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Infrared microscopy has become one of the key techniques in the biomedical research
field for interrogating tissue. In partnership with multivariate analysis and machine
learning techniques, it has become widely accepted as a method that can distinguish
between normal and cancerous tissue with both high sensitivity and high specificity.
While spectral histopathology (SHP) is highly promising for improved clinical diagnosis,
several practical barriers currently exist, which need to be addressed before successful
implementation in the clinic. Sample throughput and speed of acquisition are key
barriers and have been driven by the high volume of samples awaiting histopathological
examination. FTIR chemical imaging utilising FPA technology is currently state-of-the-
art for infrared chemical imaging, and recent advances in its technology have
dramatically reduced acquisition times. Despite this, infrared microscopy measurements
on a tissue microarray (TMA), often encompassing several million spectra, takes several
hours to acquire. The problem lies with the vast quantities of data that FTIR collects;
each pixel in a chemical image is derived from a full infrared spectrum, itself composed
of thousands of individual data points. Furthermore, data management is quickly
becoming a barrier to clinical translation and poses the question of how to store these
incessantly growing data sets. Recently, doubts have been raised as to whether the full
spectral range is actually required for accurate disease diagnosis using SHP. These
studies suggest that once spectral biomarkers have been predetermined it may be
possible to diagnose disease based on a limited number of discrete spectral features. In
this current study, we explore the possibility of utilising discrete frequency chemical
imaging for acquiring high-throughput, high-resolution chemical images. Utilising
a quantum cascade laser imaging microscope with discrete frequency collection at key
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diagnostic wavelengths, we demonstrate that we can diagnose prostate cancer with high
sensitivity and specificity. Finally we extend the study to a large patient dataset utilising
tissue microarrays, and show that high sensitivity and specificity can be achieved using
high-throughput, rapid data collection, thereby paving the way for practical
implementation in the clinic.

1 Introduction

Histopathology is currently the gold standard for identifying the manifestation of
disease in tissue. Principally relying on changes in morphology and architecture
highlighted through selective staining,"* a highly trained pathologist can diag-
nose disease, suggest possible treatments and even provide information on likely
prognosis. Microscopic examination of stained tissue biopsy sections presents the
pathologist with a high degree of information, and histopathology is currently
unsurpassed in its diagnostic accuracy. However, manual examination of indi-
vidual tissue biopsies is extremely time-consuming, with each section being
individually interrogated for the presence of abnormalities. Limited throughput
inevitably results in significant delays between the time a biopsy is obtained and
a diagnosis being made, with clear implications for patient care and treatment.
Furthermore disease diagnosis based on tissue morphology and architecture is
inherently subjective, often resulting in intra- and inter-observer error.® This
situation has been exacerbated by national cancer screening programs, with the
number of tissue biopsies being harvested increasing annually. Desire for
increased throughput, improved accuracy and a reduction in repeat biopsies are
clear drivers for the implementation of complementary methods for disease
diagnosis.

Over the last decade, spectral histopathology (SHP) has demonstrated great
promise for the diagnosis of the diseased state. Fourier transform infrared
chemical imaging has gained attention in the biomedical field as a rapidly
emerging technology for disease diagnosis.*® Biological material can be interro-
gated without the need for exogenous labels, little or no sample preparation, and
in a non-destructive manner. The technique exploits the high chemical sensitivity
of infrared spectroscopy, in combination with microscopy, to provide spatially
resolved measurements that are rich in biochemical content. Whereas conven-
tional histology relies on the subjective interpretation of tissue architecture and
cellular morphology, this approach relies on reproducible physical measurements
of sample chemistry, and the potential to reduce misdiagnosis.

In partnership with machine learning methods, FTIR chemical imaging has
demonstrated the ability to distinguish between normal and cancerous tissue
with high sensitivity and specificity,*® and also to determine cancer grade' and
staging.”* However, clinical translation has been inhibited until recently by
technological advancements failing to deliver what is required to make it
competitive with current histological methods. Developments in focal plane array
(FPA) detector technology' have drastically reduced acquisition times, but until
recently™ could not compete with the high-resolution images obtainable in bright
field imaging. Early signs of invasive cancer are often manifested in the basement
membrane, the basal layer in prostate’ and myoepithelium in breast cancer.***
Conclusive early diagnosis requires detection of subtle changes on the sub-
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cellular level across microscopic membranes only obtainable through high-
quality high-resolution chemical images.

Recent technological advancements have resulted in commercially available
infrared microscopes utilising 0.62 NA 15 x magnification optics with a 128 x 128
FPA, enabling imaging of a 140 pm X 140 um area to be imaged as a single
measurement with 1.1 um pixel size and a diffraction-limited spatial resolution of
about 6 pm at 1667 cm™'. However, the inherent trade-off between high resolu-
tion and acquisition times inevitably makes high-resolution imaging impractical
due to excessive measurement times. Obtaining high-resolution (1.1 pm) chem-
ical images from a single 1 mm tissue microarray (TMA) core will typically take
between 5-6 hours to acquire, followed by a further 40-50 minutes to process the
interferograms and stitch the tiles together.”” The time taken to record single
cores generally makes FTIR chemical imaging, even using 128 x 128 FPA,
unsuitable for high-throughput imaging of tissue biopsies and full TMAs. The
problem lies with the vast quantities of data an FTIR chemical imaging system
acquires when using an FPA detector. A single infrared tile consists of 16 384
pixels (for a 128 x 128 FPA) and each pixel itself consists of an entire infrared
spectrum. Imaging of a full TMA core with 1 mm diameter at 1.1 pm pixel reso-
lution is typically performed using 64 infrared tiles, resulting in a large spectral
data cube requiring over 13 GB to store. Since FTIR relies on the Fellgett advan-
tage and collects all wavelengths simultaneously, restricting the spectral range
does not reduce the acquisition time. Speed of acquisition and data management
issues are rapidly becoming a significant barrier to clinical translation.

Recently, doubts have been raised as to whether entire infrared spectra are
necessary for disease diagnosis using SHP. Studies suggest that once spectral
biomarkers have been identified, it may be possible to use a selection of key
wavenumbers for diagnosing disease."®° In this paper we report on a novel study
using discrete frequency imaging utilising a Spero Quantum Cascade Laser (QCL)-
based full-field imaging infrared microscope for disease diagnosis. We investigate
the practicalities of utilising high-resolution, high-throughput chemical imaging
using discrete frequencies, and consider implications for improved disease
diagnosis.

2 Materials and methods
2.1 Sample preparation

Formalin-fixed, paraffin-embedded prostate tissue samples were obtained
following informed consent and ethical approval (Trent Multi-centre Research
Ethics Committee 01/4/061). A 12 um-thick section was taken from each paraffin
block and fixed to a BaF, slide (75 mm x 25 mm x 1 mm) for infrared trans-
mission measurements. BaF, was chosen since it has a better low wavenumber
cut-off than CaF, (950 cm ™" compared with 1000 cm ') and does not suffer from
the electric field standing wave effect,** which can be a problem for low-e
infrared reflecting slides. Serial sections from each block were fixed to glass and
underwent Haematoxylin and Eosin (H&E) staining for bright field imaging. The
samples mounted on BaF, were left in wax and did not undergo deparaffinization.
This reduces the risk of further chemical alterations from clearing solvents, and
reduces Mie scattering via refractive index matching.>*>*
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2.2 Infrared chemical imaging

Infrared chemical images were acquired with a Spero infrared microscope
(Daylight Solutions Inc., San Diego, CA, USA) utilising quantum cascade laser
technology.”” Employing four separate high-brightness QCL modules in a single
multiplexed source enables continuous access to the fingerprint region between
900 and 1800 cm ™. The system is equipped with a high-pixel-density (480 x 480)
uncooled microbolometer FPA. A 0.7 NA, 12.5x compound refractive objective
was used in transmission mode, providing a large field of view of 650 um x 650
pm with a corresponding pixel size of 1.35 pm, yielding a diffraction-limited
spatial resolution of about 5 um at 1667 cm ™.

The tissue used in the study arise from 29 separate cancer patients consisting
of 50 unique 1 mm diameter cores spread over two separate TMAs. Each core is
assigned as either cancerous (containing malignant tissue), or normal-associated
(from a cancer patient but containing no malignant tissue). Wherever possible
anormal core and a cancerous core were measured for each patient. However, this
was not always possible due to some cores being missing from the array. The
sample set consisted of an equal number of 25 normal-associated and 25
cancerous cores. Background images were collected prior to each TMA core, taken
from a clean area of the sample that was free of tissue or paraffin. Chemical
images of each TMA core were collected using the mosaic method, with each core
measured individually as a 2 x 2 mosaic. A single core using 27 discrete wave-
numbers consisting of 921 600 pixels took approximately 5 minutes and 30
seconds to collect. Each sample tile is ratioed to its background in real time and,
upon completion of the collection, automatically exported as a datacube in
MATLAB format ready for stitching post collection.

2.3 Data pre-processing

Data pre-processing was performed using MATLAB 2013a (The MathWorks Inc.,
Natick, MA, USA) and the ProSpect Toolbox (London Spectroscopy Ltd., London,
UK). Infrared tiles were stitched together using software written in house and
saved as a 960 x 960 x 27 hyperspectral datacube, and also as a chemical image
based on the intensity of the amide I band. Stitching together 4 tiles to form
a hyperspectral data cube using a dual core Intel i7-2600 with 16 GB RAM took on
average just 6 seconds per core and required only 80 MB of storage space. Spectra
were quality tested to remove areas of the images where no tissue was present, or
where there was a high degree of scattering. Quality testing was based on the
intensity of the amide I band, with those spectra having amide I absorbance
between 0.1-2.0 being retained. Each spectrum was baseline corrected using
a linear rubber band correction at 1000 cm ™" and 1734 cm ™. Finally the spectra
were normalised to the intensity of the amide I band to account for different
thicknesses of the tissue sample.

3 Results and discussion
3.1 Wavenumber selection for discrete frequency imaging

Successful exploitation of discrete frequency chemical imaging for high-
throughput disease diagnosis requires the intelligent selection of salient
frequencies that provide the greatest discriminatory power between diseased and
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healthy states. Failure to choose the correct wavenumbers could result in crucial
spectral biomarkers being missed and could directly impact diagnostic accuracy.
In addition, not all wavenumbers are suitable biomarkers and often provide little
or no useful biochemical information. Acquiring too many wavenumbers
increases measurement times and therefore reduces throughput. Numerous
examples exist in the literature of well-established biomarkers*** determined
using FTIR chemical imaging. However, to date no studies have been performed
on the transferability of biomarkers obtained using FTIR to discrete frequency IR
spectroscopy. We have addressed this by acquiring full band spectra and subse-
quently identifying key biomarkers at sparsely located frequencies.

Chemical images were acquired in the spectral range 1000-1800 cm ' from
tissue cores from two patients who had been diagnosed with prostate cancer. The
first patient core was histologically classified as Normal-Associated Tissue (NAT)
and contained normal tissue components only. The second patient core was
classified as cancerous and contained morphological features consistent with
a Gleason grade of 4. Since the cores available for the study had Gleason grades
ranging between 3 and 5, choosing a core with a Gleason grade of 4 encompasses
the middle of the cancer severity range. In principle, utilising a larger patient set
for acquiring continuous infrared spectra would enable improved identification
of the key wavenumbers. However, for the scope of this proof-of-concept study
and due to the limited time available, we elected to choose a normal core and
a cancerous core in the middle of the cancer severity range. Chemical images for
each core based on the intensity of the amide I band are shown in Fig. 1.

Fig.1 QCL chemical images of the amide | band intensity and H&E-stained serial section
(bottom) for normal-associated tissue (left) and cancerous tissue (right) used to identify
the key wavenumbers for discrete frequency classification.
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Employing similar methods as Fernandez,* a database was constructed con-
sisting of 5000 spectra each for cancerous epithelium and normal-associated
epithelium. The spectra were quality tested, truncated between 1350 and 1500
em ! (to remove spectral regions describing bands of paraffin), and normalised to
the amide I band. Mean spectra of the normal-associated and cancerous epithe-
lium tissue are displayed in Fig. 2. Upon first inspection the spectra appear
relatively similar, although some subtle differences can be discerned between
1000 and 1300 cm ™.

Half of the spectra from each class were selected at random and fed into
a random forest® algorithm (software available from http://code.google.com/p/
randomforest-matlab/). Random forests have the advantage that, unlike other
supervised classifiers, they do not require feature selection prior to use. A random
forest will return a measure for variable importance and identify the most
important wavenumbers for classification. Alternative methods for wavenumber
selection are available, such as partial least squares discriminant analysis (PLS-
DA) and variable importance for projection (VIP), as described by Lloyd.** The
classifier was trained using 500 trees, with the number of wavenumbers selected
at random to try and split each node (mtry) set to 2. The remainder of spectra in
the database that had not been used for training were used to test the model.

Receiver operator curves present an effective way to visualise the performance
of the classifier. Each tree votes to classify a spectrum to a specific class, and the
number of votes provides a probability estimate to each spectrum belonging to
a particular class. Varying the probability acceptance thresholds adjusts the trade-
off between sensitivity and specificity and produces a receiver operator curve
(ROC). The ROCs obtained using the random forest classifier are displayed in
Fig. 3.

The optimal situation would be for curves to be situated at the top left hand
corner of the plot, which indicates both high sensitivity and high specificity.

Normal
Cancer []

Absorbance

0 L L L L L L L
1800 1700 1600 1500 1400 1300 1200 1100 1000
Wavenumber

Fig. 2 Mean spectra for normal-associated epithelium and cancerous epithelium from
the database constructed from two prostate tissue cores, following truncation to remove
the spectral regions describing wax, and normalisation to the 1652 cm™* band.
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Fig. 3 Receiver operator curves for normal and cancerous epithelium spectra using 2500
from each class for training and testing. AUC = 0.9991.

Conversely, a poor classifier would be shown as a plot close to a diagonal line
between the origin and top right corner. Area under the curve (AUC) is a widely
accepted measure of classifier performance. The AUC for the plot shown in Fig. 3
is 0.991, demonstrating high performance of the classifier. Setting a probability of
acceptance threshold of 0.5 enables a confusion matrix to be calculated and the
ability to determine the proportion of each class that is correctly classified. Table
1 shows that normal-associated epithelium spectra are correctly classified with an
accuracy of 97.25%, and cancerous epithelium with an accuracy 97.19%.

Wavenumbers were then ranked in order of variable importance using a GINI
importance plot to determine which were most important in distinguishing
between normal and cancerous epithelium. Fig. 4a and b show typical GINI plots
used to select the 25 most important features. The top 25 wavenumbers from
a single GINI plot were selected for data collection. Subsequent repetition of the
analysis shows that the first 14 wavenumbers are consistently in the top 16, but
the remaining 11 wavenumbers selected can be ranked as far down as 58. This is
not too surprising given that the difference in importance starts to drop off
significantly after 20.

The twenty five discriminating wavenumbers that were originally used in order
of variable importance are shown in Table 2. The selected wavenumbers broadly
overlap absorption bands centred at 1032 cm ™' » (C-O) glycogen, 1080 cm ™' v,
(PO,7), 1236 cm™ " v, (PO, ), 1540 ecm ™' (amide II), and 1656 cm™ ' (amide I).

Table 1 Confusion matrix showing classification accuracy for normal-associated and
cancerous epithelium using the random forest classifier with 500 trees

Normal Cancer
Normal 97.25 2.25
Cancer 2.81 97.19
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Fig. 4 GINI importance plot (a) as a function of wavenumber and (b) ranked in order of
variable importance.

3.2 Discrete frequency imaging and classification

Discrete frequency chemical images were acquired from each of the 50 prostate
tissue biopsy cores. Two wavenumbers at 1652 cm™ ' and 1734 cm ™' in addition to

Table 2 25 key wavenumbers (cm™2) ranked in order of variable importance, as identified
by the random forest classifier. Figures in parentheses indicate the variable importance
ranking, with the lowest number being the highest ranking

Wavenumber (cm™")

(1)1024 (2)1020 (3)1028 (4)1016 (5)1012  (6)1072  (7) 1000  (8) 1004
(9)1032  (10) 1636 (11) 1068 (12) 1088 (13)1684 (14) 1092 (15) 1008 (16) 1640
(17) 1688 (18) 1692 (19) 1064 (20) 1648 (21) 1236 (22) 1696 (23) 1096 (24) 1524
(25) 1044
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the twenty five key wavenumbers (Table 2) were also acquired. The difference in
absorbance at these two wavenumbers enabled the height of the amide I band to
be determined, and this was used to quality check the spectra with spectra having
an amide I intensity of between 0.1-2 being retained. Fig. 5 shows chemical
images from a single prostate tissue core based on the intensity of the 1652 cm ™,
1524 cm ', and 1236 cm ' bands and the H&E-stained serial section. The
chemical images shown have been quality tested and spectra with amide I peak
absorbance intensity between 0.1 and 2.0 retained. The image illustrates that
rapid chemical imaging using discrete frequencies enables different types of
tissue to be highlighted depending on the chosen frequency. Chemical images
obtained at 1652 cm™ " and 1524 cm ™' enable differentiation between epithelium
and stroma, while the 1236 cm ™" chemical image highlights regions of stroma.
Chemical images from each of the 50 cores were compared to the corre-
sponding H&E-stained serial sections to identify regions of cancerous and
normal-associated epithelium. The patients were then randomly divided into two
separate libraries to form a training cohort (15 patients) and a testing cohort (14
patients). The patients in each cohort were fairly evenly distributed across the two
separate TMA slides. The training cohort had a split of 8 patients on one slide and
7 on the other. While the testing cohort was split with 8 patients on one slide and
6 on the second slide. Using the methods previously described by Fernandez,*
two spectral databases were constructed from these cohorts, consisting of
a training data set and an independent test set. Dividing the patients (and the
data) prior to building the classifier ensures that the test set is completely

Fig.5 Discrete frequency chemical images of a prostate tissue single core obtained using
(clockwise from top left) 1652 cm™2, 1524 cm™, and 1236 cm™ band intensity and HHE-
stained serial section.
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independent, since no spectra used in training the model will be used for testing.
Equal numbers of spectra from each class (normal-associated and cancerous
epithelium) were extracted from the training database. Spectra were quality
tested, baseline corrected and normalised to the amide I band. The mean
cancerous epithelium and normal epithelium spectra based on 207 505
measurements each are shown in Fig. 6. Despite the limited number of data
points in each spectrum, subtle spectral differences between the two classes are
discernible, particularly between 1000 and 1240 cm ™.

Half the spectra contained in the training database were randomly selected to
train the model, with the remainder forming a validation test set. Metrics fed into
the classifier were based on the absorbance values for each of the 25 discrete
frequencies, and also all possible ratio combinations for the discrete frequency
dataset, which yielded 325 features in total. The random forest classifier was then
trained on the 207 505 partitioned spectra using 200 trees, which enabled the
classifier to be constructed in approximately 90 minutes. The remaining spectra
in the training data base were used to validate the model. The receiver operator
curves obtained are displayed in Fig. 7. AUC values for the classifier are close to 1
(0.9895), indicating that the classifier can easily differentiate between normal and
cancerous epithelium spectra. Despite utilising only 25 wavenumbers, the
correctness of classification is high, with sensitivity and specificity of 93.39% and
94.72% respectively, as shown by the confusion matrix in Table 3.

The large number of features used to train the random forest classifier, and the
substantial size of the data set, are the main factors responsible for lengthy
training times. In an attempt to speed up training, the classifier was also trained
using only the absorbance values at each of the 25 discrete frequencies. Training
using 207 505 spectra per class using 200 trees enabled the random forest clas-
sifier to be constructed in just 8 minutes. The ROCs obtained using 25 features are
shown in Fig. 8. The reduction in the features used in training has an impact on
the performance of the classifier, the AUC decreasing from 0.9895 to 0.9625.
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Fig. 6 Discrete frequency mean spectra utilising 27 wavenumbers for cancerous and
normal-associated epithelium. Dashed lines are present as a guide to the eye.

144 | Faraday Discuss., 2016, 187, 135-154 This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5fd00176e

Open Access Article. Published on 04 January 2016. Downloaded on 11/21/2025 10:23:02 PM.

This articleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(ec)

Paper Faraday Discussions

1 T T T T T T T
Normal
0.9F Cancer []

0.8 .

0.7 .

06F .

05F .

sensitivity

03F .

02F .

0 1 1 1 1 1 1 1 | 1
0 01 02 03 04 05 06 07 08 09 1

1-specificity

Fig. 7 Receiver operator curves (ROC) with 25 wavenumbers (325 features), using vali-
dation data for normal-associated and cancerous epithelium. Area under the curve values
(AUC) are normal = 0.9851, cancer = 0.9851.

Furthermore the sensitivity and specificity decreases to 89.14% and 90.32%
respectively, suggesting that despite the increased processing times, using 325
features constructed from the 25 discrete frequencies is more effective.

The training data was then subjected to repeated random sub-sampling vali-
dation using ten repeats. In each case half the spectra in the database were
randomly selected and used for training, while the remainder served as validation
spectra. Table 4 shows the mean and standard deviation for the calculated
sensitivity and specificity of the ten classifiers trained. The mean sensitivity and
specificity from the repeated sub-sampling is high and provides a very small
standard deviation, indicating that the classifier accuracy is not dependent on the
spectra used to train and test the model.

3.3 Discrete frequency classification with restricted numbers of wavenumbers

While it is evident that 25 discrete wavenumbers allows good classification
accuracy on the validation data set, the effect of the number of discrete wave-
numbers measured on classification accuracy is a key question. Clinical trans-
lation of discrete frequency infrared imaging requires high-throughput, high-
resolution imaging utilising as few discrete wavenumbers as possible. Naturally,
there will be a trade-off between the number of wavenumbers acquired and the
classification accuracy. We have addressed this by reducing the number of

Table 3 Confusion matrix showing correctness of classification using 25 wavenumbers
for normal and cancerous epithelium

Normal Cancer
Normal 93.39% 6.61%
Cancer 5.28% 94.72%
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Fig. 8 Receiver operator curves (ROC) with 25 wavenumbers (25 features), using vali-
dation data for normal-associated and cancerous epithelium. Area under the curve values
(AUC) are normal = 0.9625, cancer = 0.9625.

wavenumbers used to train the model. We elected to reduce the number of
wavenumbers used in classification rather than re-measuring all the cores with
the respective number of wavenumbers due to time considerations and the desire
for better comparability. In each case the subset of wavenumbers used was those
with the highest variable importance values (Table 2), to ensure optimal classifier
performance. Six separate experiments were performed on the training database
using varying numbers of discrete wavenumbers. Table 5 details the discrete
wavenumbers used for training and validating the random forest classification
model.

The performance of each classifier is shown in the ROCs in Fig. 9(a-f).
Decreasing the number of wavenumbers used in classification reduces the
performance of the classifier, as observed in the AUC values of 0.9780 and 0.9739
for 20 and 18 wavenumbers respectively. Reducing the number of discrete
frequencies is expected to reduce classifier performance, since less information is
being used during training. Surprisingly, training the random forest with just 18
wavenumbers still enables excellent discrimination between normal-associated
and cancerous epithelium tissue. Reducing the numbers of wavenumbers further
to 16 discrete frequencies only has a marginal effect on classifier performance
(AUC = 0.9772). However, when using 12 or 10 discrete frequencies, the classifier
performance begins to deteriorate with AUC values of 0.9557 and 0.9421
respectively.

Table 4 Mean and standard deviation of sensitivity and specificity, obtained using
repeated random sub-sampling validation of ten trained classifiers

Sensitivity Specificity
Mean 94.60% 93.39%
Standard deviation 0.0012 0.0010
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Table 5 Discrete wavenumbers used for training the classifier with 20, 18, 16, 14, 12, and
10 different wavenumbers

Number of discrete

wavenumbers Discrete wavenumbers (cm ™) used for random forest classification

20 1024 1020 1028 1016 1012 1072 1000 1004 1032
1636 1068 1088 1684 1092 1008 1640 1688 1692
1064 1648

18 1024 1020 1028 1016 1012 1072 1000 1004 1032
1636 1068 1088 1684 1092 1008 1640 1688 1692

16 1024 1020 1028 1016 1012 1072 1000 1004 1032
1636 1068 1088 1684 1092 1008 1640

14 1024 1020 1028 1016 1012 1072 1000 1004 1032
1636 1068 1088 1684 1092

12 1024 1020 1028 1016 1012 1072 1000 1004 1032
1636 1068 1088

10 1024 1020 1028 1016 1012 1072 1000 1004 1032
1636

AUC values provide a good comparison of classification accuracy, however
a more meaningful measure is the proportion of correctly classified spectra. Table
6 shows the proportion of correctly classified cancerous (sensitivity) and normal-
associated epithelium (specificity) as a function of the discrete frequencies used
in classification. The values for sensitivity and specificity are the mean values
based on repeated random sub-sampling using ten repeats.

The sensitivity and specificity are broadly in line with the AUC values, and
using all 25 wavenumbers enables high classification accuracy. Reducing the
number of discrete frequencies to 16 still results in good classification accuracy
with sensitivity and specificity of 91.88% and 91.03% respectively. Performance of
the classifier becomes poorer when using 12 or fewer discrete frequencies.
However using only 10 wavenumbers still enables surprisingly good classification
accuracy, with sensitivity and specificity of 87.15% and 86.80%. Inspection of
Table 5 reveals that, when using 10 discrete frequencies, the majority of the
wavenumbers are in the range 1000-1072 cm™*, indicating that important spec-
tral biomarkers are located here.

The number of discrete frequencies chosen when acquiring chemical images
is a key parameter. However, the time penalty associated with collecting
increasing numbers of discrete frequencies is also an important consideration.
Furthermore, as the number of discrete frequencies increases, so does the time
required to train the random forest classifier. The performance of the random
forest classifier as a function of AUC, sensitivity, specificity, acquisition time per
core, and training time are shown in Table 7.

The resulting sensitivity and selectivity are excellent when using the full 25
discrete frequencies, and a single core can be measured in 5.5 minutes, which is
a reasonable timescale. However, constructing the classifier takes the longest
time at ca. 90 minutes. Utilising only 10 discrete frequencies enables fast data
acquisition (3.27 minutes), and the random forest classifier can be constructed in
just 17 minutes. However, the improved throughput and analysis time is offset by
the reduced sensitivity and specificity of 87.15% and 86.80% respectively. To put
this into perspective it is crucial to understand what timescales would be
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Fig. 9 Receiver operator curves using validation data for normal-associated and
cancerous epithelium with (a) 20, (b) 18, (c) 16, (d) 14, (e) 12 and (f) 10, discrete frequencies.
AUC values are 0.9780, 0.9739, 0.9720, 0.9669, 0.9557 and 0.9421 respectively.

clinically acceptable. Once the classifier has been trained and robustly validated
there would not be a requirement to retrain the classifier on a regular basis.
Therefore, provided that the classifier can be trained within reasonable time-
scales, then the key parameter is the collection time per core. Utilising between 14

Table 6 Table showing sensitivity and specificity for the validation data using random

subset sampling using ten repeats

Number of discrete frequencies 25
Sensitivity (%) 94.60
Specificity (%) 93.39

93.02

18 16 14 12 10
92.27 91.88 91.13 89.11 87.15
91.16 91.03 90.05 88.53 86.80
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Table 7 Table showing AUC, sensitivity, specificity, collection time per core, and classifier
training time as a function of the number of discrete frequencies used with the random
forest classifier

Collection time  Training time

No. of frequencies AUC Sensitivity ~ Specificity = per core (min) (min)
25 0.9851 94.60 93.39 5.5 90
20 0.9780  93.02 91.71 4.47 60
18 0.9739 92.27 91.16 4.33 48
16 0.9772  91.88 91.03 4.13 37
14 0.9669 91.13 90.05 4 32
12 0.9557  89.11 88.53 3.6 24
10 0.9421 87.15 86.80 3.27 17

and 16 discrete frequencies enables each core to be measured in approximately 4
minutes while maintaining sensitivity and specificity >90%. Although there is
a slight reduction in sensitivity and specificity compared to utilising the full 25
discrete frequencies, there is a considerable time saving of approximately 90
seconds per core. We would suggest that acquiring high-resolution images of
a single TMA acquired in just four minutes, while maintaining high sensitivity
and specificity, would be clinically acceptable.

As QCL-based, full-field imaging technology continues to advance over the
coming years, this tradeoff will become less apparent to the clinician. The
underlying technology employed in this work is scalable and has the potential to
reach data collection times 1-2 orders of magnitude shorter, limited by the
thermal time constant of the bolometer (typically 0.33/fps) and the time required
to step the stage a single FOV when building mosaic images. Even today, if
a slightly lower pixel resolution of 4.25 pm is deemed acceptable for the appli-
cation, a 9.5x increase in throughput could be achieved simply by using the 0.3
NA 4x objective with a2 mm x 2 mm FOV. In this configuration, tissue cores with
diameters up to 2 mm could be imaged in a quarter of the times reported in this
work. Current and expected future trends in data acquisition times as a function
of the number of discrete wavenumbers employed in the diagnostic for two
different area—pixel resolution configurations are shown in Fig. 10.

Estimating future throughput trends assumed two camera frames (at 30 fps)
are used per discrete wavenumber to ensure adequate settling and 125 msec stage
mosaic step times. Based on these results, it becomes immediately apparent that
whole-slide diagnostic imaging could eventually be completed in a matter of
minutes using the protocols developed in this work.

3.4 Discrete frequency classification: independent test set

Testing classifier performance using the same patients for training and testing is
likely to produce favourable results, since inter-patient variability does not
become a factor. Implementation of SHP in the clinic requires that good classi-
fication of disease state can be achieved as new patients are introduced. Confi-
dence in SHP using discrete frequency imaging can only be achieved if it performs
well on patients in an independent test set. Each random forest classifier was
used to classify epithelium spectra from the 14 patients in the independent test
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Fig. 10 Data acquisition times vs. the number of discrete wavenumbers included in the
diagnostic for the current and future QCL full-field imaging technology used in this work.
Two different imaging configurations were used in this analysis: (1) 1.3 mm x 1.3 mm (2 x
2 mosaic) at 1.35 um pixel size (this work), and 2.0 mm x 2.0 mm (single FOV) at 4.25 um
pixel size.

set. The ROCs obtained in each case are shown in Fig. 11(a—f) and 12. Fig. 11(a)
shows the ROC obtained when using 25 discrete frequencies for training and
classification on the independent test set. The AUC values that were obtained for
the validation set were observed to be all close to 1, indicating good discrimina-
tion between classes when training and testing occurs on the same patients.
However, testing the classifier on the independent test set reduces the AUC values
from 0.9851 for the validation data to 0.8395 for the independent test set.
Reduced classification accuracy is expected to occur for the independent test,
since the data used to test the model are from new patients and therefore
completely independent. Reducing the number of discrete frequencies decreases
AUC values for the independent test set, in a similar manner observed for the
training data set. The AUC value of 0.8396 obtained using 20 discrete frequencies
instead of 25 (0.8395) is very similar, indicating that classification performance
has not deteriorated significantly. Although there is a slight reduction in AUC
(0.8163) when using 16 wavenumbers, each ROC plot appears broadly similar.
Classification performance only appears to deteriorate significantly when utilis-
ing 14 or fewer discrete frequencies. Using only 10 discrete frequencies (Fig. 12),
the AUC value decreases to 0.7808, which is in stark contrast to the validation set,
which had an AUC value of 0.9421.

The effect of reducing the number of discrete frequencies on sensitivity and
specificity is shown in Table 8. Utilising the full 25 discrete frequencies enables
reasonable classification accuracy rates of 72.14% and 80.23% for sensitivity and
specificity respectively. Reducing the number of discrete frequencies to 16 only
has a limited impact on classification, with sensitivity and specificity values of
70.46% and 78.10%. In contrast to the validation set, the sensitivity does not
appear to deteriorate significantly when reducing the number of discrete
frequencies. Specificity, however, does appear to be strongly correlated to the
number of discrete frequencies, and performance drops off sharply when less
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Fig. 11 Receiver operator curves using the independent test set for normal-associated
and cancerous epithelium with (a) 25, (b) 20, (c) 18, (d) 16, (e) 14, and (f) 12 discrete
frequencies. AUC values are 0.8395, 0.8396, 0.8261, 0.8163, 0.8044 and 0.7876
respectively.

than 14 wavenumbers are used. When using only 10 wavenumbers the classifi-
cation of the independent test set is poorer, with a mean sensitivity and specificity
of 68.73% and 73.51% respectively.

The poorer performance of the classifiers on the independent test set is
surprising considering the excellent classifier performance using the training
data. Since all patients in this study have been diagnosed with prostate cancer,
there is likely to be considerable biochemical variability between patients. To
perform well on new patients, the model needs to be trained on a dataset that
encompasses this variation. Given the limited patient numbers available in this
study for training and testing, it is likely that the model did not have sufficient
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Fig. 12 Receiver operator curves (ROC) with 10 wavenumbers using independent test set
for normal-associated and cancerous epithelium. Area under the curve (AUC) values are
0.7808.

variability built in to enable good discrimination between normal and cancerous
tissue for new patients. Similar findings have been published by Pounder®** when
using spectral histology of breast tissue using FTIR chemical imaging. In their
study, good classification performance was observed on the training data for
classifying epithelium, lymphocytes and myofibroblast-rich stroma with AUC
values of 0.94. Upon classifying an independent test set there was a deterioration
in classifier performance, with AUC values in the range of 0.8-0.88. The authors
described this effect as being due to the limited number of cores (50) and patients
used in the study. These findings are broadly in line with the classifier perfor-
mance which we have detailed in this paper. We have also considered whether
instrumental or sample preparation parameters could be a contributory factor to
the poorer classification accuracy of the independent test set. Variability in
sample and substrate thickness, and whether the samples are left in wax or
dewaxed are all parameters that could potentially affect classifier performance.
However, a much larger study investigating the effect of each parameter will be
required to determine the optimum parameters for classification performance.
Another possibility for the poorer classification on the independent test set is the
selection of the salient spectral frequencies. In this proof-of-concept study only
two patients were used for selecting the spectral frequencies used to train and test
the model. Given the biochemical variability within a patient population, it is
unlikely that two patients are a sufficiently large dataset for identifying the key

Table 8 Table showing sensitivity and specificity for the independent test set using
random subset sampling for ten trained classifiers

Discrete frequencies 25 20 18 16 14 12 10
Sensitivity (%) 72.14 71.29 71.13 70.46 69.48 68.25 68.73
Specificity (%) 80.23 80.83 78.86 78.10 76.69 75.07 73.51
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biomarkers. In the future it is recommended that a larger patient population is
used for frequency collection, and this is planned to be conducted. Although our
preliminary results are promising, larger studies using a more diverse patient
database would be required to fully evaluate the full potential of discrete
frequency imaging for disease diagnosis.

4 Conclusions

Discrete frequency infrared chemical imaging has the potential to provide high-
resolution, high-throughput chemical images on a timescale that could revolu-
tionise spectral histopathology. In this study, we have demonstrated that high-
quality chemical images of tissue biopsy cores composed of almost a million
pixels can be obtained in a matter of minutes. Comparable chemical images
obtained on a state-of-the-art FTIR system using an FPA detector would have
taken several hours. We have clearly demonstrated on a validation set that
excellent classifier performance can be achieved by careful selection of discrete
frequencies. We have further shown that significant time advantages can be
achieved by using just 16 discrete frequencies while maintaining good classifi-
cation accuracy. Testing the classifier on an independent test set produced mixed
results, with poorer accuracy than on the validation set. However, reasonable
classification accuracy could still be achieved when using 16 or more discrete
frequencies. Classifier performance may have been compromised by only using
two patients for selecting the optimal wavenumbers. Utilising a larger patient
population for determining the key biomarkers will be important in any future
studies. Limitations on the number of patient tissue core biopsy samples avail-
able are the most likely cause of the reduced accuracy when testing on new
patients. Prospects for this new and exciting technology are bright. However,
further work needs to be performed on significantly larger patient numbers to
fully understand its potential for successful implementation in the clinic.
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