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A population's exposure to persistent organic pollutants, e.g., polychlorinated biphenyls (PCBs), is typically

assessed through national biomonitoring programs, such as the United States National Health and Nutrition

Examination Survey (NHANES). To complement statistical methods, we use a deterministic modeling

approach to establish mechanistic links between human contaminant concentrations and factors

(e.g. age, diet, lipid mass) deemed responsible for the often considerable variability in these

concentrations. Lifetime exposures to four PCB congeners in 6128 participants from NHANES 1999–

2004 are simulated using the ACC-Human model supplied with individualized input parameters obtained

from NHANES questionnaires (e.g., birth year, sex, body mass index, dietary composition, reproductive

behavior). Modeled and measured geometric mean PCB-153 concentrations in NHANES participants of

13.3 and 22.0 ng g�1 lipid, respectively, agree remarkably well, although lower model-measurement

agreement for air, water, and food suggests that this is partially due to fortuitous error cancellation. The

model also reproduces trends in the measured data with key factors such as age, parity and sex. On an

individual level, 62% of all modeled concentrations are within a factor of three of their corresponding

measured values (Spearman rs ¼ 0.44). However, the model attributes more of the inter-individual

variability to differences in dietary lipid intake than is indicated by the measured data. While the model

succeeds in predicting levels and trends on the population level, the accuracy of individual-specific

predictions would need to be improved for refined exposure characterization in epidemiological studies.
Environmental impact

This study describes a model evaluation that tries to use to the fullest a measured dataset of very large scope and quality to gain an appreciation of how well
human PCB exposure can presently be predicted from emissions. While the model approach succeeds in reproducing population average exposure and rela-
tionships with age and sex, less success at the level of the individual is attributed to the difficulty in establishing reliably what individuals habitually eat. While
this challenge may be well recognized in the eld of nutrition,1 the literature reports many statistical associations between dietary composition (e.g. based on 24
hour recall) and measured concentrations of POPs in humans. How valid are such associations, if it is questionable that food recall data are representative of an
individual's diet over time periods long enough to affect POP exposure?
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1. Introduction

Polychlorinated biphenyls (PCBs) are a class of Persistent Organic
Pollutants (POPs). They have a variety of industrial uses, e.g., as
coolants in electrical transformers, sealants, and insulating
uids. In the United States, PCBs were rst produced in 1929,
and due to their potentially harmful effects on wildlife and
humans, their production (and import) was prohibited in 1979.2

The predominant source of exposure for the general population
is the ingestion of PCB contaminated food stuffs, particularly sh
and livestock.3,4 Adverse health outcomes stemming from PCB
exposure are of particular concern; for example, some evidence
has been found of associations between PCB serum levels and
diabetes,5–7 hypertension,8,9 and endocrine disruption.10,11
Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168 | 1157
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Human biomonitoring (HBM) studies involve the collection
of blood, urine, or other tissues for analysis of environmental
contaminants. These studies aim to identify which environ-
mental contaminants a population is exposed to, and quantify
the level of these exposures.12 With repeated sampling over time,
HBM studies can also provide insight on how a population's
exposure to a contaminant is changing. One prominent example
is the United States National Health and Nutrition Examination
Survey (NHANES). NHANES represents a stratied multistage
probability sample of the civilian non-institutionalized pop-
ulation of the United States. It is conducted on a continuous
basis and includes an extensive questionnaire with information
on diet, health, and demographics.13 Blood and urine samples
are collected and analyzed for a suite of organic chemicals. The
biomonitoring results in NHANES includes data on many POPs
such as PCBs, polybrominated diphenyl ethers (PBDEs), and
pesticides, e.g., hexachlorobenzene (HCB) and dichloro-
diphenyltrichloroethane (DDT).14,15

Measured PCB concentrations from HBM studies oen vary
widely; for example, 2003–2004 NHANES PCB-153 levels range
from 1.05 ng g�1 lipid to 986 ng g�1 lipid across the analyzed
serum samples (although a majority of levels are in a much
more conned range, e.g., rst quartile ¼ 10.4 ng g�1 lipid and
third quartile ¼ 47.4 ng g�1 lipid). Thus, it is of interest to
ascertain the extent to which various factors – age, dietary
composition, sex, body mass index (BMI), etc. – contribute to
differences in levels. Traditionally, this has been accomplished
by identifying statistical associations between measured
contaminant body burdens and these factors. In non-occupa-
tionally exposed populations age, sex, and BMI have been
shown to signicantly associate with PCB body burdens.16–22 Age
is frequently positively associated with PCB body burden.14,15,20

Generally, the male sex is associated with higher PCB levels,18

while associations between BMI and PCB body burden are
inconsistent.23–25

Statistical associations do not necessarily imply causal rela-
tionships and thus provide limited mechanistic insight into the
sources of variability in contaminant levels. They are also
generally not suited for making predictions. Toxicokinetic
models of varying complexity that mechanistically estimate
time-variant POP concentrations in humans26–29 constitute
a complementary approach to statistical methods. In these
models, POP concentrations in humans are calculated using
information on intake rates, partitioning properties, and elim-
ination kinetics (e.g., biotransformation half-life). These calcu-
lations generally require time-variant POP intakes as an input
parameter. More ambitious approaches seek to also predict
intakes by calculating the transfer of POPs through the food
chains leading to humans (e.g., ACC-Human).30 If such human
food chain models are further combined with mechanistic
models of chemical fate in the physical environment (e.g.,
CoZMo-POP 2 (ref. 31)), integrated models can mechanistically
describe the journey of POPs from their initial release into the
environment to their accumulation in humans; CoZMoMAN is
one model example,32 which has been used previously to
simulate human exposure to PCBs for different purposes.33–37 A
particularly important feature of such an approach is its
1158 | Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168
dynamic nature, which allows for simulations of time-variant
chemical emissions covering multiple decades. Because such
emission estimates are available for PCBs,38 the application of
integrated models has focused on this chemical group.

In the present study, we combine a global-scale fate model
with a human food chain bioaccumulation model to predict the
exposure of Americans to PCBs. Specically, we use time-variant
global emissions of PCBs to mechanistically quantify their
global fate and transport and transfer through aquatic and
agricultural food chains, in order to predict the concentration of
four PCB congeners during the entire life of 1999–2004 NHANES
participants. By comparing individual predicted PCB concen-
trations (at time of sampling) to measured PCB levels, this
approach utilizes a large, high quality, and diverse empirical
dataset (wide age range, both sexes) to perform a novel model
evaluation. It also allows for an assessment of different aspects
of model performance, including our ability to accurately
predict (i) individual contaminant levels, (ii) the mean and
range of total population contaminant levels, and (iii) the
relationship between contaminant levels and certain demo-
graphic factors (age, diet, sex, BMI). The results of such an
evaluation should then be able to inform what aspects of the
model prediction need improvement, and how the model can
be applied with condence.

2. Methods
2.1 Overview and justication of modeling approach

We aim to simulate human exposure to PCBs at both the pop-
ulation level (average) and on an individual basis. Fig. 1 illus-
trates the modeling approach used to simulate PCB exposures
of individual NHANES participants. Since the diet represents
the main source of general population PCB exposure, and the
intrinsic elimination half-lives of some PCBs in humans exceed
a decade, the calculation of historical PCB levels in foodstuffs is
required. We focused on PCB congeners 118, 138, 153, and 180,
because of their well-dened physical–chemical properties,
historical emissions, and frequent detection within NHANES.
Starting with historical emissions (Fig. 1A), the global-scale fate
model is used to calculate the ambient concentrations of these
four PCBs in the United States over time (Fig. 1B). These
concentrations serve as input to the human food chain bio-
accumulation model (Fig. 1C and D), which outputs concen-
tration as a function of time for the various organisms in the
model assumed to constitute the human diet (e.g., sh, beef,
dairy, Fig. 1E). Air, freshwater, and food item PCB concentra-
tions (Fig. 1B and E) are then combined with individualized
human demographic input data to derive longitudinal time
trends of PCB exposure for each individual (Fig. 1F). Finally, the
concentration at the time the individual was sampled is
compared with the measured concentration reported in
NHANES (n ¼ 6128, Fig. 1G). Population level PCB concentra-
tions are obtained by averaging the results of modeled
individuals.

We recognize that the complexity inherent to the modeling
approach described here may not be necessary for simulating
exposure to PCBs. In principle, it would have been also possible
This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Graphical overview of the modeling approach.
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to predict PCB concentrations in individuals and the population
using empirical data on food contamination. While such an
approach would undoubtedly be simpler and subject to fewer
uncertainties, we prefer an approach that mechanistically
calculates food contamination.

One reason is that empirical data are inevitably incomplete
and require extrapolation. For chemicals other than PCBs the
empirical database is oen completely insufficient to reliably
This journal is © The Royal Society of Chemistry 2016
dene the time course of concentrations in different food items.
Even for PCBs, monitoring data are very limited before the
1980s (whereas the simulations cover the period 1930–2010). To
address this data gap, contemporary data from the 1990s/2000s
could be used to estimate an average intake rate for this period
and then scale backwards in time using the temporal trend in
emissions.28,47 This approach requires the assumption that
primary emissions strongly dominate ambient environmental
Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168 | 1159
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concentrations (vs. secondary emissions from reservoirs) over
the entire simulation period. The validity of this assumption is
becoming increasingly tenuous as primary emissions of PCBs
continue to decline. In other words, this approach is best suited
for retrospective analyses of PCB exposures whereas the holistic
approach proposed here could also be used prospectively.

It is also inherently more advantageous to derive human
exposure from a mechanistic understanding of the underlying
processes rather than literature data. Establishing a quantita-
tive link between emissions and human exposure concentra-
tions is a prerequisite for establishing “safe” levels of
emissions. And only such an approach is suited to explore the
impact of various factors, such as chemical management
strategies or global climate change on human exposure.39,40

2.2 Prediction of PCB concentrations in air, water and soil

Concentrations in the physical environment are calculated
using BETR-Global, which is a dynamic, fugacity-based, global
scale environmental fate and transport model.41 It separates the
physical world into 288 cells based on a 15� longitude by 15�

latitude grid. Each cell is composed of seven environmental
compartments: upper air, lower air, vegetation, freshwater, soil,
coastal water, and sediment. Contaminants are allowed to
transfer between compartments and between neighbouring
cells. The model requires information on a contaminant's
physical–chemical properties, e.g., the octanol–water partition
coefficient KOW and the air–water partition coefficient KAW,
environmental degradation half-lives, and historical time-
variant emissions (Fig. 1A); PCB emission data are from Breivik
et al.38 A complete description of input properties can be found
in the ESI, Table S1.† Because of the long residence time of
PCBs in the environment, global PCB fate and transport is
simulated from the beginning of PCB production in 1930 (ref. 2)
until 2010.

2.3 Prediction of PCB concentrations in food

The dynamic, fugacity-based, mechanistic bioaccumulation
model ACC-Human30 is used to describe the uptake of POPs in
the human food chain from concentrations in air, water, and
soil. It includes an aquatic food chain (Fig. 1C, consisting of
zooplankton, planktivorous sh, and piscivorous sh) and an
agricultural food chain (Fig. 1D, consisting of grass, milk cows,
and beef cattle). Dietary intake of PCBs is assumed to occur
through the consumption of three dietary items only (beef, sh,
and dairy products). Dietary intake of PCBs from other food-
stuffs is either deemed negligible (e.g., plant based food42) or is
represented by one of the three (e.g., fowl, pork is represented by
beef, ESI, Table S3†). The latter assumption is based on lipid-
adjusted PCB concentrations in different meats that are
generally within a factor of 2 of each other (see ESI, Table S8†).

The PCB concentration calculated for coastal water in cell 76
of BETR-Global, corresponding to the Pacic Ocean adjacent to
the California coast, is the basis for the aquatic food chain
calculations in ACC-Human, whereas the PCB levels in air, fresh
water, and soil in cell 78, corresponding to the central United
States, are inputs for the agricultural food chain calculation.
1160 | Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168
There are several assumptions inherent to this approach. Due to
the lack of geographical information (i.e., no information on the
source of food or geographical location of NHANES partici-
pants), the contamination of all foodstuffs is based on the
environmental contamination of the atmosphere over
the central United States (for the agricultural food chain) and in
the seawater off the west coast (for the aquatic food chain). In
other words, there is no regional differentiation in the food
supply, and the food sources are the same for Americans every-
where. Modelled air concentrations in other regions of the
United States were generally within a factor of 2 of those in the
central United States, suggesting that regional differences in
food chain contamination may be relatively minor. Our
approach also ignores changes in food production over the
entire simulation time period (1930–2010), for example, the
transition from locally produced food and livestock to a nation-
ally integrated food industry, and the transition from grass-fed to
corn-fed beef. Additional modeling indicated that PCB levels in
grass and corn are similar (i.e., within a factor of 1.5, data not
shown). Additionally, dietary transitions on the population level
are also ignored (e.g., the shi to leaner meats).43
2.4 Prediction of PCB concentrations in individual humans

The human sub-model within ACC-Human30 is used to calculate
the four PCB concentrations in each NHANES 1999–2004
participant (n ¼ 6128) at their time of sampling. Because of the
long residence time of PCBs in humans, this requires the
calculation of each participant's lifetime exposure history. Input
parameters that are adjusted for each study participant using
information extracted from their NHANES questionnaire
include year of birth, sex, BMI, the dietary intake of sh, beef
lipids and dairy lipids, and – in the case of mothers – number of
children, mother's age at each childbirth, and nursing dura-
tion(s) (for a summary of input parameters, see ESI, Table S2†).
In brief, the ACC-Human model calculates PCB levels in
humans by considering uptake from the diet, inhalation, and
drinking water, and also the elimination of the contaminant by
fecal egestion, biotransformation, exhalation, urinary excretion,
and skin shedding, and in the case of mothers, childbirth and
nursing. To arrive at a lipid-normalized concentration, the total
mass of chemical in the human body is divided by the total lipid
mass of the human, which is a function of age, sex, and BMI.

Breastfeeding is parameterized as follows: mothers who
responded “Yes”, “Don't know” or did not respond to the
question “Breastfed any of your children?” are assumed to have
breastfed all children for 6 months (as recommended by the
American Academy of Pediatrics).44 Participants who responded
“no” did not breastfeed any of their children. All participants
are assumed to have been breastfed for 6 months during their
own infancies. Exposure from breastfeeding is unlikely to have
a signicant impact on model concentrations, as the minimum
participant age in the NHANES PCB biomonitoring data is
12 years.

Because PCBs are associated mostly with lipids within the
body, differences in the lipid content of study participants could
be a source of concentration variability.45 In order to account for
This journal is © The Royal Society of Chemistry 2016
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the wide range in lipid contents, we modied the original
ACC-Human model to allow the user to assign each study
participant to one of 22 BMI classes (from BMI ¼ 17 to 38
kg m�2, in increments of 1). For each BMI class, a growth curve
is dened which determined the change in lipid content with
age. Details on these lipid weight and body weight growth
curves can be found in the ESI, Section S3.†

Each individual's intake of beef lipids and dairy lipids is
estimated using responses from a 24 hour dietary recall inter-
view on individual foods.13 Fish intake is estimated using a food
frequency questionnaire (FFQ) on sh consumption.13 Each
individual is assumed to eat the same diet throughout his or her
entire lifetime, with a consistent composition based on their
dietary recall. On average, the dietary intake values derived from
the NHANES data are approximately 1.5 times lower than
average American food consumption reported in the USDA
Agriculture Fact Book.43 Because of the potential for dietary
intake underreporting46 to inuence estimated PCB exposures,
a scaling factor is implemented for each food item to bring the
NHANES average diet in line with the USDA average. The scaling
factors applied to all individuals are approximately 1.5 for beef
and dairy lipids, and approximately 2 for sh. The application
of scaling factors requires the assumption that the PCB bio-
monitoring subsample of the NHANES population is identical
to the US population, i.e., we did not take into account the
sampling weights assigned to each NHANES participant. A full
description of the process used to convert the dietary ques-
tionnaire information into daily intake rates of sh, beef, and
dairy can be found in the ESI, Section S4.† The possibility to
specify an individualized BMI/growth curve and individualized
diet represents a signicant expansion in the capabilities of the
ACC-Human model, which previously allowed for only a single
growth curve and diet for each gender.

Humans additionally take up PCBs by inhaling air and
drinking water. These exposures are calculated using the
concentrations in lower air and fresh water, respectively, from
cell 78 of BETR-Global, i.e., all Americans are assumed to inhale
air and drink water from the central USA. Although environ-
mental contamination in air and freshwater may be greater in
other parts of the US (e.g., the East coast and urban locations),47

exposure of the four PCB congeners from inhalation and
drinking water is insignicant compared to exposure from die-
tary intake. For the same reason, the inhalation rate (15 m3 d�1)
and water consumption rate (3 L d�1) are not individualized.
Other, non-individualized model input parameters include the
human biotransformation half-life (HLb) for PCBs and the body
lipid excretion rate (i.e., skin shedding, 0.8 g lipid per day).

Our approach assumes that exposure only occurs through
far-eld sources, i.e., from general environmental contamina-
tion and not from occupational or indoor exposure. Since die-
tary lipid intake2,48 is the main source of PCB exposure to the
general American population, which is targeted by NHANES
sampling, this assumption is appropriate.

While the geographic location of NHANES participants is
condential, reported regional differences in human PCB
concentrations are minor: the geometric mean concentration
was only 1.4 times greater for people living in the Northeastern
This journal is © The Royal Society of Chemistry 2016
US than elsewhere in the nation.49 While this justies our
approach of using the output of a single BETR-Global cell as the
input for the food chain calculations, we also used our model to
explore the extent of regional concentration differences that
could be expected if the American diet were sourced regionally.
By varying the BETR-Global cells chosen to drive contamination
in the food chain, we predict regional geographic differences in
human PCB-153 concentrations of at most a factor of two
compared to our reference calculations (data not shown). This
is larger than the differences reported by Wattigney et al.,49

which can be explained by the fact that the diet of most Amer-
icans will include items sourced from outside their region of
residence.
2.5 Constraining emissions timing and human
biotransformation half-life

The emission history, in particular the time of peak emissions
(E(t)), and the human biotransformation half-life (HLb) are
uncertain model input parameters, yet can have a strong impact
on the relationship between PCB body burden and age for
a population cross-section.29,35 Furthermore, Breivik et al.32 has
previously stated that the emissions of PCBs prior to 1980 are
potentially underestimated. However, it is difficult to assess the
potential bias in emission estimates for this period because
monitoring data for PCBs in abiotic and biotic samples
collected prior to 1970 are sparse.32

As a preliminary exploration, we developed an algorithm to
optimize the selection of E(t) and HLb values for the PCBs
simulated here. Specically, three different emissions scenarios
[(i) the default emission inventory from Breivik et al. (emissions
peak in 1970),38 or peak in emissions occurring (ii) 5 or (iii)
10 years earlier] were combined with HLb values ranging from 1
to 300 years (every 1 year between 1 and 30, and every 10
thereaer) to yield the smallest sum of squared residuals (SSR)
between the modeled concentrations of PCB congeners 118,
138, 153, and 180, and the measured concentrations reported
for NHANES participants. Data from 6 years of NHANES (2003–
04, 2001–02, and 1999–2000) were considered. The use of
multiple NHANES years, combined with data on four conge-
ners, provided us condence in the validity of this tting
procedure. The implication here is that the model is being
rened to generate data that best t the measured data.
However, as mentioned previously, these major input parame-
ters are uncertain and we conrmed that the values obtained for
E(t) and HLb are within the plausible range. See details in the
ESI, Section S5.† We note that this optimization procedure is
similar to the use of HBM data in the derivation of intrinsic
human elimination half-lives as described by Ritter et al.50

However, here only the biotransformation half-life is optimized.
The overall intrinsic elimination half-life is still inuenced by
other depuration processes (e.g., fecal egestion, breastfeeding)
and hence varies according to the related input parameters (e.g.,
BMI/lipid content, reproductive history). The fact that the
model calculates an overall intrinsic elimination half-life for
each individual over time in a consistent manner is another
advantage of the adopted modeling approach.
Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168 | 1161
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2.6 Data visualization, statistical methods, and other
soware

All statistical and data analysis were performed using R (version
3.1.3) and Python (version 2.7.7)51 with additional libraries
NumPy (ver. 1.8.1),52 SciPy (ver. 0.14.0), and pandas (ver.
0.14.0).53 Additionally, all graphical representations of data were
generated using matplotlib (ver. 1.3.1).54 Associations between
PCB-153 exposure (modeled and measured values) and model
input parameters were assessed using linear regression.
3. Results
3.1 Optimized emission history and human
biotransformation half-life

For all congeners (118, 138, 153, and 180), assuming that the
peak in emissions occurred 10 years earlier than reported in
Breivik et al.38 results in the lowest SSR, i.e. the best t between
model and measurement requires a shi in peak emissions
from 1970 to 1960. While this shi is not derived mechanisti-
cally, it is not unreasonable. Whereas production of PCBs
peaked in the 1970s, it is possible that emissions of PCBs were
higher in the previous decade (e.g., due to industrial emission
not accounted for in Breivik et al.38 or emission factors that were
higher before the problematic nature of PCBs became
obvious).32 We consider this emission time shi only a prelim-
inary hypothesis and suggest that the historical emission
history of PCBs should be revisited to nd a rigorous mecha-
nistic explanation for higher emissions in the past. However,
such an effort is considered outside the scope of the current
study.

The optimized HLb values for PCB congeners 118, 138, 153,
and 180 are 8, 25, 35, and 300 years, respectively. In order to
compare these results with those reported in the literature, the
modeled total intrinsic elimination half-lives over time were
extracted from a model simulation and are as follows: 2 to
7 years for PCB-118, 2 to 18 years for PCB-138, 3 to 24 years for
PCB-153, and 3 years to 50 years for PCB-180 (values range
depending on sex, age, and BMI, for details see ESI, Section S8
and Fig. S11†). Our estimates compare favorably with those
calculated by Ritter et al.:50 9.3, 10.8, 14.4 and 11.5 years for
PCB-118, 138, 153, and 180, respectively, and Aylward et al.:55 5,
11, 14.4, and >20 years for PCB-118, 138, 153, and 180, respec-
tively. Considering the large uncertainty of HLb, the optimized
values obtained here do not deviate unreasonably from earlier
estimates.35 In particular, the differences in the HLb values
between the four congeners conform to expectations. Moreover,
the modeled total intrinsic elimination half-lives are reason-
able. All results presented below are based on these optimized
emission history and biotransformation half-lives.
3.2 Comparison of model predictions and measured data at
the population level

Fig. 2A compares predicted and measured PCB-153 concentra-
tions at the population level for the original and revised emis-
sion scenario (i.e., E(t) ¼ 1970 and E(t) ¼ 1960). In general, for
the optimized scenario, the model slightly underestimates
1162 | Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168
PCB-153 concentrations when compared to the measured data.
The geometric meanmodeled concentration of 13.3 ng g�1 lipid
is close to the geometric mean measured concentration of 22.0
ng g�1 lipid. Similar agreement is found when comparing
median concentrations, where the modeled value of 15.7 ng g�1

lipid is only marginally lower than the median measured
concentration of 22.2 ng g�1 lipid. Similar results are observed
for the other PCB congeners, see ESI, Table S4, and Fig. S5–S7.†
This level of agreement is quite remarkable, considering the
complexity of the model approach, the number of required
assumptions, and the uncertainty of many input parameters.
The default emission scenario (E(t) ¼ 1970; default 15 years
biotransformation half-life for PCB-153) also performs well: the
geometric mean modeled concentration of 19.2 ng g�1 lipid is
very similar to the geometric mean measured concentration of
22.0 ng g�1 lipid. However, model results based on the default/
original scenario fail to reproduce trends with age (R2 ¼ 0.04),
a very important predictor of PCB level. Predicted concentra-
tions in younger individuals (age classes 12–15 years, 16–
24 years) tend to overestimate the empirical data whereas pre-
dicted concentrations in older individuals (age classes 42–
61 years, 61–85 years) tend to underestimate the empirical data.
See ESI, Fig. S4† for a comparison of the default/original model
results and measured levels.

The range of predicted concentrations (6 log10 units, 0.001
to 598 ng g�1 lipid) is much greater than that of the measured
concentrations (3 log10 units, 1.05 to 986 ng g�1 lipid).
However, the similar variance for the measured and modeled
datasets in Fig. 2A (i.e. box size and whisker length), suggests
that outliers drive the overall range difference. Particularly,
this discrepancy is due to the lower bound of the model
output, whereas the upper bound is in good agreement with
the empirical data. In other words, for a relatively small
number of individuals (n ¼ 338) the model predicts concen-
trations that are much lower than measurements. A majority
of these individuals (n ¼ 260) reported no consumption of
meat, sh or dairy products (<1.0 g lipid per day) on their
24 hour dietary recall surveys. Because the model assumes that
only these three food categories contribute to a person's die-
tary PCB intake, modeled body burdens of these individuals
are unreasonably low (<1 ng g�1 lipid) due to exposure from
inhalation and drinking water only.

It is likely that some of these 260 individuals actually eat
meat or dairy products on a regular basis, but did not during the
24 hours to which the dietary recall survey applied. It is also
likely that some individuals in NHANES ate a vegetarian diet.
While the assumption that plant-based food contributes negli-
gibly to PCB intake among those who also eat meat, sh and/or
dairy is suitable, it is clearly inappropriate for vegetarians/
vegans.4 Unlike more recent NHANES, there was no survey
question that explicitly asked the participant if they consider
themselves to be a vegetarian. The failure of the model to
correctly predict the lower end of PCB exposure among NHANES
participants could be addressed by not relying exclusively on
24 hour recall data for estimating dietary intake and by
including foods such as grains, vegetables, and fruits in the
model calculations.56
This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Predicted (optimized scenario – blue; default scenario – green) and measured (red) log10 lipid-adjusted PCB-153 concentration (ng g�1

lipid) shown in box and whisker plots, organized by (A) all individuals, (B) sex, (C) age group, (D) number of children (females only), (E) BMI group,
and (F) total dietary lipid intake. The ends of the whiskers represent the point closest to 1.5 times the interquartile range (IQR).
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3.3 Comparison of model predictions and measured data
when stratied by sex, age, parity, BMI, and dietary lipid
intake

Fig. 2 also includes panels where measured and modeled
PCB-153 concentrations are compared when the data are strat-
ied by sex (Fig. 2B), age (Fig. 2C), number of children (Fig. 2D),
BMI (Fig. 2E) and dietary lipid intake (Fig. 2F). Only model
output for the revised emission scenario (i.e., E(t) ¼ 1960) are
presented here. Similar gures for PCB-118, -138, and -180 are
shown in the ESI, Fig. S5–S7.† The model correctly reproduces
associations between PCB exposure and certain variables (sex,
age, number of children, BMI), but fails for others (dietary lipid
intake).

Both the model estimates and measured data indicate that
on average males have a slightly higher PCB-153 body burden
than females (Fig. 2B), a sex-mediated effect supported by
previous HBM studies.18,57 There are several factors contributing
This journal is © The Royal Society of Chemistry 2016
to higher predicted levels in males: rst, they generally have
a higher total dietary lipid intake (82 g lipid per day) than
females (60 g lipid per day). Secondly, the model assumes that
females have higher lipid contents than males for a given BMI,
which could contribute to the lower levels observed in females
(“solvent dilution”). Lastly, reproduction affords females two
additional PCB loss processes: childbirth and breastfeeding.

When stratifying the data by age (Fig. 2C), the model
reproduces the trend of rising PCB-153 body burdens with
increasing age in the population cross-section. Such agreement
is not surprising, because the agreement between modeled and
measured trends with age served as a criterion during the
optimization of E(t) and HLb. The model results for the non-
optimized HLb and E(t) over-predict exposures for individuals
older than 70 (see ESI, Fig. S3†). Concentrations of PCB-153 that
increase monotonically with age in a cross sectional HBM study
conducted during time periods of declining emissions have
Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168 | 1163
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previously been explained by the older participants' bodies
retaining a “memory” of past exposures.29,35 Younger individ-
uals, born aer the peak in emissions, do not experience
comparable PCB exposures.

In both the measured and modeled data, PCB-153 body
burden increases with number of children (females only,
Fig. 2D). This result may at rst seem counterintuitive, since
childbirth and nursing can signicantly reduce PCB body
burdens.33 However, this may simply be because NHANES
participants with more children are generally older. For
example, the average birth year of mothers with 5 children is
1939, which resulted in higher PCB-153 body burdens because
their lifetimes directly overlapped with the peak emission
period. Similarly, mothers with 0 children include younger
NHANES participants (i.e., <25 years of age), who have the
lowest PCB-153 body burdens.

The relationship between PCB-153 body burden and BMI on
the population level is subtle, but there is a trend of increasing
model and measured PCB-153 concentration with increasing
BMI, with the highest concentrations in those with BMIs in the
24.5–35 range (Fig. 2E). The literature is largely inconsistent in
regards to associations between PCB body burden and BMI.23–25

The role of BMI in inuencing PCB levels, and how it is related to
birth cohort, age, and time of sampling is investigated in detail
elsewhere.58Wenote that BMI was not correlatedwith our derived
daily food intake levels, i.e., higher levels of PCBs in more obese
people appear to not be a result of higher rates of lipid intake.58

Unlike other examined variables, the model identies total
dietary lipid intake as a signicant contributor to PCB-153
concentrations, while the measured data indicate no differ-
ences in PCB-153 concentrations between the four lipid intake
quartiles (Fig. 2F). The model suggests that PCB concentrations
should increase with increasing lipid intake, a trend that will be
discussed further in the next section describing individual
model results.
3.4 Comparison of model predictions andmeasured data for
individuals

Fig. 3 directly compares modeled and measured PCB-153
concentrations for each individual NHANES participant (see
ESI, Fig. S8–S10,† for the other congeners). Again, only model
output for the revised emission scenario (i.e., E(t) ¼ 1960) are
presented here. Model performance for the individual predic-
tions is modestly successful. For example, 62% of all predicted
data are within a factor of 3 of corresponding measured values,
while 89% fall within one order of magnitude of measurements.
Rank correlation between modeled and measured PCB-153
concentration was highly signicant, with a Spearman rs¼ 0.44.
Considering the scope (i.e., source to receptor) of, and uncer-
tainties inherent to, the model calculations, such model
performance is encouraging. However, the model fails to
capture all sources of variability.

Discrepancies between modeled and measured PCB-153
levels are mainly due to the divergent impact of dietary lipid
intake, as mentioned for population level predictions above
(Fig. 2F). In each subplot of Fig. 3, the data are colored
1164 | Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168
according to the estimated individual intake of total lipids
(panel A), beef lipids (B), dairy lipids (C), and sh lipids (D).
Total dietary lipid intake (Fig. 3A) has a signicant impact on
the modeled concentrations (R2 ¼ 0.44), but virtually no impact
on measured concentrations (R2 ¼ 0.00). This is readily
observed in Fig. 3A, where dietary intake quartile coloring
straties along the predicted concentration axis (y axis), but not
the measured concentration axis (x axis). The same is observed
when only beef lipid intake (Fig. 3B, modeled data: R2 ¼ 0.49,
measured R2¼ 0.00) and dairy lipid (Fig. 3C, modeled data: R2¼
0.11, measured R2 ¼ 0.00) intake is considered. For sh lipid
intake (Fig. 3D), there seems to be little association with either
modeled (R2 ¼ 0.02) or measured concentrations (R2 ¼ 0.04).
This is due to the fact that a majority of participants (n ¼ 3162,
or 52%) are assigned the default US average sh consumption
(18.9 g ww per day before age adjustment), as they could not
recall (“don't know”) sh intake in their FFQ, or the data were
missing.
4. Discussion
4.1 Comparison with previous studies predicting PCB
exposure in individuals

This work complements two earlier studies that sought to
mechanistically predict PCB exposure in individual humans.
Nøst et al.59 predict PCB concentrations in 554 Norwegian
women who were either pregnant or postmenopausal; Bin-
nington et al.60 predicted PCB concentrations in 298 Arctic
aboriginal mothers. Both studies used the PCB emissions by
Breivik et al.;38 although without the shi of peak PCB emis-
sions back 10 years that we employed.

Like the present study, Nøst et al. and Binnington et al.
successfully reproduced mean population PCB exposures. For
example, concentrations of PCB-153 predicted for Norwegian
women were within one order of magnitude of measured
values.59 However, on an individual level the predictions were
less effective, with the models again attributing a larger share of
the exposure variability to dietary differences than was observed
in the measured data. Our rank correlation coefficient between
measured and modeled data (rs ¼ 0.44) is similar to those
observed by Binnington et al. (rs > 0.40 for each study group),
and lower than the value calculated by Nøst et al. (rs ¼ 0.67).
4.2 Reconciling differences between average and individual
prediction success

Because the model is only moderately successful in predicting
individuals' PCB exposure using 24 hour dietary recall and FFQ
data, it may at rst be surprising that the population level
predictions are so close to the average measured levels,
considering that they are based on the average of those indi-
vidual predictions. In parameterizing dietary intakes, our model
approach requires a major assumption: the dietary recall from
NHANES (24 hour period) is extrapolated to an individual's
entire lifetime, i.e., there are no changes in dietary composition
with age or season. It is quite likely that an individual's dietary
intake within one particular 24 hour period is not entirely
This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Predicted vs. measured log lipid-normalized PCB-153 concentration (ng g�1 lipid). For each subplot, data is organized and coloured
according to daily intakes (g lipid) of (A) total lipids, (B) beef lipids, (C) dairy lipids, and (D) fish lipids. The black dashed line represents the 1 : 1 line.

Paper Environmental Science: Processes & Impacts

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

ug
us

t 2
01

6.
 D

ow
nl

oa
de

d 
on

 1
/2

6/
20

26
 1

:3
4:

56
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
representative of their diet over an entire year, let alone a life-
time. On the other hand, the average of several thousand indi-
viduals' dietary intakes from one particular 24 hour period may
in fact be a reasonable estimate of the average of those indi-
viduals' lifetime dietary intake. It is thus possible that personal
dietary reports may poorly describe actual individual intakes,
but when sampled together in sufficiently large numbers may
give an accurate representation of actual mean population
consumption. In other words, a cancellation of errors in the
individual NHANES estimated dietary intakes may be partly
responsible for satisfactorily approximating dietary intake at
the population level.

In addition, the unreliability of dietary recall data likely also
contributed to the model's ineffectiveness in accurately pre-
dicting individual exposures. In particular, the 24 hour recall
and FFQ reports (which are used to estimate beef, dairy and sh
consumption, respectively) are prone to recall bias, which leads
to uncertain food consumption estimates.61–63 It has been re-
ported previously that such methods tend to appreciably
underestimate actual individual consumption rates.46,64 For
example, NHANES energy intakes may be underreported by
upwards of 800 kcal per day.46 Although we scaled up modeled
dietary intakes to agree with the national US average diet, this
does not address other known shortcomings of dietary intake
data. For example, Freedman et al.65 observed that “across
a diverse sample of Americans, subjective estimates of energy
intake explained <10% of the variance of true intake”.
This journal is © The Royal Society of Chemistry 2016
Binnington et al.60 also identied the unreliability of dietary
recall data as a key contributor to poor model performance for
individuals. In particular, they noted that reported traditional
food intake among Arctic populations had increased when
compared to the previous decade, contradicting an expected
decline in traditional food consumption.60 Furthermore, Shin
et al.66 looked at estimating exposure to peruorinated
compounds, and also highlighted the need for better intake
data to improve model estimates.
4.3 Evaluation of model predictions for environmental and
food chain contamination

Considering the limitations of the dietary data, it is appropriate
to also ask whether model-measurement agreement at the
population level may be fortuitous. In order to explore this, we
also compared the predicted PCB concentrations in air, sea
water, sh, beef, and dairy lipids with measured values reported
in the literature (ESI, Section S7†). Such a comparison is limited
by the considerable variability of PCB concentrations in such
samples and their potential to inadequately represent the
average US food supply. Nevertheless, our modeled calculations
are generally well within an order of magnitude of reported
environment and food chain measurements. Oen the agree-
ment is much better, e.g. dairy concentrations (ESI, Table S9†).
There is tendency for concentrations in sh to be
Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168 | 1165

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6em00424e


Environmental Science: Processes & Impacts Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

ug
us

t 2
01

6.
 D

ow
nl

oa
de

d 
on

 1
/2

6/
20

26
 1

:3
4:

56
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
underpredicted (ESI, Table S7†) and those in beef/meat to be
overpredicted (ESI, Table S8†).

Because the model-measurement agreement for the average
levels in humans is better than model-measurement agreement
for the food items, we suspect that the former is to some extent
fortuitous, i.e., is a result of error cancellation. In particular, an
overestimation of concentrations in meat could affect model
results for humans, because NHANES participants on average
consumed 47 times more meat lipids than sh lipids, and also
because beef lipid intake correlates well with predicted PCB-153
exposure in our model calculations (R2 ¼ 0.49, data not shown).
Overall, it is thus likely that discrepancies in model to
measurement agreement for individuals are not only due to
shortcomings in the reported dietary intake data (and its
extrapolation to lifetime consumption), but also to deviations
between predicted and observed PCB levels in various food
items.

Nevertheless, we note that a simpler modeling approach
relying on empirical food contamination data would be simi-
larly affected by the questionable reliability of dietary intake
estimates at the individual level, i.e. it is not primarily the
estimation of the food contamination that presently limits the
accuracy of predicted individual exposures to PCBs, but the
difficulty in reliably establishing what individuals eat.
4.4 Other limitations of the model approach

Individuals with unique exposure scenarios, such as those who
lived in close proximity to a PCB manufacturing plant,67 are
difficult to model with our approach. Additionally, individuals
who consume locally produced livestock are difficult to describe
because our model approach assumes that all individuals
obtain their food from the same source, specically the central
US for beef and dairy, and the Pacic Ocean for sh. However,
with geographical information and application of a regional-
scale or ‘nested’ fate and transport model, parameterized for
particular locations/food origin scenarios, prediction of PCB
levels for both groups of individuals could be achieved.

The low reliability of FFQs and 24 hour dietary recall data
presently limits the feasibility of reconstructing individual
exposure histories based on data typically collected in HBM
studies. This implies that it may be difficult to improve expo-
sure characterization in epidemiological studies of the health
effect of contaminants through the use of such models,68–70

unless the quality of dietary intake information is improved. It
also implies that the presence or absence of statistical associ-
ations between measured PCB levels and the reported intake of
certain dietary items may be more uncertain than previously
recognized. On the other hand, the averages of dietary intake
data appear to allow for reasonably good predictions of both the
mean and range of measured population PCB levels, especially
if adjustment for the known bias towards underestimation of
energy intake is performed.46,64 In particular, the ability to
reproduce statistical associations (or the lack thereof) between
PCB concentrations and non-dietary individual attributes such
as age, sex, BMI or parity with the model approach is encour-
aging. It implies that our model can mechanistically explain
1166 | Environ. Sci.: Processes Impacts, 2016, 18, 1157–1168
such associations and also make predictions of such relation-
ships. Lastly, the modelling approach described here can be
adapted to national biomonitoring campaigns of other coun-
tries, for example, the Canadian Health Measures Survey
(CHMS), or for other long-lived contaminants, provided the
necessary information is available.
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C. Shelton, N. D. Dutton and S. Bartell, Sci. Total Environ.,
2014, 473–474, 286–297.

68 M.-A. Verner, P. Ayotte, G. Muckle, M. Charbonneau and
S. Haddad, Environ. Health Perspect., 2008, 117, 481–487.

69 C. Rylander, T. M. Sandanger, T. H. Nøst, K. Breivik and
E. Lund, Environ. Res., 2015, 142, 365–373.

70 M. A. Verner, P. Plusquellec, G. Muckle, P. Ayotte,
É. Dewailly, S. W. Jacobson, J. L. Jacobson,
M. Charbonneau and S. Haddad, Neurotoxicology, 2010, 31,
424–431.
This journal is © The Royal Society of Chemistry 2016

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6em00424e

	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...

	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...

	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...
	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...

	Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated...




