for a certain type of system-bath models.*® In
practical applications of the HEOM method, it is convenient to model the bath
and the system-bath coupling by the Drude spectral function’ or linear combi-
nation thereof.? The Drude bath is characterized by a system-bath coupling
parameter A and a memory relaxation time vy~ *. We will focus here on models with
weak to moderate system-bath coupling, assuming that the strongly active modes
of the conical intersection are included in the system Hamiltonian. Duan and
Thorwart recently adopted an alternative strategy to simulate the dynamics of
a two-state two-mode conical intersection coupled to a Drude bath.*' By trans-
forming the coupling and tuning modes of the conical intersection into the bath,
they obtained an electronic two-level system which is coupled to a structured
bath. The resulting master equation was solved with the HEOM method.

Il. Theoretical framework

A. Hamiltonian

We partition the total Hamiltonian into the system Hamiltonian, the bath
Hamiltonian, and their coupling

H=H®+ H® + g&B (1)

We adopt a minimal model of a conical intersection which involves two excited
electronic states |¢,), |¢,) and two vibrational modes, the coupling mode and the
tuning mode. Keeping only the leading (linear) terms in the electronic-vibrational
couplings, the system Hamiltonian is written in the diabatic representation as’

H® = Z o) (@il + (|91)(@a] + [02) (1) A Oc

k=12
hie = hy + E + ki O,
1 2 2
hy=he+h = th.Qj{Pj +Qj } (2)

Jj=c,t

here, Q;, P;and Q; are the dimensionless coordinate, momentum and frequency of
the coupling mode (j = ¢) and the tuning mode (j = t), respectively. E; and «; (k =
1,2) are the vertical excitation energies and the intra-state electron-vibrational
coupling constants, respectively, of the kth electronic state. A; denotes the inter-
state coupling constant.

We assume that the coupling mode Q. and the tuning mode Q; are bilinearly
coupled to an external bath. Due to the different symmetry of the two system
modes in the present model of a symmetry-allowed conical intersection, it makes
sense to assume that each of the two modes is coupled to its own bath. The
Hamiltonian of the environment is thus written as
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D = {on)orl + loxloal) Yo 3 3hou b + 40} 3)

a  j={ct}

where p,;, qo; and w,; are the dimensionless momentum, coordinate, and
frequency of the ath oscillator of the bath of the coupling mode (j = c) and the
tuning mode (j = t), respectively.

We assume that the coupling and tuning vibrational modes are bilinearly
coupled to the respective bath. The corresponding system-bath coupling
Hamiltonian reads

H = o) or] +los)o:) Y Y {easds) W

o« el

where c,; are the system-bath coupling constants. Alternative choices of system-
bath coupling are discussed in ref. 20. The influence of the bath on the system
dynamics is determined by the spectral density

w):an_,-zé(w—wa_,-), j=c,t (5)

The system-bath Hamiltonians specified as above can be used for deriving
master equations in two different ways.**** One can either retain the strongly
coupled high-frequency vibrational modes in the system Hamiltonian or move
the modes to the bath, resulting in a structured bath. The two descriptions are, in
principle, equivalent and connected via a canonical transformation.*** In the
context of the HEOM method, the inclusion of all vibrational modes in the bath is
the common choice.”*** In the present study we prefer to keep the strongly
coupled high-frequency vibrational modes in the system Hamiltonian (cf: ref. 46).
This way, we can treat fairly general system Hamiltonians (e.g., beyond the
harmonic approximation for the system vibrational modes).

Introducing a basis set |n.), |n;) for the coupling mode and the tuning mode,
respectively, we can construct the matrix representation of the total Hamiltonian

H= > Z |o4)

kk'=12 nenyn’en'
et e

n"> |f’l[ { knm‘ k'n' n' + H/(mm k'n' on'y

+ Hl(csc)nl,k’n’cn'[ }<(p/¢’ <nlc } <n/l } (6)
where
Hliiznl Knlon'y = 6/(/(/5"&"/ 6,,[”/[(E/( + hQ (l’lc 1/2) + hQ[ (}11 + 1/2)) + 5kk/6nLnLKAAmnl

+ <6k.k’71 + 6/c,lc’+l)5}l‘n’.AsAncn’c
7)

(SB) _ E :
Hkncn[,k’n’cn’L - 6/(/(’ 6n‘n’[Ancn’c caﬁcqm.c + 611Cn’cAnln’|ca.lqa.t (8)

a

1
B
H/Enc)n‘ ety = 6kk’ 6"c”c’ 6”1"{’ Z Z z hw“:/ {pﬂéafz + qajz}

o« et}
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, n+1 n
Ann’ = <n|Q|n > = 611,n/+1 P + 6}1,)1’*1\/; (9)

In matrix form:

H=HY+> {Veuequc + V'cardur} + 1HY (10)

with

where

C p—
ancnhk’n’cn" - 6/(/(’ 6nln’|Ancn/c

t —
ancm.k’n’cn" - 6kk’6"c"'cAVl|"/x

The total (system + bath) dynamics is described by the Liouville-von Neumann
equation

i} i
Eptol(t) = _£[H7 plot} (11)

The dynamics of the relevant system is described by the reduced density matrix
p(t), defined as the trace over the bath degrees of freedom of the full density
matrix peo(t)

p(1) = trp{pioi(D)} (12)

We assume instantaneous electronic excitation of the system from the elec-
tronic ground state |¢,) to the diabatic state |¢,) by an ideally short laser pulse.
This corresponds to the preparation of the density matrix

p(0) = |92)[0) (0l {¢2] (13)

where |0) = |0.)|0;) denotes the vibrational ground state of the coupling and
tuning modes in the electronic ground state.
We model the bath by the Drude spectral density,’

J{w) = ZAﬂjw/(wz + 7,2),1' =c,t (14)

here, 2; determines the coupling strength of the system modes (coupling mode
and tuning mode) to the respective bath, and v; is the Drude decay constant, so
that 1/y; is the bath correlation (memory) time. This choice of the spectral density
facilitates the application of the HEOM method.*®

B. HEOM method

The HEOM method is a numerically exact method which allows the computation
of the time evolution of the reduced density matrix p(t) beyond the Markovian
approximation and for arbitrary system-bath coupling strength.’*-*
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Using the matrix representation of the Hamiltonian (6) and adopting the high-
temperature approximation (8%y; < 1, where § = (ksT) " is inverse temperature)
which is fulfilled in our simulations, one obtains the following hierarchy of
coupled equations of motion for the reduced density matrix

a .
0.4 (t) = *(19(5) + Ly, + lt'Y‘)pcht(t) + Depy 1 (t) + Pipr g1 (8) + Lev Ocpy, 1, (1)

Jt
+ ll’Yt@tl’/CJ[—l(t)
(15)

where [, [, are non-negative integers. In eqn (15), the density operator with all
indexes equal to zero, poo(t), is the reduced density operator p(¢). All other density
operators p; ; are auxiliary density operators which are introduced to describe
nonperturbative and non-Markovian effects. The Liouvillian super operator cor-
responding to the system Hamiltonian H® is denoted by #(*, and the relaxation
operators @ and O are defined as

@,= iV} (16)
(24 A
6= (57V - l;’v/V,-) (17)

where A°p = Ap + pA and A™p = Ap — pA for any operator A. Note that the HEOM
method does not require the construction of the eigenstate representation for the
system Hamiltonian, as multi-level Redfield theory does.*®

The system of eqn (15) represents an infinite number of coupled master
equations. It can be shown that the condition for the termination of the hierarchy
isN=1I.+1, > o®/min(y,, v,), where »® is a characteristic frequency of #*).’ In
this case, the last term in the infinite hierarchy of eqn (15) can be replaced by

ad

a—[l)/c./t(l) =—i?p, (1) (18)

Low-temperature correction terms have to be included in eqn (15) when the
condition Bay; < 1 is not satisfied (see ref. 37 and 38). The low-temperature
correction results in the replacements

2Aj 27] VX px

( (s) _ i/ A
=gt Zﬁhz Vlz_y_z J
J

Jj=c,t
2 2
J ﬁhz 1/12 _ 7]_2 J

(19)
0;—

where v, = 27m/8h is the first bosonic Matsubara frequency.*® Higher-order Mat-
subara terms can be included to further improve the accuracy of low-temperature
correction.

C. Physical observables

Once the reduced density matrix p(¢) is given, the time evolution of system
observables can straightforwardly be calculated. The most important observables
for monitoring radiationless decay dynamics are the time-dependent populations
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of the electronic states. The population of the kth diabatic electronic state is
defined as’

PR(0) = trs{low) (wilo(1)} (20)
The population of the adiabatic electronic states is given by
Pif(1) = trs{|ox) (@ulp(n)} (21)

The adiabatic electronic states are related to the diabatic states via

‘¢lc> = Z S(Qm Q‘)kk’

k=12

(pk’>> k= 172 (22)

where

_ (cos a(Qc, Q) —sin a(Qc, Q)
S(Q., Q) = ( sin &(Q., Q)  cos a(Qc, Or) )

and «(Q,, Q) is the diabatic-to-adiabatic mixing angle. The adiabatic population
P3Y is the observable which directly reflects the radiationless electronic decay
dynamics from the upper to the lower adiabatic energy surface. The diabatic
electronic population P§’, on the other hand, is directly related to spectroscopic
signals, e.g. to the total (frequency-integrated) spontaneous emission signal.*®
Note that the system modes Q. and Q; are traced out in the definition of P2 and
P3' and therefore can be considered as part of the bath.

The coherence of vibrational motion of the system is monitored by the
expectation values of the position and momentum operators of the system
vibrational modes, which are defined as*®

(0 = trs{Qp(1)} (23)
(P)); = trs{P;p(1)} (24)

For the nontotally symmetric coupling mode ». of the conical intersection, the
expectation values of position and momentum operators vanish by symmetry. To
visualize the coupled electronic-vibrational dynamics of the system, we consider
the reduced probability densities of the coupling and tuning modes in the adia-
batic electronic representation, defined as

PE(Q..1) = [40U(Q.I(Q.[(d|o(1)[7)| 0| 0:) 5)
(0.0) = [d0.(0.1(Q @iln(0]2l 010

Under certain conditions, these probability densities are related to the time-
and frequency-resolved fluorescence spectrum.*

D. Parametrization of the Hamiltonian and computational details

The S,["Byy(Tm*)]-S1['Bsu(nm*)] conical intersection in pyrazine is a well-known
example for ultrafast electronic relaxation via a conical intersection.’*>® Various
models of this conical intersection, comprising from 2 to 24 vibrational modes,
have been constructed.***® These models have served as testbeds for the bench-
marking of novel methods for the theoretical description of electronically
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nonadiabatic dynamics.®*”? The out-of-plane normal mode v4,, of B symmetry is
the only normal mode which can couple the 'B,, and 'Bs, electronic states in first
order. The mode vg, of A;; symmetry is the dominant tuning mode of this conical
intersection. For the present purposes, a two-mode model of the S,-S; conical
intersection including the normal modes v;0, and ve, is suitable as a simple and
generic model of a conical intersection.

The numerical values of the parameters of the model Hamiltonian H® of eqn
(2) are taken from ref. 55. The frequencies of the coupling and tuning modes are
hwe =952 cm™ ' (27t/w, = 35 fs) and hw, = 597 cm ' (27t/w, = 56 fs). The intra-state
electron-vibration coupling constants are k; = —847 cm™ ' and k, = 1202 cm ™.
The inter-state vibronic coupling constant is A; = 2110 cm™". The vertical exci-
tation energies are E; = 31 800 cm™ ' and E, = 39 000 cm ™. Cuts through the
potential-energy surfaces along the normal coordinates Q, and Q. are shown in
Fig. 1. The bath temperature is set to 300 K.

The numerical calculation of the system dynamics is based on the represen-
tation of the Hamiltonian H® in a direct product basis of diabatic electronic
states and harmonic-oscillator basis functions for the coupling and tuning
modes. We have employed a basis set of 20 harmonic-oscillator functions for each
mode, resulting in a dimension of 800 of the system Hamiltonian matrix H®. The
numerical evaluation of p(¢) via the HEOM method requires the propagation of
a large number of coupled equations of motion for auxiliary matrices of large
dimension, which is computationally demanding. We overcame the computa-
tional challenge by using a GPU (Graphic Processing Unit) implementation of the
ArrayFire package which provides an easy-to-use API (application programming
interface) and an array-based function set that facilitates GPU programming.”
The numerical integration of the equations of motion for the auxiliary density
matrices are performed on a NVIDIA Tesla M2050 GPU with 448 processors and 2
GB ECC-protected on-board memory. The HEOM eqn (15) has been solved via
a fourth-order Runge-Kutta method with a time step of 0.2 fs. Depending on the
value of system-bath coupling strength 4;, j = c, t, the truncation threshold N of
the hierarchy was varied from 6 to 12, which was found to be sufficient for

(@)

x 10* x 10* (b)

—
—

-5 QO 5 -5 QCO 5

t

Fig.1 Cuts through the adiabatic potential-energy surfaces of the electronic ground state
(blue), S; state (green) and S, state (red) of the pyrazine model along the normal coordi-
nates Q; (a) and Q¢ (b).
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obtaining converged results. With this efficient algorithm implemented on GPU
hardware, the propagation of p(¢) up to 1000 fs on a single GPU requires from
several hours to 10 hours, depending on the truncation number N. The matrix-
matrix multiplications in eqn (15) are carried out by the ArrayFire function
matmul. The adiabatic populations P;® are obtained by evaluating the expectation
values of the projection operators on the lower and upper adiabatic electronic
states in the diabatic representation, as described in ref. 74. The vibrational
probability densities (25) are calculated by using a discrete variable representa-
tion (DVR) scheme. In this DVR scheme, a transformation between the harmonic-
oscillator basis and a grid in coordinate space is performed to represent operators
in coordinate space (see ref. 75 for details).

[1l. Results

A. Electronic population probabilities and vibrational coherences

Fig. 2(a) shows the time-dependent population P§'(t) of the diabatic rtrc* state for
different system-bath coupling strengths on a time scale of 1 ps. The time
evolution of P§'(¢) for the isolated system (A. = A, = 0, black line) exhibits an initial
decay on a timescale of =30 fs, followed by a few quasi-periodic recurrences with
the period of the tuning mode. Beyond about 400 fs, the wm* population

1.0 T T T T
@) — =0
— A ==21 2cm’”

0.8 ——3,=2=1060m" T
c —— =1.=53cm”
g T 3
© 06} — = =106em” |
=)
Q.
o
Q.
© 041
©
Qo
8
© 0.2t

00k . . : : ]

1.0 T T . .

(b)

0.8} ]
C
K
% 0.6} 1
o
o
o
£ 04}
[
fe)
©
8
© 0.2F

0.0 . .

0 200 400 _. 600 800 1000
Time/fs

Fig.2 Diabatic (a) and adiabatic (b) population probability of the upper electronic state of
the pyrazine model for bath relaxation times y. ' = v 1 = 50 fs and different system—bath
coupling strengths: A = A = 0 (black), 2.1 (magenta), 10.6 (red), 53.0 (blue), and 106.0
cm™ (green).
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probability exhibits irregular fluctuations. The long-time average of P§i(¢) is =0.4.
For the system-bath coupling strengths considered here, the coupling to the bath
does not affect the fast initial decay of PS(¢) which is driven by the strong
nonadiabatic coupling at the conical intersection. On the other hand, the irreg-
ular fluctuations of P§i(¢) for ¢ = 400 fs are wiped out by even very weak system-
bath coupling (A. = A. = 2.1 cm ™', magenta line). With increasing, but still weak,
system-bath coupling (4. = A, = 10.6 cm*, red line), P3 (¢) exhibits, counterin-
tuitively, a revival of the coherent oscillations driven by the tuning mode which
extends now well beyond 1 ps. With further increasing system-bath coupling, the
coherent oscillations of P§i(¢) are damped out on a time scale of a few hundred
femtoseconds, see Fig. 2(a), blue and green lines. The long-time limit of
Pi(t) decreases with increasing system-bath coupling and is seen to converge to
a small, but nonzero, value.

The time evolution of the population P3%(¢) of the adiabatic S, state is shown in
Fig. 2(b). The initial decay of P3%(£) of the isolated conical intersection (black line)
occurs on a time scale of =20 fs and is somewhat faster than the initial decay of
PYi(t). P3(¢) approaches an asymptotic value of ~0.2 at 1 ps. The system-bath
coupling does not affect the short-time dynamics within the first =100 fs. As
observed for the diabatic population probability, the irregular fluctuations of
P3(¢) are efficiently damped out by even very weak system-bath coupling (A. = A
=2.1cm™ ', magenta line). With increasing system-bath coupling, the population
of the S, state quickly drops to zero, see Fig. 2(b). For the strongest system-bath
coupling considered (4. = A, = 106.0 cm '), all recurrences of P3%(t) are quenched
(green line). It should be noted that the long-lasting coherent oscillations of
Pi(t) observed for A. = A, = 10.6 cm ™! are absent in P3%(¢). Overall, P3%(f) reveals
a bimodal relaxation dynamics. The ultrafast initial decay on a time scale of a few
tens of femtoseconds originates from the nonadiabatic dynamics of the conical
intersection itself. The coupling to the environment leads to a complete transfer
of the population of the S, state to the S; state on sub-picosecond time scales for
even weak system-bath coupling.

The expectation values of the position operator, (Q.);, and the momentum
operator, (Py), of the tuning mode are shown in Fig. 3(a) and (b), respectively. For
the coupling mode, these expectation values vanish by symmetry. For the isolated
conical intersection (black line), (Q,), and (P;), exhibit oscillations which are
damped on a time scale of =300 fs. The mechanisms of this intrinsic vibrational
dephasing of the conical intersection has been discussed in detail for the three-
mode model of the S,-S; conical intersection of pyrazine in ref. 55. A very weak
system-bath coupling (1. = A, = 2.1 cm ™' magenta line) effectively damps residual
fluctuations of (Q.), and (P.), for ¢t = 500 fs. For stronger, but still weak, system-
bath coupling (2. = A = 10.6 cm ™Y, red line), a significant enhancement of the
amplitude of the tuning mode is observed. This “dedamping” of the tuning mode
is the reason for the long-lived coherent oscillations of P{(¢) in Fig. 2(a). The
mechanism of this effect will be discussed in Section IV. With further increasing
system-bath coupling (blue and green lines in Fig. 3), the oscillations of (Q,), and
(Py); are damped on time scales of a few hundred femtoseconds. Moreover, the
long-time limit of (Q.), is seen to shift towards an asymptotic value, which
corresponds to the minimum of the adiabatic S; PE surface, see Fig. 1. This
reflects the flow of excess vibrational energy from the conical intersection into the
environment.
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Fig. 3 Expectation values of position (a) and momentum (b) operator of the tuning mode
for bath relaxation times v~ = v, 1 = 50 fs and different system—bath coupling strengths:
Je = A = 0 (black), 2.1 (magenta), 10.6 (red), 53.0 (blue), and 106.0 cm™* (green).

Next we consider the effect of the bath relaxation time y~* on the electronic
populations and vibrational coherences. Fig. 4 shows the time-dependent pop-
ulation probabilities of the diabatic wwrc* state (a) and the adiabatic S, state (b),
calculated for a longer bath relaxation time (y. ' = y ' = 166 fs) and three
different system-bath coupling strengths. Compared to Fig. 2 (bath relaxation
time y. ' = v, ! = 50 fs), the coherent beatings of P§'(t) last longer in Fig. 4(a).
The adiabatic populations P3%(¢) in Fig. 4(b) also decay more slowly than those in
Fig. 2(b). The bath with longer relaxation time is less effective in draining
coherence and energy from the dynamics of the system.

The corresponding expectation values of (Q,), and (P;), are shown in Fig. 5(a)
and (b), respectively. The damping of the oscillations of (Q;); and (P,), due to
system-bath coupling is less pronounced than in Fig. 3. The effect of dedamping
of (Qy).and (P,), occurs for a higher value of the system-bath coupling strength, A.
= )¢ = 53.0 cm ™" (blue line in Fig. 5). For strong system-bath coupling (. = A, =
106.0 cm™ ' (green line)), the oscillations of (Q.), and (P.), are completely
quenched at =900 fs, while they were quenched already at =500 fs for the shorter
bath relaxation time (Fig. 3).

B. Vibrational probability densities

The most detailed insight into the dynamics of the ultrafast internal-conversion
process in the present model of a dissipative conical intersection is provided by
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Fig. 4 Diabatic (a) and adiabatic (b) population probability of the upper electronic state of
the pyrazine model for bath relaxation times y. ™! = vy, = 166 fs and different system—
bath coupling strengths: Ac = A = 10.6 (red), 53.0 (blue), and 106.0 cm™* (green).

the time-dependent probability densities P2%(Q,,t), P2%(Qy,t) defined in eqn (25). In
what follows we call P,‘;d(Qj,t), Jj = ¢, t, probability densities of Q. and Q,, but it
should be kept in mind that they are reduced probability densities, that is, the
respective other vibrational mode is integrated out.

Fig. 6 shows the probability densities P5%(Q,t) (upper panels) and
Pi9(Qyt) (lower panels) of the tuning mode for zero system-bath coupling (left
column) and system-bath coupling of intermediate strength (A, = A, = 53.0 cm ",
right column). Let us consider the isolated conical intersection first (panels (a)
and (c)). The localized wave packet prepared at ¢t = 0 on the S, surface propagates
to the right (towards negative Q) following the gradient of the S, surface (see
Fig. 1(a)). Within half of a vibrational period, the wave packet reaches the conical
intersection and partially transfers to the S; surface, where it experiences
a gradient in the opposite direction. This results in coherent wave-packet
dynamics in the tuning mode at short times, see panels (a) and (c). For the iso-
lated two-mode conical intersection, the S, — S, radiationless transition is
incomplete. Beyond =200 fs, the structure of the probability density becomes
more and more chaotic, especially on the S; surface. The coupling of the conical
intersection to the environment results in a qualitatively different picture (panels
(b) and (d)). The probability densities are smoothed and exhibit rather regular
quasi-periodic behavior. The transfer of energy to the bath assists in the relaxa-
tion of the wave packet from the upper adiabatic surface to the lower adiabatic
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Fig. 5 Expectation values of the position (a) and momentum (b) operator of the tuning
mode for bath relaxation times y. ' = v, 1 = 166 fs and different system—bath coupling
strengths: A = A = 10.6 (red), 53.0 (blue), and 106.0 cm™* (green).

surface. Recurrences of the probability density to the upper surface are strongly
suppressed. For the dissipative conical intersection, the probability density of the
tuning mode on the S; surface at ¢t = 1 ps is peaked at Q; = 1.8 (panel (d)), which is
not the case for the isolated conical intersection (panel (c)). This illustrates that
the vibrational excess energy available after the S, — S; radiationless transition is
effectively drained into the environment, allowing relaxation of the system to
a stationary state.

The probability densities P3%(Q.,t) (upper panels) and Pi%Q,,t) (lower panels)
of the coupling mode are shown in Fig. 7. As in Fig. 6, the left column shows the
bath-free dynamics, while the right column displays the dynamics of the conical
intersection coupled to a bath with A, = A, = 53.0 cm . For the isolated conical
intersection (panels (a) and (c)) the probability density in Q. spreads very rapidly
in a symmetric manner. The probability density on the upper surface exhibits
three “ridges” at Q. = 0 and Q. = £5 (the outer turning point in Q.). The wave
packet on the lower surface exhibits a symmetry-required node at Q. = 0 and the
width of the probability density shrinks with time. Beyond =200 fs, the proba-
bility densities on both surfaces are quite noisy. Panels (b) and (d) of Fig. 7
illustrate the effect of the system-bath coupling on the probability densities
P3Y(Q.,t) and PA4(Q,,t). The peak of P3%(Q.,t) at Q. = 0 rapidly disappears, while the
peaks near the turning points decrease in height and move inwards, reflecting the
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Fig. 6 Time dependent probability density of the tuning mode in the S, (upper row) and S;
(lower row) adiabatic electronic states for bath relaxation times y. ' = v, * = 50 fs. Left
column: Ac = A = O; right column: A = A, = 53.0 cm™L

loss of vibrational energy from the coupling mode. On the lower adiabatic surface,
the width of the vibrational distribution narrows even more rapidly and the zero
of P{Q. = 0, t = 0) develops into a pronounced peak centered at Q. = 0, see
Fig. 7(d). As observed for the tuning mode, the probability densities of the
coupling mode are much smoother than for the isolated two-mode conical
intersection.

IV. Discussion

Considering the population dynamics of the diabatic wr* state, it is eye-catching
how sensitive the electronic population dynamics is to the coupling of the system
modes to an environment (Fig. 2(a) and 4(a)). Even the weakest system-bath
coupling considered here (1. = A, = 2.1 cm™ '), completely quenches the irregular
fluctuations of P§i(¢) beyond 400 fs (Fig. 2(a), magenta line). With somewhat
larger, but still weak, system-bath coupling (A. = A, = 10.6 cm %), a qualitatively
different behavior of P§i(t) is observed: the diabatic population probability
exhibits completely regular coherent beatings with the frequency of the tuning
mode (Fig. 2(a), red line). With further increases in system-bath coupling, these
coherent beatings are damped out on time scales of a few hundred femtoseconds.
For a longer bath relaxation time [7{1 =5, '=166 fs), the coherent oscillations
live longer.

It is interesting to compare these numerically exact results with earlier results
obtained with multi-level Redfield theory for the same two-state two-mode conical
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Fig.7 Time dependent probability density of the coupling mode in the S, (upper row) and
S, (lower row) adiabatic electronic states for bath relaxation times y. ™t = y,~* = 50 fs. Left
column: Ac = A, = O; right column: A = A, = 53.0 cm™L.

intersection coupled in the same manner to an ohmic bath.* In this earlier work,
the secular approximation*** to multi-level Redfield theory was employed. For
a very weak system-bath coupling (n = 0.003 in ref. 19, A. = A, = 2.1 cm " in
Fig. 2(a)), the diabatic population probabilities are essentially identical. It can be
concluded that for very weak system-bath coupling the spectral function of the
bath does not matter and multi-level Redfield theory gives correct results even
with the secular approximation. For somewhat stronger system-bath coupling
(n = 0.015 in ref. 19, A. = A, = 10.6 cm™ " in Fig. 2(a)), on the other hand, secular
Redfield theory fails dramatically. The pronounced coherent beatings of P§(¢) (red
line in Fig. 2(a)) are completely absent in the simulations with secular Redfield
theory.* A later study performed with non-secular multi-level Redfield theory for
a three-mode model of the S,-S; conical intersection in pyrazine* reproduces the
coherent oscillations of P§i(¢), albeit somewhat less pronounced and less regular
than in Fig. 2(a), which may be a consequence of the additional tuning mode or
the different spectral densities employed. A very similar result was obtained by
Gelman et al.?® for the two-mode model with a modified (Lindblad-type) Redfield
theory. It can be concluded that non-secular multi-level Redfield theory gives
a qualitatively correct description of the diabatic electronic population dynamics
for weak coupling of a conical intersection to a bath (see also ref. 22). The
mechanism of the dedamping of the tuning mode for intermediate system-bath
coupling strength, which leads to the pronounced coherent beatings in P3'(t), was
qualitatively explained in ref. 20. The coupling mode becomes particularly highly
excited during the ultrafast internal conversion process at the conical intersection
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(see below) and is therefore highly susceptible to environmental damping. The
efficient damping of the amplitude of the coupling mode reduces the intrinsic
mode-mode coupling of the conical intersection, thus “liberating” the tuning
mode to perform long-lived oscillations which in turn drive the diabatic electronic
population dynamics. In addition, the center of the vibrational wave packet
migrates towards the minimum of the S; PE surface at Q; = 1.4 and thus away
from the conical intersection at Q. = —3.5 (see Fig. 2(a)) to a region where the PE
surface is more harmonic than in the vicinity of the conical intersection.

These phenomena are further illustrated by the dynamics of the expectation
values of Q; and P, in Fig. 3 and 5. Fig. 3 shows that a very weak system-bath
coupling (A. = A, = 2.1 cm ™', magenta line) causes a damping of the oscillations
of (Qy), and (P,), of the isolated conical intersection (black line), whereas
a stronger system-bath coupling (A, = A, = 10.6 cm ") leads to a pronounced
increase of the oscillations of (Q,), and (P,), and a suppression of their damping
(red line in Fig. 3), which is the dedamping effect discussed above. With further
increase of the system-bath coupling, the coherent oscillation of the tuning mode
is damped by the environment. For the strongest system-bath coupling consid-
ered here (A, = A, = 106.0 cm ', green line in Fig. 3), the wave packet becomes
stationary at Q; = 2.0 at 500 fs. For a bath with longer memory time (y. ' =y, ' =
166 fs), the dedamping of (Q,); and (P,); is more pronounced at . = A, = 53.0
em ™! and the coherent oscillations of the tuning mode extend to longer times
(blue line in Fig. 5).

Let us now consider the time evolution of the population probability P3%(¢) of
the S, state. Again, a very weak system-bath coupling, A. = A, = 2.1 em™Y, is
remarkably efficient in suppressing the irregular fluctuations of P3%(¢) of the
isolated conical intersection (Fig. 2(b), magenta line). With increasing system-
bath coupling, the decay of P3(¢) is significantly enhanced. For A. = A, = 53.0
em ™, P3%(¢) decays within less than 200 fs. It is noteworthy that the long-lived
coherent oscillations of P§'(t) are completely absent in P3%(¢). This observation
underlines that the long-lived coherent wave-packet motion occurs exclusively on
the lower adiabatic PE surface away from the conical intersection. With longer
bath memory time, v. ' = y. ' = 166 fs, the quenching of P3%(¢) by the envi-
ronment is less pronounced, see Fig. 2(b).

The reduced probability densities of the coupling mode and the tuning mode
in Fig. 6 and 7, respectively, provide additional insight. The probability densities
in panels (a) and (c) clearly exhibit the irregular, chaotic character of the dynamics
of the isolated two-state two-mode conical intersection. These irregularities are
the time-domain signatures of the dense eigenvalue spectrum with incommen-
surable energy-level spacings which arise from the exceptionally strong nonadi-
abatic coupling at the conical intersection and the pronounced local
anharmonicity of the adiabatic PE surfaces. These chaotic features of the
dynamics at the conical intersection, which are reflected in various level spacing
distributions," are highly sensitive to perturbations and are therefore eliminated
by even very weak coupling to a dissipative environment. In contrast, the proba-
bility densities obtained for A. = A, = 53.0 cm ™" and shown in panels (b) and (d) of
Fig. 6 and 7 are completely smooth and regular. The chaotic character of the
dynamics was not observed in previous simulations for a three-mode model of the
S,-S; conical intersection in pyrazine,”>** presumably because the second tuning
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mode of the conical intersection (the », normal mode of pyrazine) already acts as
a quencher of the chaotic dynamics.

The vibrational probability densities P4(Q.,t) and Pi%(Qyt) of the dissipative
conical intersection in Fig. 6(b) and (d) and 7(b) and (d) illustrate how the large
excess energy in the tuning mode and the coupling mode, which is generated
within =30 fs after excitation, is drained out of the system dynamics, resulting in
a nearly stationary wave packet at =1 ps. Comparing panels (a) and (b) of Fig. 7, it
can be seen that the ridge of the density surviving on the S, surface at Q. = 0 in
panel (a) is turned into a valley by the coupling with the bath (panel (b)). The
recurrences of the wave packet to the S, surface are strongly suppressed and occur
near the minimum geometry of the S; PE surface in the Q. coordinate (see
Fig. 1(b)), opposed to the isolated conical intersection, where the recurrences to
the S, surface occur at Q. = 0 and at the outer turning points of the motion in Q,,
see Fig. 7(a).

V. Conclusions

We performed extensive simulations of the electronic and vibrational dynamics of
a two-state two-mode conical intersection which is weakly to moderately coupled
to a dissipative environment. The bath oscillators are bilinearly coupled to the
coupling mode and the tuning mode of the conical intersection. The chaotic
features of the intrinsic dynamics of the conical intersection, which are clearly
visible in the electronic population dynamics and the reduced vibrational prob-
ability densities, are completely wiped out by even very weak system-bath
coupling. While the ultrafast nonadiabatic dynamics within the first =30 fs is
unaffected by the coupling to the environment, the population probability of the
upper adiabatic state is effectively quenched on sub-picosecond time scales by
weak to moderate system-bath coupling. On the other hand, a counterintuitive
dedamping of the dynamics of the tuning mode is observed for specific values of
the system-bath coupling strength which depend on the bath memory time. This
effect is a signature of the exceptionally pronounced nonseparability of the
dynamics of the coupling and tuning modes of the conical intersection, to an
extent that damping of the coupling mode liberates the dynamics of the tuning
mode. Overall, the results confirm that the nonadiabatic wave-packet dynamics at
a conical intersection is unusually sensitive to weak coupling to a thermal envi-
ronment with the exception of the first few tens of femtoseconds. Due to the
complexity of the intrinsic dynamics of the conical intersection, the simulations
exhibit phenomena which are quite different from the familiar scenarios of the
optical Bloch equations or the Brownian oscillator. Our calculations show, in
particular, that dissipative conical intersections not only can maintain vibrational
wave-packets revealing the tuning modes, but also can create vibrational wave-
packets featuring the coupling mode(s). Related effects have been observed in
recent time and frequency resolved experiments on p-carotene and rhodopsin.”®””

The present study extends earlier simulations of the dynamics of conical
intersections coupled to an environment, which were based on multi-level Red-
field theory or similar models that are restricted to weak system-bath coupling
and short bath relaxation time.**-?*?>2¢ With the HEOM method, we were able to
explore system-bath couplings in the nonperturbative regime. With this method,
system-bath couplings of arbitrary strength can be investigated for complex
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systems such as conical intersections, as demonstrated recently also by Duan and
Thorwart.** In future extensions of the present work, the coupling of the material
system with femtosecond pulsed laser fields will be included in a nonperturbative
manner. While a nonperturbative treatment of the laser-matter interaction may
not be a necessity for the laser fields typically employed in spectroscopy, the
inclusion of the laser-matter interaction in the equation of motion of the density
matrix may be more straightforward and computationally efficient than the
calculation of higher-order multi-time response functions and multiple nested
integrals over the laser fields, which are required in the perturbative theory of
nonlinear optics.” The calculation of femtosecond time-resolved four-wave-mix-
ing signals from laser-driven equations of motion has been demonstrated, for
example, for pump-probe and photon-echo spectroscopy,**”**' two-dimensional
electronic spectroscopy® or femtosecond resonant Raman spectroscopy.® The
combination of nonperturbative HEOM simulations of dissipative nonadiabatic
dynamics with the calculation of spectroscopic signals directly from field-driven
equations of motion will become a powerful tool for the analysis and/or predic-
tion of state-of-the-art time and frequency resolved nonlinear spectra.
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