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A new Brillouin spectro-microscope was designed and built to investigate the mechanical

properties of bovine and human corneas. This instrument integrates a single-stage virtually

imaged phased array spectrometer with a novel adaptive-optics interferometric filter to

achieve unprecedented rejection of the elastic background signal. As a result, highly-

resolved, reproducible data from both thin and thick collagen-based materials were

obtained. In particular, this technique is capable of rigorously measuring the relative

stiffness of different areas of human corneas, thus providing a true non-contact method

to characterise the fundamental mechanical features of both live and fixed biological

tissue samples.
Brillouin and Raman scattering both constitute useful techniques to study
material properties, although through very different regimes. Raman spectros-
copy probes intra-molecular vibrational bonds (optical phonons) in the THz range
(100 s to 1000 s of cm�1) and reveals information about chemical composition.1

By contrast Brillouin scattering probes bulk acoustic waves (acoustic phonons) at
GHz frequencies (�0.1–1 cm�1) and is linked to viscoelastic properties.2 Brillouin
scattering is based on the principle that photons scattered by travelling density
uctuations (spontaneous thermal phonons) acquire a Doppler shi. Measuring
this shi is measuring the speed of sound in a given material, which in turn is
related to the mechanical properties and moduli of the material.3 Thus, although
at a fundamental level the underlying physics is similar, the two techniques
address very different needs.

Brillouin spectroscopy is a useful tool in solid mechanics, and has long been
used to characterise the mechanical properties of transparent uids and crys-
talline solids.4However, only recently has this technique been applied to the study
of organic matter, thanks primarily to the introduction of virtually imaged phased
arrays (VIPAs)5 in lieu of multi-pass Fabry–Pérot spectrometers,6 and to the
aImperial College London, Blackett Laboratory, London, SW7 2BW, UK. E-mail: guillaume.lepert07@imperial.

ac.uk
bInstitute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle

upon Tyne, NE1 3BZ, UK

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 187, 415–428 | 415

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5fd00152h
https://pubs.rsc.org/en/journals/journal/FD
https://pubs.rsc.org/en/journals/journal/FD?issueid=FD016187


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 0
6 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
on

 9
/2

0/
20

24
 2

:1
2:

28
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
realisation that the geometric broadening of the Brillouin spectra arising from
focused illumination does not preclude high-NA Brillouin microscopy.7 The
invention and widespread adoption of VIPAs in recent years has triggered
something of a renaissance for Brillouin scattering by cutting the acquisition
times to seconds or less and enabling Brillouin imaging.5 Compared with
mechanical methods such as atomic force microscopy (AFM), where measure-
ments require direct interactions between the sample and a probe, Brillouin
imaging offers the advantage of a truly local non-contact analysis at microscopic
resolution. For example, several recent studies have used Brillouin scattering to
characterise the mechanical properties of biological tissues, including live cells,8

components of the extracellular matrix,9 and other natural or synthetic bioma-
terials.10 Although these developments have yet to be translated to a clinical
settings, they show great promise for the diagnosis and treatment of arterio-
sclerosis plaque11 and keratoconus.12

In the present work we review the fundamentals of Brillouin scattering and
introduce a new Brillouin spectro-microscope, dedicated to so biomaterials, that
enables signicant advances in suppressing parasitic elastic scattering in
aqueous media. This instrument was used to evaluate the mechanical properties
of dense collagen type-I gels produced aer plastic compression, as well as of
corneal tissue of bovine and human origin. The results reported here provide
important information about the structure and organisation of the biomaterials
analysed. We also address the challenges inherent to this method, notably in
relating the measured Brillouin shi to the biomechanical properties evaluated
using standard rheological and nano-indentation techniques.

1 Principles and apparatus for Brillouin spectro-
microscopy
1.1 Brillouin scattering

In Brillouin scattering, an incoming photon (angular frequency ui, wave vector~ki)
is inelastically scattered off a travelling thermal phonon (angular frequency up,
wave vector ~kp) at an angle q, with a new frequency us and wave vector ~ks, as
depicted in Fig. 1. In a quantum description, the photon will have either gained or
lost a phonon quantum of energy through annihilation or creation of a phonon,
respectively referred to as Stokes and anti-Stokes processes. The scattering angle q
is set by the experiment's illumination/collection geometry, which also constrains
the phonon wavelength via the conservation of energy and momentum:

kp ¼ 2ki sinðq=2Þ ¼ 4pn sinðq=2Þ
l

: (1)

The phonon wavelength is comparable to that of the photons, while the
frequency is in general of the order of 10 GHz. In the classical description, the
phonon is an acoustic wave, a periodic modulation of density and therefore of
refractive index, which can be regarded as a reective Bragg mirror moving at the
speed of sound. Then the above equation is just the Bragg condition; the Stokes/
anti-Stokes processes correspond to waves travelling in opposite directions, with
the Brillouin shi corresponding to a Doppler shi. The phase velocity vp of the
acoustic wave is
416 | Faraday Discuss., 2016, 187, 415–428 This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Momentum conservation in Brillouin scattering. (a) The general case; i, and s
denote the incident and scattered photons, and p the phonons. (b) The back-scattering
geometry (q ¼ 0) used in this paper, showing the generation of the Stokes (S) and anti-
Stokes (A) scattered photons.
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vp ¼ up

kp
¼ us � ui

kp
¼ DnB

l

2n sinðq=2Þ (2)

where DvB ¼ (us � ui)/2p is the experimentally measured Brillouin shi.
In general, transverse and longitudinal acoustic waves propagate at different

velocity, and will give rise to separate peaks in the Brillouin spectrum. However in
the back-scattering geometry (q ¼ 180�) used in this work only longitudinal waves
participate in the scattering processes,13 and the spectrum consists of a single
Stokes/anti-Stokes doublet.
1.2 Relation of the Brillouin shi to mechanical moduli

The acoustic velocity is correlated to the mechanical moduli of the material.
Since we are probing longitudinal waves only, and because the phonon wave-
length is much smaller then the material's extent, the relevant moduli is the so-
called p-wave or longitudinal modulus M, which is related to the velocity by
vp ¼ ffiffiffiffiffiffiffiffiffiffi

M=r
p

(r is the density of the medium). Rheological or nano-indentation
techniques measure Young's modulus E, and it would therefore be desirable to
be able to relate these two quantities. For a number of reasons this is not
straightforward; indeed preliminary comparative experiments14 have shown that
the Brillouin modulus is two or three orders of magnitude larger than Young's
modulus. First, the acoustic isotropy of highly ordered tissues such as corneal
collagen is questionable. Second, M is measured at GHz acoustic frequencies
whereas E is a quasi-static measurement. Acoustic dispersion could therefore
Fig. 2 Simplified schematics of the experimental set-up, showing the confocal micro-
scope, elastic scattering filter, VIPA spectrometer, all connected by single-mode fibres,
and the sample in its immersion medium.

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 187, 415–428 | 417

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5fd00152h


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 0
6 

A
pr

il 
20

16
. D

ow
nl

oa
de

d 
on

 9
/2

0/
20

24
 2

:1
2:

28
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
signicantly increase the moduli in the hypersonic regime.15 Thirdly, one may
be tempted to use the usual relation3

E ¼ M
ð1þ nÞð1� 2nÞ

1� n
(3)

where n is the Poisson ratio. For biomaterials of interest, rich in water and
therefore nearly incompressible, the Poisson ratio is close to 0.5. Examination of
eqn (3) shows that it diverges at that point, and the conversion is therefore prone
to very large errors. Finally, in heterogenous materials acoustic connement
effects (due to the presence of various acoustically reective structures and
interfaces) may alter the phonon density of states, causing a distortion of the
Brillouin lineshape and affecting the extraction of the Brillouin shi. Such effects
have been reported on the Brillouin spectrum of water in the presence of planar
and cylindrical acoustic resonators.16

At present, none of these issues have been properly investigated, much less
resolved. In what follows we shall therefore not attempt to convert the measured
Brillouin shis into mechanical moduli and use the Brillouin shi DvB as the
metric.
1.3 Epiuorescence confocal microscope set-up

The Brillouin spectro-microscope is schematically depicted in Fig. 2. A frequency-
doubled Nd:YVO4 diode-pumped solid-state laser (CNI, MSL-FN-671) operating at
lex¼ 671 nm, coupled into a single-mode polarisation-maintaining bre (Corning
SM600), provided single mode illumination (transverse and longitudinal) with
a spectral linewidth smaller than 1 MHz. The bre output was collimated to a 3
mm diameter beam, reected off a pair of scanning mirrors (Thorlabs GVS002),
and expanded to an 8 mm diameter by two achromatic doublets (focal lengths 75
and 180 mm) to ll the back focal plane of a 20� water dipping microscope
objective (Olympus XLUMPLFLN20xW, numerical aperture 0.5). The doublets
served as the scan relay optics by imaging the mirrors onto the objective's back
focal plane. In addition, a quarter-wave plate inserted just before the objective was
used to transform the laser linear polarisation into a circular polarisation. Scat-
tered light was collected by the same objective, descanned by the same mirrors,
separated from the excitation light by a polarising beam-splitter, and coupled into
a single-mode bre which also acted as the confocal pinhole. The nal imaging
resolution was calculated to be 1 � 1 � 5 mm. For depth sectioning, the sample
was mounted on a vertical translation stage (Newport MFA-CC).
1.4 Suppression of elastic scattering

The elastically-scattered light usually represents a much stronger signal
compared to the Brillouin scattering itself. In order to suppress the former, an
original wavefront division interferometer was introduced in the system. Light
exiting the microscope output bre was collimated to a 4 mm diameter beam and
intersected by a parallelepipedic glass prism such that exactly half of the beam
travels above the prism, and half inside. The path difference d between the two
halves depends on the angle qi between the prism and the incident beam. It was
calculated as
418 | Faraday Discuss., 2016, 187, 415–428 This journal is © The Royal Society of Chemistry 2016
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d ¼ dðn� 1Þ
 
1þ qi

2

2n

!
(4)

and then adjusted by tuning the prism angle to achieve destructive interference at
the laser wavelength when recoupling the beam into a single-mode bre, while
allowing the passage of inelastically scattered (Brillouin) light. The lter trans-
mission is a periodic function of the prism angle and of the frequency, with a free
spectral range (FSR) c/d (c is the speed of light in a vacuum). Using a 30mm long BK7
prism of refractive index n¼ 1.51, the FSR is about 20 GHz. Assuming the amplitude
of the two paths is exactly matched (through translation of the prism), the
maximum extinction Smax is limited only by the laser linewidth s and calculated as:

Smax ¼ ps

FSR
: (5)

1.5 VIPA spectrometer

The VIPA (LightMachinery) has a free spectral range of 30 GHz. Light exiting the
lter output bre was collimated to a 0.8 mm diameter and focused on the VIPA
entrance window by a 100 mm cylindrical lens. A 400 mm cylindrical lens imaged
the VIPA's angular spectrum onto a CCD camera (Andor iXon DU888, operated in
non-electron-multiplying mode) with the help of a 50 mm cylindrical lens, orien-
tated orthogonal to the others, to provide focussing along the non-dispersed axis.

1.6 Data acquisition and processing

The spectra imaged on the CCD camera were acquired with a typical exposure
time of 100 to 1000 ms, increasing with the penetration depth in the sample.
Vertical binning was used on the sensor so that one-dimensional spectra were
produced without further processing. The beam scanning, sample vertical
motion, and interferometer feedback were controlled using a Python-based,
custom-made soware specically developed for this purpose (MicroscoPy,
pypi.python.org/pypi/MicroscoPy). Raw spectra were stored as a multidimen-
sional array in HDF5 les, alongside position information and other metadata.
Data processing was performed using Mathematica. Briey, the spectral axis was
calibrated against reference spectra of water or solid polystyrene, with frequency
expressed as a quadratic function of pixel coordinates, and a linear least-square t
to the positions of 3 to 4 Rayleigh peaks and their associated Brillouin peaks. Both
the Stokes and anti-Stokes peaks of the brightest interference order were then
tted with a Lorentzian function, and the Brillouin shi was calculated as the
average of both the Stokes and anti-Stokes frequencies, making measurements
insensitive to laser dri and temperature uctuations (which can cause a global
spectral dri of the order of 1 GHz h�1).

1.7 Filter feedback

Unlike the measurement of Brillouin frequency, the interferometric lter is
sensitive to frequency dris (on a timescale of minutes) and requires continuous
adjustments to maintain its extinction to the required level. For this purpose,
a simple feedback mechanism was incorporated by the addition of a piezoelectric
actuator to periodically modulate the interferometer angle to produce a �10%
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 187, 415–428 | 419
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modulation in the (post-ltering) elastic amplitude. The latter is measured
directly on the acquired spectrum by integrating the pixel intensities around the
elastic peak. A digital PID (proportional–integral–differential) control loop was
used to keep the prism angle close to its optimum position (corresponding to
aminimum in the elastic amplitude), with a time constant of the order of minutes
to average out the large uctuations in the amplitude of the elastic scattering
while scanning through the sample.
1.8 Preparation of compressed collagen gels

Compressed collagen gels were prepared as described elsewhere.17 Briey, ice-
cold rat tail collagen type-I (2 g L�1 in 0.6% acetic acid; First Link Ltd, UK) was
mixed with 10� Modied Essential Medium (MEM; Life Technologies, CA, USA)
and neutralised with 1 M NaOH in an 8 : 1 : 1 volume ratio, respectively, and
allowed to gel at 37 �C for 30 min. Polymerised gels were subjected to plastic
compression under a 134 g load for 5 min at room temperature by placing the gels
between layers of gauze and on top of 10 sheets of lter paper. Plastically-
compressed collagen gels were then transferred to a Petri dish onto 3- or 4-gel
stacks and washed at room temperature for at least 30 min in distilled water
before being analysed by Brillouin microscopy. Chemically-stiffened collagen gels
were analysed aer xing the compressed collagen gels in 4% (w/v) para-
formaldehyde, with extensive washing in distilled water before imaging. Experi-
ments were performed in triplicate.
1.9 Preparation of corneal tissue

Bovine corneal tissue (depicted in Fig. 3) was isolated from fresh cow eyes ob-
tained from an abattoir (Linden Food Burradon Ltd, UK). The tissue corre-
sponding to the cornea and the surrounding sclera was excised from whole cow
eyes, kept on ice during the isolation, incubated with a penicillin–streptomycin
solution (1000 U mL�1; Thermo Scientic, MA, USA) for 30 min at room
temperature to inhibit bacterial contamination, washed in an excess of phosphate
buffered saline (PBS), and kept at 4 �C in either PBS supplemented with 0.025%
Fig. 3 Whole bovine corneal tissue isolated from fresh cow eyes. The left panel shows
a top-down view of the bovine cornea, with its translucent ellipsoidal centre, and the
opaque, pigmented limbus that surrounds it. The right panel shows a transversal section of
the cornea to illustrate the tissue thickness. Scale bar ¼ 5 mm.
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sodium azide preservative or at room temperature in Carry-C tissue preservation
medium (Alchimia, Italy) until further analysis was performed. Human corneal
tissues were kindly provided by Dr Francisco Figueiredo, FRCOphth (Royal
Victoria Inrmary Newcastle, UK). Tissues remaining from corneal transplant
procedures were kept up to 30 days aer isolation from cadaveric donors (ages
ranging 58–72 years old; male–female donor ratio of 1 : 1; no prior history of
corneal diseases or ocular trauma), in accordance with the Newcastle University
and Newcastle-upon-Tyne Hospital Trust Research Ethics Committees’ guide-
lines. Isolated tissues were then extensively washed in PBS, dried of excess
adsorbed liquid, and then maintained at room temperature in Carry-C tissue
preservation medium until further analysis was performed. Tissues were imaged
in Petri dishes while completely submerged in PBS or Carry-C medium.

1.10 Statistical analysis

The Brillouin shi was measured at eight different z-positions from ve distinct
collagen gels (n ¼ 5), with differences between average shis analysed using an
unpaired two-tailed Student's t-test, with p ¼ 0.0001 and R2 ¼ 0.91.

2 Results and discussion
2.1 Brillouin spectro-microscope assembly and specications

The new Brillouin spectro-microscope was specically dedicated to study the
mechanical properties of so biological tissues. These systems are characterised by
low scattering signals, high elastic backgrounds, and the requirement of sub-GHz
resolutions. For this particular instrument we used a lex ¼ 671 nm DPSS laser with
high spectral purity and sub-MHz linewidth (Fig. 2). At this wavelength, the Stokes/
Fig. 4 Brillouin spectrum of water, measured with the filter tuned to maximize (blue
curve) and minimise (orange) the transmission at the laser frequency. In the first case, the
Brillouin peaks are essentially invisible, overwhelmed by the stronger elastic scattering. In
the latter, the Brillouin peaks are easily resolved and the elastic peak has been suppressed
by nearly 50 dB. The grey line shows the sinusoidal transmission of the filter, whose free
spectral range is 20 GHz.

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 187, 415–428 | 421
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anti-Stokes components of Brillouin scattering are typically shied by 5–7 GHz in
aqueous media.18 Because such small shis are inaccessible to grating spectrom-
eters, Brillouin spectrometry has traditionally relied onmulti-pass scanning Fabry–
Pérot interferometers to achieve both the necessary resolution and fringe contrast;
the acquisition time for a single spectrum was measured in minutes or even
hours.19 This limitation is overcome by VIPAs, which combine the large dispersive
power of the etalon with the spatial dispersion of gratings. They are essentially
Fabry–Pérot etalons, dispersing focused light into fringes of equal inclination, with
the important difference that the input light is focused by a cylindrical lens in only
one direction and enters the etalon through a narrow antireection-coated
window. All of the input light is therefore transmitted, forming a one-dimensional
spectrum instead of circular fringes, and resulting in a more efficient device.
However, VIPAs have limited nesse (100 at most), and therefore poor fringe
contrast (<40 dB), insufficient to resolve (anti-)Stokes Brillouin peaks amidst
a strong elastic background, such as that inevitably arising from epi-uorescence
confocal microscopy. This is commonly addressed by cascading two VIPAs in
a cross-axis conguration,20 at the cost of reduced throughput and considerable
complexity. Another approach involves the absorption of the elastic scattering in
hot vapour cells, although this oen distorts the Brillouin peaks as well.21

In the present work, we used an original adaptive-optics wavefront division
interferometer, described above, that enables the interferometric ltering of the
elastic scattering, as demonstrated in Fig. 3. With the elastic suppression turned
off (interferometer detuned), the signal was overwhelmed by a strong elastic
background (blue line) as shown in Fig. 4. By tuning the interferometer to
minimise the amplitude of the central elastic peak, the Brillouin Stokes and anti-
Stokes components became clearly resolved (orange line). The Brillouin shi was
detected at 5.86 � 0.01 GHz (or 0.195 cm�1), corresponding to a sound velocity of
1475� 10m s�1, as expected for distilled water at 20 �C.22 Furthermore, the elastic
suppression ratio exceeded 46 dB, a signicantly better outcome compared to
other methods currently in use.20,21,23 Consequently, the strong extinction made
possible by the interferometric lter allows the implementation of a single-stage
VIPA conguration instead, which constitutes, to the extent of our knowledge,
a novel development in Brillouin microscopy.

Furthermore, the use of an immersion objective allows the samples to be
observed in physiological conditions, as well as enabling several other important
benets for Brillouin imaging. Firstly, it prevents the dehydration of the biological
tissues, a parameter that greatly affects their mechanical properties.24 Secondly, it
reduces specular reection at the sample surface, therefore reducing the elastic
background. And nally, it limits the loss of resolution normally caused by
spherical aberration when focusing deep into thick samples. This issue is
particularly relevant in imaging cornea specimens, particularly with bovine
origin, where the tissue can be up to 2 mm thick (see below).
2.2 Mechanical properties of high-density collagen gels

In order to explore the potential uses and limitations of our instrument, we
started by evaluating dense collagen gels produced by a plastic compression
method. These thin biomaterials have been extensively used as versatile models
of connective tissue such as cornea17,24 and skin.25 Furthermore, their mechanical
422 | Faraday Discuss., 2016, 187, 415–428 This journal is © The Royal Society of Chemistry 2016
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properties (e.g., elastic modulus) have been shown to be highly-dened and
dependent on the compression load and duration.24,26,27 As such, collagen gels are
relevant as models for the determination of the biomechanical properties of so
materials. The Brillouin shi observed for compressed collagen gels was shown to
be very consistent for all gels analysed, both from those in the same stack (4 gels
per stack) or between different replicates, with an average shi of 6.06� 0.04 GHz
(Fig. 5a), and despite the strong elastic background scatter due to the proximity of
the interface. In addition, the shis detected at the surface and within the gels
were similar, and their variation smaller than that observed between gels (Fig. 5a).
This suggested that the mechanical properties of the compressed collagen gels
were uniform between gels and throughout their thickness. Moreover, stiffened
collagen gels (crosslinked with paraformaldehyde) showed signicantly higher
Brillouin shis of 6.35 � 0.07 GHz (Fig. 5b), a clear indication that alterations in
the stiffness of the collagen gels results in signicantly different shis in Brillouin
scatter. Interestingly, the Brillouin proles also allowed us to determine gross
sample depth, with the stiffened collagen gels showing an approximately 50%
reduction in thickness compared to the untreated compressed collagen gels. This
shrinkage constitutes a common effect of conventional cross-linking methods,28

and may partially account for the increased gel stiffness.
Fig. 5 Brillouin imaging of compressed collagen gels in water. (a) Representative depth
profile of Brillouin shifts of a stack of 4 collagen gels, before (blue) and after stiffening
treatment with PFA (orange). (b) Box plot of average shift distribution from five indepen-
dent control and stiffened collagen gels (n ¼ 5; *** corresponds to p ¼ 0.0001). (c)
Repeated Brillouin z-scans of a stack of stiffened collagen gels, illustrating the high stability
and reproducibility of Brillouin imaging. Distance between measurements in z ¼ 2 mm.
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2.3 Mechanical properties of corneal tissue

Having determined the Brillouin shi of thin collagen samples, we then evaluated
the limitations of the technique for the analysis of thick biological samples.
Bovine corneas were used for these experiments, as these tissues are relatively
transparent despite the 1.2–1.5 mm thickness of their centre region (Fig. 3). In
addition, as the correct evaluation of mechanical properties in biological tissues
requires a constant and physiologically-relevant level of tissue hydration, Bril-
louin spectro-microscopy measurements should be performed in such condi-
tions. Corneas are naturally hyperosmotic, slightly dehydrated tissues in vivo.29 To
Fig. 6 (a) Time-lapse Brillouin imaging of bovine corneal tissue in PBS. Representative
depth profiles of Brillouin shifts from the centre region of the bovine corneas are shown at
different times from 0.5 to 26 h after immersion. Progressive swelling was illustrated by the
increased depth of the scans (horizontal arrows), whereas tissue softening was repre-
sented by the lower shift values (vertical arrow). Disruption of structural integrity of the
swollen tissue was illustrated by abrupt changes in shift pattern after 6.9 h in PBS
(detachment of anterior layer). Distance betweenmeasurements in z¼ 10 mm. (b) Brillouin
imaging of bovine corneal tissue in Carry-C. At the time of measurement, the samples had
been immersed in the medium for 3 days, yet showed no sign of swelling. The different
anatomical–morphological subdivisions of the tissue can be identified: corneal epithelium
(I), anterior stroma (II), posterior stroma (III), corneal endothelium (IV). Distance between
measurements in z ¼ 10 mm.
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replicate a dehydration state, whole bovine corneas were immersed in glycerol
immediately aer isolation, and then washed and kept in PBS to remove the
glycerol and evaluate the effects of re-hydration through time on tissue stiffness
and thickness (Fig. 6a). The scan series performed throughout the entire depth of
the tissues showed that corneas swell progressively, with their thickness almost
doubling aer 26 h in PBS. This constituted a clear indication of increased
hydration well beyond normal in vivo levels.30 Concomitantly, the Brillouin shi
measured at all depths of the corneal tissue decreased with time, indicating that
the swollen corneas became soer. Specically, at t ¼ 0.5 h, the corneas showed
shis of 6.3–6.5 GHz at their anterior and 6.5–6.2 GHz at their posterior regions,
respectively, whereas at t ¼ 26 h, shis varied between 6.0 and 6.3 GHz.
Furthermore, the pattern of the shis measured in the swollen corneas indicated
a loss of structural integrity within the tissue (Fig. 6a), a common consequence of
excessive corneal hydration and oedema.31,32

Overall, these results highlighted the importance of performing the
measurements in appropriate conditions (i.e., physiological-like) for a given
tissue or organ. When measuring the in-depth Brillouin scattering of bovine
corneas maintained in Carry-C, a medium specically developed to preserve
corneas in their physiological hydration state, the proles were remarkably
similar to those previously reported for the central regions of human corneas
(Fig. 6b).33 In particular, these proles were divided into four regions (Fig. 6b): an
anterior-most peak with 6.5–6.6 GHz shis corresponding to the corneal epithe-
lium (I), a slope ranging between 6.55 and 6.5 GHz corresponding to the anterior
stroma (II), a plateau of shis of approximately 6.5 GHz corresponding to the
posterior stroma (III), and a steep slope corresponding to the posterior-most
region of the cornea (IV).34 Furthermore, this pattern was maintained unaltered,
along with the natural thickness of the bovine corneal tissue, even aer keeping it
for more than a week in Carry-C medium.
Fig. 7 Brillouin imaging of stiffened bovine corneas. Representative depth profiles of
Brillouin shifts of the anterior centre region of corneas before (red line) and after stiffening
treatment with PFA (green line). Distance between measurements in z ¼ 5 mm. Example
spectra (Stokes peak) at z ¼ 85 mm are shown in the inset, together with the spectrum of
PBS for comparison (blue line).
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The Brillouin images were also capable of distinguishing differences in stiff-
ness from normal and stiffened-treated corneal tissue. The anterior-most region
of the whole bovine corneas xed with paraformaldehyde showed signicantly
higher shis compared to the same region from the untreated tissues (Fig. 7).
Moreover, this increase in shi was observed not only at the surface, where the
tissue was treated, but also in-depth (Fig. 7, insets), providing information about
the range of penetration for such treatment.

These results also highlight the non-contact nature of Brillouin spectro-
microscopy for investigating the mechanical properties in the interior of biolog-
ical tissues. However, this ability was shown to be limited by the transparency of
the material. For example, imaging more opaque areas of the bovine cornea (such
as the limbus, Fig. 3) resulted in a considerable reduction in the signal-to-noise
ratio at deeper levels of the tissue (data not shown). In contrast, this limitation
was not evident in the human cornea, where the (species specic) improved
Fig. 8 (a) Human corneal ring tissue used to analyse the stiffness in corneal centre and
limbus regions. (b) Micrograph of the limbus area, showing the palisades of Vogt. (c)
Brillouin imaging of the human corneal tissue in Carry-C. z-scans were taken in 125 mm
steps from the centre to the limbus, at the locations approximately indicated by red dots in
(a). The vertical step size was 20 mm. The heat map represents Brillouin shift values, with
areas in dark blue corresponding to regions filled with medium, whereas corneal tissue
was shown as light blue (soft) to dark red pixels (stiffer tissue). Scale bars, (a) and (b)¼ 5 and
0.1 mm respectively.
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transparency of the limbus (Fig. 8a) still allowed highly-resolved spectra to be
obtained. In particular, human corneal tissues maintained in the Carry-C
medium were able to be imaged in a sequence of in-depth measurements, thus
allowing the assembly of z-scans into 2D heat maps (Fig. 8c). Remarkably, these
sequences not only provided a notion of the tissue's morphology, but also the
ner differences in stiffness between different regions of the tissue (Fig. 8c:
anterior (upper) vs. posterior (lower region); limbus (le) vs. central cornea
(right)). Specically, the values for the Brillouin shi observed in the limbus were
lower than those in the central cornea, particularly in the anterior-most region of
the tissue. This data was supported by previous, although much less detailed,
studies using AFM35 or stress–strain analysis of the cornea.36 Taken together,
these results represent a more complete overall view of the stiffness of biological
tissues, providing information about the mechanical properties of human
corneas of unparalleled accuracy and resolution.
3 Conclusions

In summary, we have introduced a new Brillouin microscope consisting of a bre-
coupled confocal scanning microscope, an interferometric lter to suppress
elastic scattering, and a single-stage VIPA spectrometer. The microscope's ability
to acquire depth-resolved Brillouin spectra in very thin as well as very thick
samples (e.g. in 50mm-thick collagen gels or in bovine corneas up to 2 mm) has
been demonstrated, thanks to the interferometric lter that allows sufficient
rejection of specular reections at the sample surfaces.

This technique was used to monitor the response of compressed collagen gels
and corneal tissue to stiffening (cross-linking) treatments. Brillouin imaging of
the limbus in human corneal rings also revealed a clear contrast between the
stiffer inner stroma of the centre and the soer limbus. These results validate
Brillouin spectro-microscopy as a potent tool for assessing the mechanical
properties of so biomaterials, particularly transparent ones. We thus envisage
many possible applications for this technique, including fundamental charac-
terisation studies and as a tool to diagnose the rigidity of many tissues, namely
the cornea.

However, the quantication of the absolute stiffness of so tissues by Brillouin
spectroscopy (i.e., using Brillouin shi values to calculate the elastic modulus)
constitutes a challenge that remains unresolved.
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