Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties

Kristopher McNeill* a and Silvio Canonicab

Excited triplet states of chromophoric dissolved organic matter (3CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of 3CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize 3CDOM*. Information on 3CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing 3CDOM* using transient spectroscopic methods. Singlet molecular oxygen (1O2), which is a product of the reaction between 3CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of 3CDOM*. There are two major modes of reaction of 3CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of 3CDOM* can be achieved.

Environmental impact

Photochemical processes are critically important in driving biogeochemical element cycling and in the breakdown of contaminants in surface waters. One of the most important and least understood sets of photochemical pathways involves triplet chromophoric dissolved organic matter (3CDOM*), a form of electronically excited DOM. There has been a recent surge in the study of the properties and reactivity of 3CDOM* and this review article is an attempt to organize and synthesize what has been discovered about 3CDOM* over the past few decades.

Introduction

Sunlight-driven processes are central to both the buildup of complex molecules through photosynthesis and their breakdown through photodegradation reactions. These photodegradation processes may be initiated not only directly by the absorption of light, but also indirectly through reactions involving a menagerie of exotic chemical species such as free radicals and electronically excited molecules, referred to here collectively as photochemically produced reactive intermediates (PPRI). 1-4 Triplet excited states of chromophoric dissolved organic matter (3CDOM*) are an important subset of the larger pool of PPRI formed in sunlit waters that also include singlet oxygen (1O2, 1Δg), superoxide (O2⁻), hydrogen peroxide, hydroxyl radical (OH⁻), and others. 5-7 3CDOM* has been implicated in the degradation of contaminants, such as pesticides and pharmaceuticals, 8,9 and holds a special position among the PPRI for at least two reasons. First, 3CDOM* is known or suspected to be a precursor of other PPRI. 1-4 For example, 3CDOM* is the primary source for 1O2 in sunlit natural waters. 8,9 Second, unlike other PPRI, 3CDOM* is not a well-defined species; rather, it is an infamously ill-defined mixture of triplet states, which vary in their excited state energies and excited state redox potentials.

The goal of this review article is to outline the reactivity modes of 3CDOM* and to summarize what is known or can be reasonably inferred about both the triplet energy and redox potential of 3CDOM*. In addition, some back-of-the-envelope calculations are presented that give rough answers to questions that often arise when discussing 3CDOM*: why are triplet states more important than singlet states in CDOM-sensitized processes? And, what is the steady-state concentration of 3CDOM*?
Steady-state concentration of 3CDOM* in natural waters

Attempting to quantify the steady-state concentration of 3CDOM* in an aquatic system would seem to be more challenging than other PPRI due to the abovementioned problem that 3CDOM* is a mixture of triplet states of diverse molecules. Therefore, it may seem surprising that we can actually estimate the steady-state concentration of 3CDOM* within about a factor of two with a high degree of confidence. This is thanks to the inextricable link between 1O$_2$ and 3CDOM*.

To understand this, it is helpful to consider the simplified kinetic scheme that connects 3CDOM* and 1O$_2$ (Fig. 1). CDOM is excited by the absorption of a photon (symbolized by hv) to form the excited singlet state of CDOM, 1CDOM*. Under optically thin conditions, the rate of light absorbance (R$_{abs}$), in units of M s$^{-1}$, is given by the product of the irradiance (mmol photons cm$^{-2}$ s$^{-1}$), the Naperian absorption coefficient of CDOM (natural log-based absorption coefficient in units of cm$^{-1}$), and a conversion factor (mol L$^{-1}$ (mmol cm$^{-3}$)$^{-1}$ = 1). The efficiency of the conversion of 1CDOM* to 3CDOM* (i.e., the intersystem crossing efficiency) is given by Φ_{ISC}. The rate constants for the 3O$_2$-independent and 3O$_2$-dependent deactivation pathways of 3CDOM* are given by k_d^3 and $k_0[O_2]$, respectively. Under normal air-saturated surface-water conditions, 3O$_2$-dependent relaxation almost certainly dominates over 3O$_2$-independent relaxation. Sharpless has estimated the 3O$_2$-independent lifetime of triplets through 3O$_2$-dependent formation kinetics of 1O$_2$ using Suwannee River and Pony Lake isolates, and determined a lifetime around 20 s$^{-1}$ (k_d^3 $\approx 5 \times 10^5$ s$^{-1}$). Zepp has made a reasonable estimate of $k_0 = 2 \times 10^9$ M$^{-1}$ s$^{-1}$, based on 3O$_2$ quenching rate constants of well-defined sensitizers.* While there is certainly some variation in the individual k_0 values among the numerious sensitizers that comprise 3CDOM*, they are all expected to be quite high and near the diffusion-controlled limit. For air-saturated freshwater at 25 °C (258 μM O$_2$), $k_0[O_2]$ is approximately 5×10^7 s$^{-1}$ (τ = 2 μs), which suggests that the 3O$_2$-dependent relaxation pathway is an order of magnitude more important than the 3O$_2$-independent pathway.

The quenching of triplet states by O$_2$ produces 1O$_2$, but the yield for this process (f_A) is different for each sensitizer. It has often been assumed that f_A is close to unity,* but studies with a range of well-defined triplet sensitizers have shown that this value can vary from near 0 (e.g., coumarin13) to near 1 (e.g., perinaphthenone13), depending on the sensitizer. Indeed, the value of f_A varies with the sensitizer’s triplet energy and sensitizer’s excited state oxidation potential (i.e., how strong a reductant the sensitizer is in the excited state), with high energy and strongly reducing triplet species generally being poorer 1O$_2$ sensitizers.11,13,14 Once formed, 1O$_2$ mainly undergoes unimolecular deactivation, k_d^1.15

Expressions for the steady-state concentrations of 3CDOM* and 1O$_2$ based on the scheme depicted in Fig. 1 are given by eqn (1) and (2).

$$[^3\text{CDOM}]_{ss} = \frac{R_{abs}\Phi_{ISC}}{k_0[O_2] + k_d^3}$$

$$[^1\text{O}_2]_{ss} = \frac{[^3\text{CDOM}]_{ss} k_0[O_2]}{k_d^3}$$

One can rearrange eqn (2) to arrive at an expression for the ratio of the steady-state concentrations of 1O$_2$ and 3CDOM* (eqn (3)).

$$\frac{[^1\text{O}_2]_{ss}}{[^3\text{CDOM}]_{ss}} = \frac{k_0[O_2]}{k_d^3}$$

Substituting values for k_d^3 (2.5 \times 105 s$^{-1}$ for H$_2$O),15 k_0 (2 \times 109 M$^{-1}$ s$^{-1}$), and $[O_2]$ (258 μM at 298 K), one arrives at eqn (4).

$$\frac{[^1\text{O}_2]_{ss}}{[^3\text{CDOM}]_{ss}} \approx 2f_A; \quad 25 \degree \text{C, air-saturated water}$$

This result indicates that for 25 °C, air-saturated water, the ratio of 1O$_2$ to 3CDOM* is linearly dependent on the yield of 1O$_2$ from the 3O$_2$-dependent quenching of 3CDOM* (f_A) with a maximum $[^1\text{O}_2]_{ss}$ value of two times $[^3\text{CDOM}]_{ss}$. While we do not know the value of f_A for 3CDOM*, eqn (4) nevertheless suggests a useful rule-of-thumb of $[^1\text{O}_2]_{ss} \approx [^3\text{CDOM}]_{ss}$. To reiterate, this will hold when the value for k_0 is close to the estimate of 2×10^6 M$^{-1}$ s$^{-1}$ and the average f_A value is near 0.5. Under noon-time clear summer sky conditions, $[^1\text{O}_2]_{ss}$ has been found to be between 10$^{-14}$ and 10$^{-12}$ M in natural waters, depending on the concentration of DOM (1–100 mg C L$^{-1}$; see for example Peterson et al.16). Based on the above argumentation, we can therefore adopt this same concentration range for $[^3\text{CDOM}]_{ss}$.

Why triplet states and not singlet states?

Could singlet excited state CDOM moieties (1CDOM*) act as reactive intermediates in a similar manner to 3CDOM*? After

Fig. 1 Kinetic scheme illustrating the connection between 3CDOM* and 1O$_2$. Definition of variables and symbols: CDOM, chromophoric dissolved organic matter; 3CDOM*, singlet state dissolved organic matter; 1CDOM*, triplet state dissolved organic matter; 1O$_2$, singlet oxygen ($^1\Delta_o$); hv, photon; R_{abs}, rate of light absorbance; Φ_{ISC}, intersystem crossing quantum yield; k_d, bimolecular rate constant for the quenching of 3CDOM* by 1O$_2$; f_A, fraction of 3O$_2$-dependent quenching that produces 1O$_2$; k_d^1, rate constant for 1O$_2$-independent relaxation of 3CDOM*; k_d^3, rate constant for relaxation of 3O$_2$ to 1O$_2$.
all, the lowest lying singlet excited state of a given sensitizer is higher in energy than its lowest lying triplet state and would therefore be expected to be more reactive than the triplet. While this is true, it is counteracted by the fact that the steady-state concentration of 3CDOM* is much lower than that of 1CDOM*. To determine exactly how much lower $[^{1}$CDOM$^*]_{ss}$ is than $[^{3}$CDOM$^*]_{ss}$, we need estimates of the relative formation and decay rate constants for both species. Formation quantum yields for 3CDOM* have been estimated to be in the range of 1–2%, but could be as high as 6% or higher for some DOM samples, based on 1O$_2$ quantum yield measurements. This indicates that 1CDOM* formation rates are 15–100 times faster than those for 3CDOM*. On the decay side, the 1CDOM* lifetime is much shorter than that of 3CDOM*, which has a lifetime of about 2 μs (i.e., the inverse of $k_{2b}[O_2]$; see previous section). Fluorescence lifetime studies give a direct measurement of the decay of 1CDOM*, and, as expected, the mixture of fluorophores do not display a single lifetime. Rather, the data suggest a dominant pool of short lifetime 1CDOM* species ($\tau < 150$ ps), with contributions from two other pools of 3CDOM* ($\tau \approx 1$ and 3 ns). For simplicity, we consider 100 ps to be the typical lifetime of 1CDOM*.

Taken together, we see that while 1CDOM* is formed 15–100 times faster than 3CDOM*, it decays approximately 20 000 times faster, giving 200- to 1300-fold lower steady-state concentrations than 3CDOM*. This corresponds to $[^{1}$CDOM$^*]_{ss}$ of 10^{-17} to 10^{-14} M in sunlit surface waters, compared to $[^{3}$CDOM$^*]_{ss}$ of 10^{-14} to 10^{-12} M. To put this into context of another PPRL [CDOM*]$_{ss}$ is expected to be similar to [OH]$_{ss}$. Thus, 3CDOM* is expected generally to be the more important species, but 1CDOM* could also play a role under the right circumstances. For example, we speculate that this could occur with CDOM samples that have low intersystem crossing quantum yields (i.e., low rates of 3CDOM* production) or when the rate constant for reaction with 1CDOM* is orders of magnitude faster than with 3CDOM*. Another case where 1CDOM* could conceivably participate in bimolecular reactions despite being so short-lived is when its reaction partner is already associated with CDOM. Such intra-humic photosensitization reaction has been proposed for the photoreduction of mirex, reactions involving 1O$_2$ with a highly hydrophobic probe molecule, and the 3CDOM*-sensitized degradation of amoxicillin.

Energy transfer reactions

Triplet excited states of CDOM have been shown to undergo energy transfer reactions with selected substrates (Fig. 2). The best studied of these energy transfer processes is the formation of 1O$_2$ from the interaction of triplet ground state O$_2$ with 3CDOM*, which was first reported by Zepp in 1977. The energy required to promote ground state O$_2$ to 1O$_2$ is 94 kJ mol$^{-1}$ (980 meV). Since most triplet excited states of organic chromophores are much higher (typically 180–320 kJ mol$^{-1}$), O$_2$ has been proposed to be a universal energy acceptor, capable of accepting energy from all 3CDOM* moieties. This is an oversimplification as discussed above in the section on the concentration of 3CDOM* in natural waters, but to a first approximation, it is a reasonable statement.

Dienes have also been reported to participate in energy transfer reactions with 3CDOM*. Zepp first demonstrated this with pentadiene ($E_T = 248$ kJ mol$^{-1}$) and 2,4-hexadien-1-ol (sorbic alcohol, $E_T = 249$ kJ mol$^{-1}$), showing that various natural organic matter isolates could sensitize the reversible photoisomerization of the cis- and trans-forms. Zepp extended this reaction type to include 2,4-hexadienoate (HDA, also known as sorbic acid, $E_T = 239–247$ kJ mol$^{-1}$). More recently, Grebel et al. made an in depth study of the reaction of HDA with 3CDOM*, and this work has sparked the use of HDA as both a quencher of 3CDOM* and a molecular probe to quantify its concentration. In a similar way, isoprene ($E_T = 251$ kJ mol$^{-1}$) has been effectively used as a triplet quencher, providing evidence for the involvement of 3CDOM* in the oxidation of methanolic acid, some sulfa drugs, and the amino acids tryptophan, methionine, and tyrosine. Dienes have not only been used as probe molecules. Domoic acid, a naturally occurring diene and potent marine toxin, has been shown to undergo 3CDOM*-sensitized isomerization, among other indirect photoprocesses.

There are very few well-characterized energy transfer reactions between 3CDOM* and non-diene organic substrates. A notable exception is chlorothalolin, which is promoted to its triplet state through a CDOM-sensitized process. Porras et al. tested for the involvement of energy transfer between 3CDOM* and chlorothalolin through quenching experiments. In addition, they determined the triplet energy of chlorothalolin by low temperature phosphorescence measurements to be 276 kJ mol$^{-1}$ and verified that excitation of CDOM with wavelengths longer than 450 nm (<266 kJ mol$^{-1}$) gave very little sensitized photoreaction.

Triplet energy of 3CDOM*

Given the heterogeneous nature of the components of 3CDOM*, there is no one triplet energy, E_T, that can be used to describe it.
Rather, there is a distribution of triplet energies. Using the energy transfer reactions between 3CDOM* and either O_2 ($E_s = 94$ kJ mol$^{-1}$) or dienes 1,3-pentadiene ($E_T = 248$ kJ mol$^{-1}$) and 2,4-hexadien-1-ol ($E_T = 249$ kJ mol$^{-1}$), Zepp concluded that 3CDOM* comprised both high-energy triplets ($E_T \approx 250$ kJ mol$^{-1}$) and low-energy triplets ($94 \leq E_T \leq 250$ kJ mol$^{-1}$). The high-energy triplets were able to sensitize the isomerization of the 1,3-pentadiene and produce $^3\text{O}_2$, while the low energy triplets could only produce $^3\text{O}_2$. One conclusion of this study was that the high-energy triplets accounted for about 15-53% (mean = 37%) of the total triplet pool, depending on the DOM sample. To visualize this result, a hypothetical normal (Gaussian) distribution of triplet energies with 37% of the triplet energies being greater than or equal to 250 kJ mol$^{-1}$ is shown in Fig. 3. Also plotted in Fig. 3 are ranges of triplet energies for representative compounds (Table 1) that contain chromophoric functional groups believed to be present in DOM. The data in Fig. 3 suggest that PAH-like moieties and quinones are most likely not major contributors to the high-energy triplet pool, whereas aromatic ketones and other carbonyl-containing compounds (e.g., coumarins and chromones) are better candidates for high-energy triplets. However, it is not only the triplet energy that is important, but also the triplet yield (i.e., intersystem crossing quantum yield). For example, aromatic ketones have triplet yields near unity, while coumarins typically have poor triplet yields.

Another piece of information that could be obtained by Zepp and coworkers in the CDOM-sensitized isomerization of 1,3-pentadiene was the apparent E_T of CDOM from the final cis-trans ratio, or the photostationary state, of 1,3-pentadiene. This photostationary state was shown to reflect the sensitizer’s E_T, and the values obtained for CDOM solutions were consistent with an apparent E_T of 250 kJ mol$^{-1}$. Similar experiments conducted with functionalized carbon nanotubes and petroleum found the apparent E_T values to be lower and higher than CDOM, respectively. The petroleum value was estimated to be 288-303 kJ mol$^{-1}$, suggesting that the triplet photochemistry relevant to oil spills may differ substantially from CDOM-based photochemistry.

The high average E_T value found in petroleum stands in contrast to the low average triplet energies of PAH molecules in Table 1 and Fig. 3. This may mean that the small selection of PAHs (triphenylene, phenanthrene, naphthalene, pyrene, and anthracene) is not representative of the PAH mixture in petroleum or that other higher E_T species present in petroleum (e.g., ketones formed from oxidation) are dominating the sensitization of the diene probes.

At least two spectroscopic estimates of the E_T value of 3CDOM* have been made. Bruccholeri et al. applied magnetic circular dichroism (MCD) spectroscopy to an organic matter isolate and assigned an absorbance transition as $S_0 \rightarrow T_1$, and the wavelength for this transition (714 nm; 14 000 cm$^{-1}$) corresponded to an energy of 170 kJ mol$^{-1}$. Mazhul et al. used room temperature phosphorescence spectroscopy to identify the opposite transition ($T_1 \rightarrow S_0$), with an onset near 405 nm, corresponding to the highest energy (phosphorescing) triplets having an E_T value of 300 kJ mol$^{-1}$. In both of these studies, the estimates of E_T must be viewed with caution, as both techniques are almost certainly confounded by the complex mixture of DOM. Indeed, Mazhul et al. explicitly point out that they believe they are only observing phosphorescence from a minority of the 3CDOM* components in their mixture. Additionally, these spectroscopic values do not seem reasonable as average or representative values, since one is at the extreme low end and one is at the far high end of the range of triplet energies normally found for organic sensitizers.

3CDOM* oxidation reactions

Redox reactions are the dominant reaction type between organic substrates and 3CDOM*, with 3CDOM* primarily acting as the oxidant. The oxidation reactions have been reviewed elsewhere and the discussion here will be mostly confined to the substrate scope and the reduction potential of 3CDOM*.

Some patterns are revealed by examining the structures of compounds for which triplet states have been established as playing a role in their organic matter-sensitized degradation. In Fig. 4, selected structures of compounds are presented that have been shown to react with 3CDOM*. Excluded from this group are compounds that are suspected to be reactive toward 3CDOM*, based on their reactivity toward model sensitizers (e.g., anthraquinone-2-sulfonate; AQ2S), but that have not yet been investigated with CDOM.

Examining the structures in Fig. 4, one can see that anilines and phenols are well represented. Anilines and compounds containing aniline substructures are especially susceptible to oxidation by 3CDOM*. This includes simple aniline structures, such as N,N-dimethylamine, p-aminobenzoic acid, and
Table 1: Ground-state reduction potentials \(E^0 \), triplet state reduction potentials \(E^T \), and singlet oxygen quantum yields \(\Phi_O \) for selected DOM model sensitizers and other widely used sensitizers.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sensitizer (S)</th>
<th>(E^0) (V SHE)</th>
<th>(E^T) (V SHE)</th>
<th>(\Phi_O)</th>
<th>Solvent (S^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benzoquinone</td>
<td>0.099</td>
<td>1.42</td>
<td></td>
<td>H2O</td>
</tr>
<tr>
<td>2</td>
<td>Naphthoquinone</td>
<td>-0.12 (ref. 139)</td>
<td>1.40</td>
<td></td>
<td>H2O</td>
</tr>
<tr>
<td>3</td>
<td>Anthraquinone</td>
<td>-0.52 (ref. 144)</td>
<td>1.49</td>
<td></td>
<td>H2O</td>
</tr>
<tr>
<td>4</td>
<td>Durequinone</td>
<td>-0.24 (ref. 139)</td>
<td>1.47</td>
<td></td>
<td>H2O</td>
</tr>
<tr>
<td>5</td>
<td>Benzil</td>
<td>0.47 (ref. 149)</td>
<td>1.19</td>
<td></td>
<td>50% EtOH</td>
</tr>
<tr>
<td>6</td>
<td>CBBP</td>
<td>1.13 (ref. 152)</td>
<td>1.84</td>
<td></td>
<td>H2O (pH 11)</td>
</tr>
<tr>
<td>7</td>
<td>Biacetyl</td>
<td>0.79 (ref. 149)</td>
<td>1.69</td>
<td></td>
<td>50% EtOH</td>
</tr>
<tr>
<td>8</td>
<td>Benzophenone</td>
<td>1.31 (ref. 149)</td>
<td>2.07</td>
<td></td>
<td>50% EtOH</td>
</tr>
<tr>
<td>9</td>
<td>3 MAP</td>
<td>1.50 (ref. 149)</td>
<td>2.49</td>
<td></td>
<td>50% EtOH</td>
</tr>
<tr>
<td>10</td>
<td>2-Naphthaldehyde</td>
<td>-1.60 (ref. 149)</td>
<td>1.98</td>
<td></td>
<td>50% EtOH</td>
</tr>
<tr>
<td>11</td>
<td>9-Fluorenone</td>
<td>0.97 (ref. 149)</td>
<td>1.69</td>
<td></td>
<td>50% EtOH</td>
</tr>
<tr>
<td>12</td>
<td>2-Acetylnaphthone</td>
<td>1.48 (ref. 149)</td>
<td>2.07</td>
<td></td>
<td>50% EtOH</td>
</tr>
<tr>
<td>13</td>
<td>Xanthone</td>
<td>1.21 (ref. 155)</td>
<td>2.07</td>
<td></td>
<td>25% EtOH</td>
</tr>
<tr>
<td>14</td>
<td>Coumarin</td>
<td>-1.61 (ref. 157)</td>
<td>1.61</td>
<td></td>
<td>75% MeOH</td>
</tr>
<tr>
<td>15</td>
<td>Flavone</td>
<td>-1.18 (ref. 158)</td>
<td>1.61</td>
<td></td>
<td>50% iPrOH</td>
</tr>
<tr>
<td>16</td>
<td>Umbelliferone</td>
<td>1.92 (ref. 161)</td>
<td>2.07</td>
<td></td>
<td>50% iPrOH</td>
</tr>
<tr>
<td>17</td>
<td>Cinnamaldehyde</td>
<td>1.48 (ref. 165)</td>
<td>2.07</td>
<td></td>
<td>50% iPrOH</td>
</tr>
<tr>
<td>18</td>
<td>Coumarins, chromones, and related</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Polycyclic aromatic hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PAHs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Other sensitizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CBBP = 4-carboxybenzophenone; 3MAP = 3-methoxyacetophenone; ETOH = ethanol; MeOH = methanol; iPrOH = isopropanol; DMF = N,N-dimethylformamide; MIP = 5 : 1 methylviolet:5-sulphonate; IPMC = 5 : 5 : 2 dimethyl ether: 5-sulphonate; CFC-113 = mixture of CFC-113 (1,1,2-trichlorotrifluoroethane) and EtOAc; EM = 3 : 1 diethyl ether: ethanol; CHCl3 = 3 : 1 methanol: CHCl3. \(\Phi_O \) not specified. * No reported value found.

a Balance is H2O when no percentage co-solvent is specified.

b Abbreviations: CBP = 4-carboxybenzophenone; 3MAP = 3-methoxyacetophenone; ETOH = ethanol; MeOH = methanol; iPrOH = isopropanol; DMF = N,N-dimethylformamide; MIP = 5 : 1 methylviolet:5-sulphonate; IPMC = 5 : 5 : 2 dimethyl ether: 5-sulphonate; CFC-113 = mixture of CFC-113 (1,1,2-trichlorotrifluoroethane) and EtOAc; EM = 3 : 1 diethyl ether: ethanol; CHCl3 = 3 : 1 methanol: CHCl3.

c Matrix not specified.

d No reported value found.
Substituted anilines
Multiple examples
- Zhou 2013
- Leresche 2016

Chloroacetamide herbicides
3 examples
- Zeng 2012
- Karpuzzu 2016

Sulfur drugs
6 examples
- Boreen 2005
- Guerard 2009
- Ryan 2011
- Bahnmüller 2014

Phenylurea herbicides
17 examples
- Gerecke 2001
- Zeng 2012
- Langlois 2014
- Karpuzzu 2016

Trytophan
Boreen 2008
Janssen 2014

Mefenamic acid
Werner 2005

Trimethoprim
Ryan 2011
Guerard 2012

Atrazine
Zeng 2012
Karpuzzu 2016

Electron-rich phenols
Multiple examples
- Canonica 1998, 2001
- Aguer 2005
- Halladja 2007

Bisphenol A
Chin 2004
Zhan 2006

Daidzein
Felcyn 2012

Genistein
Kelley 2012

Equol
Felcyn 2012

Zeranol
Qu 2012

17α-ethinylestradiol
Ren 2016

Beta blockers
4 examples
- Chen 2009, 2012
- Wang 2012
- Leresche 2016

Tyrosine
Boreen 2008

Amoxicillin
Xu 2011

Methionine
Boreen 2008

Fig. 4 Selected compounds that have been shown to react with 3CDOM*. Aniline (and other aminoarene), phenol (and aryl ether), sulfide and related substructures are highlighted.

p-cyanom,N,N-dimethylaniline, but also more complex structures, such as found in phenylurea herbicides,28,69–72 sulfa drugs,45,46,73–75 chloroacetamide herbicides,28,72 diarylamines (e.g., mefenamic acid44), and arguably within the structure of tryptophan47,76 and indole77 (Fig. 4). There is also some evidence that this reactivity extends to aniline analogues that are amino-substituted aromatic heterocycles. For example, triazine herbicides atrazine and cyanazine have been shown to react with 3CDOM*, and both of these compounds contain a diamino-triazine functional group.28,72 The structurally similar diaminopyrimidine group in trimethoprim45 and ormetoprim78 may be responsible for the reactivity of these compounds toward 3CDOM*, but these compounds also contain electron-rich methoxy-substituted benzene rings that could instead be the locus of reactivity. 3CDOM* is capable of oxidizing both electron-rich and electron-poor anilines, although the rates of aniline oxidation are clearly modulated by their electron-richness.60,68 By contrast, only electron-rich phenols appear to be susceptible to oxidation by 3CDOM*.

Relatively simple alkyl- and methoxy-substituted phenols, such as p-cresol, 3,4-dimethoxyphenol, tyrosine, and 2,4,6-trimethylphenol, have been shown to be oxidized by 3CDOM* [Fig. 4].17,79–81 This reactivity has been found in more complicated phenol-containing compounds, including the polycarbonate constituent bisphenol A,82,83 the oral contraceptive 17α-ethinylestradiol,84 and indole77 (Fig. 4). Presumably, the phenol functionality is the site of reactivity toward 3CDOM* in these compounds.

The mechanism of oxidation of phenols to phenoxy radicals can be either electron transfer followed by proton transfer (2 steps) or proton-coupled electron transfer (PCET; 1 step), and one critical piece of evidence supporting PCET is the presence of a kinetic isotope effect when O–H is changed to O–D.86 Canonica found weak isotope effects for oxidation of phenols by 3CDOM*, favoring a two-step electron transfer-proton transfer mechanism being operative.79

For some of the polyfunctional compounds shown in Fig. 4, the primary target of 3CDOM* oxidation is not clear. Atorvastatin contains an anilide functional group (aniline amide), but also contains a pentasubstituted pyrrole that could be the preferred site of oxidation. Indeed, the pyrrole has been proposed as the site of electrochemical oxidation of
Critical Review

Environmental Science: Processes & Impacts

Parker and Mitch has implicated CDOM such as methionine, could be occurring at the phenol, S-containing compounds, such as methionine, are also believed to be oxidized by CDOM. Beta blockers, atenolol, metoprolol, nadolol, and propranolol, have all been shown to react with CDOM. While the initial site of reactivity is likely the electron-rich alkoxy-substituted benzene, analogous to phenol oxidation, Chen et al. have shown evidence for oxidation at the alkyl amine as the ultimate product.

We have focused on the oxidation of organic molecules, but there is also evidence that CDOM can also oxidize inorganic species. C原因是 demonstrated that triplet ketone sensitizers with similar reactivity to CDOM were capable of oxidizing carbonate, CO$_{3}^{2-}$, to carbonate radical, CO$_{2}^{-}$.

Recent work by Parker and Mitch has implicated CDOM in the oxidation of halides to dihalogen radical anions, X$_2^-$ (X = Cl, Br). The production of these reactive halogen species (RHS) could have major implications for the photochemical fate of organic contaminants in seawater. Brigante, Vione and coworkers previously showed the possibility of sensitized photochemical production of dihalogen radical anions X$_2^-$ from Br$^-$ and Cl$^-$, using AQ2S as a sensitizer. AQ2S is a powerful oxidant (see below), and while it can be used to establish the viability of triplet-sensitized oxidation reactions, it may not be an ideal surrogate for quantitative predictions of CDOM-sensitized oxidation rates. For example, using authentic CDOM, Parker and Mitch estimate steady-state concentrations of RHS in surface seawater orders of magnitude lower than the estimates gained from AQ2S halide oxidation kinetics.

3CDOM* reduction reactions

Excited triplet states are both better oxidants and better reductants than their ground states. The reason for this can be seen visually in Fig. 5a, which shows the ground state and lowest triplet state electronic configurations of the frontier orbitals of a generic molecule. One can see that for the molecule to act as an oxidant (receive an electron), it requires less energy in the excited state than the ground state. Instead of the incoming electron having to occupy the high-energy lowest unoccupied molecular orbital (LUMO) in the ground state, it can occupy the lower energy singly occupied molecular orbital (SOMO) (formerly the highest unoccupied molecular orbital [HOMO]) in the excited state. Similarly, to act as a reductant (release an electron), it requires less energy for this process in the excited state than the ground state as one electron has been promoted to the higher SOMO (former LUMO).

A concrete example is shown in Fig. 5b for the case of rose bengal diion (RB$_2^-$). RB$_2^-$ in its triplet state has been shown to act as both a reductant and an oxidant. The potential associated with RB$_2^-$ as a reductant, $E(RB_2^-/RB_2^3-)$, decreases by 1.77 V (from 1.33 to -0.44 V SHE) upon excitation to its triplet state, RB_2^3.$^-$. The potential associated with RB$_2^-$ as an oxidant, $E(RB_2^2/-RB_2^3-)$, increases by 1.77 V (from -0.54 to 1.23 V SHE). The value 1.77 V is the triplet energy converted to potential, $E_T/(RB_2^3-/RB_2^2)=1.77$ V, and the reason this is combined with the ground state potential is discussed further in the next section. Note that RB$_2^2$ in its ground state exhibits a window of redox stability between -0.54 and 1.33 V SHE, but has no such window in its triplet state. Triplet state RB$_2^3$ is thermodynamically unstable with respect to oxidation above -0.44 V SHE and to reduction below 1.23 V SHE. Between these values, RB$_2^3$ is thermodynamically unstable with respect to both processes, and can thus act as both an oxidant and a reductant.

The most important photoreduction reaction involving CDOM* is almost certainly reduction of O$_2^*$ ($E(O_2^*/O_2)=0.18$ V) to superoxide (O$_2^*$). Superoxide production has not been definitively linked to CDOM*, but it is logical that a subset of these CDOM* species would reduce dissolved O$_2$, given the foregoing discussion and the fact that O$_2$ is the dominant oxidant present in surface waters. A sense of the maximum quantum yield for such a process comes from H$_2$O$_2$ production quantum yields, since the primary formation pathway involves dismutation of O$_2^*$. H$_2$O$_2$ production quantum yields are strongly wavelength dependent, but are in the range of 0.5×10^{-3} to 10^{-3}, with typical quantum yields being about 10^{-4}. Considering that two equivalents of O$_2^*$ are needed to produce H$_2$O$_2$ and that only a fraction of O$_2^*$
The DOM solubility in water is 32
density increases, the quantum yield for superoxide production is higher, perhaps by a factor of four or six, giving a rough upper limit on the quantum yield of O2 production. Of the superoxide-producing photoreductants, the fraction that is CDOM is unknown and, in fact, CDOM may not be involved at all. For example, Blough and others have argued that charge-transfer states of CDOM are more important photoreductants than CDOM.\(^{98,100,101}\)

Whereas the ground-state reduction reaction is unfavorable in this example (\(E^\circ(\text{CDOM}/\text{water}) = -0.18\) V\(^{98}\)), but rather a distribution. It is important to realize that the excited state potential is a sum of the ground state potential and the excited state energy, divided by the Faraday constant \(F = 96.485\) kJ V\(^{-1}\) to convert from energy to potential (eqn (5)).

\[
E^\circ(\text{CDOM}/\text{water}) = E(\text{GSW}) + E_{1/2}/F
\]

This is shown visually in Fig. 6 for the half-wave reduction of an example aromatic ketone, 3-methoxyacetophenone (3MAP). While the ground-state reduction reaction is unfavorable in this example \(E^\circ(\text{CDOM}/\text{water}) = -1.50\) V, the excited-state reaction is favorable \(E^\circ(\text{CDOM}/\text{water}) = +1.64\) V, and the difference between the two is the triplet energy of the ketone \(E_T = 303\) kJ mol\(^{-1}\); \(E_{1/2}/F = 3.14\) V (see Table 1). This means that compounds that are good oxidizers in the ground state (e.g., quinones) and compounds that have high triplet energies (e.g., ketones) are often powerful oxidants in their triplet state. We will return to this point below.

There have been some experimental attempts to put a value on the reduction potential of CDOM.\(^{98,100}\) Using a set of phenols that vary in their electron richness, Canonica compared their relative rates of oxidation by both well-defined sensitizers (2-acetonaphthone, 2AN; 3MAP; and, benzophenone, BP) and by DOM (filtered Greifensee water, GSW; Suwannee River fulvic acid; Fluca humic acid; and, Contech humic acid). In a second study, in which the kinetics of phenol photooxidation by 2AN, 3MAP, and BP were followed using transient absorbance spectroscopy, \(E^\circ(\text{CDOM}/\text{CDOM}^-)\) was estimated to be between 1.36 and 1.90 V.\(^{98}\) Parker and Mitch came to a similar conclusion using the sensitized photoproduction of halide radicals from bromide and chloride ions. They found Suwannee River DOM to have halide radical production rates consistent with model ketone sensitizers in the \(E^\circ(\text{CDOM}/\text{CDOM}^-)\) range of 1.6 to 1.8 V.

Connecting excited state reduction potential to electron transfer kinetics

To assess whether or not CDOM will oxidize a substrate molecule at an appreciable rate, the standard molar Gibbs free energy of phenols were almost equal. To compare selectivities, the slopes of log \(k_{rel}\) (DOM isolate or sensitizer) vs. log \(k_{rel}\) (GSW) plots were used. For all of the isolates as well as 3MAP \(E^\circ(\text{GSW}/\text{water}) = 1.64\) V SHE compared to GSW, the slope was approximately 1, indicating equal selectivity. However, with BP \(E^\circ(\text{GSW}/\text{water}) = 1.69\) V SHE, the slope was lower than 1, indicating lower selectivity than CDOM, and with 2AN \(E^\circ(\text{GSW}/\text{water}) = 1.10\) V SHE, the slope was higher than 1, indicating higher selectivity than CDOM. Insofar as the kinetics of the phenol oxidation reaction are controlled by the \(E^\circ(\text{GSW}/\text{water})\) value of the oxidant (see following section), this argues that the reduction potentials for the CDOM systems are centered near 1.64 V.\(^{79}\) In the kinetic studies, in which the kinetics of phenol photooxidation by 2AN, 3MAP, and BP were followed using transient absorbance spectroscopy, \(E^\circ(\text{CDOM}/\text{CDOM}^-)\) was estimated to be between 1.36 and 1.90 V.\(^{98}\) Parker and Mitch came to a similar conclusion using the sensitized photoproduction of halide radicals from bromide and chloride ions. They found Suwannee River DOM to have halide radical production rates consistent with model ketone sensitizers in the \(E^\circ(\text{CDOM}/\text{CDOM}^-)\) range of 1.6 to 1.8 V.
energy change for the electron transfer reaction (ΔG^0_{et}) can be taken as a proxy. As a rough estimate, the reaction will be relevant when $\Delta G^0_{et} \leq 0$. However, a detailed quantitative assessment of reaction rates requires kinetic considerations. Although kinetics and thermodynamics are not a priori connected, there are established approaches to correlate the rate of a reaction with the Gibbs free energy change of the reaction. For reactions involving the transfer of an electron from a donor (e.g., a contaminant) to an acceptor (specifically 3CDOM*) second-order rate constants, k_{et}, depend on ΔG^0_{et} following characteristic relationships that were developed in the frame of theoretical models. Electron transfer theories, originally developed for unimolecular reactions, are applied to bimolecular reactions by assuming the formation of an encounter complex of the electron donor and acceptor, called a precursor complex, which is in equilibrium with the reactants and for which a steady-state assumption can be made.105 We consider here the Rehm–Weller relationship (eqn (6))105,106 which was found to be successful in explaining fluorescence quenching data:

$$
 k_{et} = \frac{k_d}{1 + \frac{k_d}{k_d Z} \left(\exp(x) + \frac{\exp \left(\frac{\Delta G^0_{et}}{RT} \right)}{\exp \left(\frac{\Delta G^0_{et}}{RT} \right)} \right)}
$$

$$
 x = \frac{\left(\frac{\Delta G^0_{et}}{2} \right)^2 + \left(\frac{\Delta G^0_{et}}{4} \right)^2 + \frac{\Delta G^0_{et}}{2}}{RT}
$$

where k_d is the diffusion-controlled second-order rate constant for the formation of the precursor complex, k_d is the corresponding equilibrium constant, Z is the universal collision frequency factor according to transition-state theory (often taken to be $6 \times 10^{11} \text{ s}^{-1}$ for solution reactions106), and λ is the reorganization energy. The latter may be interpreted as the Gibbs free energy, related to bond and solvent reorganization, needed by the precursor complex to reach the equilibrium configuration of the successor complex. For organic redox reactions λ can vary over a broad range (20 to several hundreds of kJ mol-1).105 The reader should be aware that analogous relationships derived from Marcus’ theory of electron transfer,105 or Sandros–Boltzmann type relationships105,109 could also be used.

Both ΔG^0_{et} and λ determine the activation energy of the electron transfer process. A basic qualitative feature of eqn (6) (see the thin lines in Fig. 7) is that for highly exergonic electron transfer reactions, k_{et} approaches the diffusion-controlled rate constant k_d. For highly endergonic reactions, the denominator of eqn (6) simplifies and $\log k_{et}$ decreases linearly with increasing ΔG^0_{et}, with a slope of $-(2.3 \times RT)^{-1}$ (corresponding to $-(5.7 \text{ kJ mol}^{-1})^{-1}$ or $-(0.059 \text{ eV})^{-1}$ at $25 ^\circ \text{C}$). The Rehm–Weller, Marcus or Sandros–Boltzmann equations were found to adequately fit sets of second-order rate constants obtained in aqueous solution for the quenching of the excited triplet state of individual acceptor photosensitizers using series of electron donor quenchers.105,106 Moreover, in the case of electron-rich phenols as the electron donor quenchers, such triplet quenching rate constants106 were almost equal to the second-order rate constants measured for phototransformation.79 Thus, provided that each quenching event leads to transformation of the quencher, Rehm–Weller relationships of the type of eqn (6) could be used to predict the photooxidation rate constants of any organic contaminant in the aquatic environment.

The estimates for $E^*_{et}(3S^*/S^-)$ of 3CDOM* that have been made so far79,106 suffer from the simplification that 3CDOM* is assigned a single “average” value of $E^*_{et}(3S^*/S^-)$, that is determined by comparison with the $E^*_{et}(3S^*/S^-)$ values of the model photosensitizers. Actually, a whole distribution of reduction potentials should be considered to account for the great variety of chromophores present in the CDOM. Let us assume that an ensemble of triplet excited chromophoric units of the CDOM, defined here as 3CDOM* ($i = 1, \ldots, N$), contributes to the photosensitized oxidation of a target compound (TC). The pseudo-first-order rate constant for this reaction, k^{sen}_{TC}, can then be expressed as:

$$
 k^{\text{sen}}_{TC} = \sum_{i=1}^{N} k_{et} \left(TC \rightarrow 3\text{CDOM}^* \right) \times 3\text{CDOM}^*_{ss} \tag{7}
$$

where 3CDOM^*_{ss} is the steady-state concentration of each individual chromophoric unit of the CDOM. For the target compound, k_{et} varies with ΔG^0_{et}, according to eqn (6), which is related to the difference between $E^*_{et}(3\text{CDOM}^*/3\text{CDOM}^-)$ (variable) and $E^*_{et}(TC+/TC)$ (fixed). To highlight this dependence, eqn (7) may be rewritten as eqn (8):

$$
 k^{\text{sen}}_{TC} = \sum_{i=1}^{N} k_{et} \left(E^*\left(3\text{CDOM}^*/3\text{CDOM}^-\right) - E^*\left(TC^+/TC \right) \right) \times 3\text{CDOM}^*_{ss} \tag{8}
$$

Fig. 7 Rehm–Weller plots (gray thin curves) for a set of five functions having the same parameters (eqn (6)) $k_d = 6.2 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, $k_d/(k_d Z) = 0.1$, $\lambda = 65 \text{ kJ mol}^{-1}$; values from a typical fit in ref. 106 were used) and an offset of 0, 5, 10, 15 and 20 kJ mol-1(from left to right) for ΔG^0_{et}. The arithmetic average of these curves is shown as a thick blue line, showing that a hypothetical equimolar mixture of five sensitizers would be expected to show a smoother transition from the diffusion-controlled plateau to the log-linear kinetic regime.
Unfortunately the distributions of one-electron reduction potentials in excited triplet CDOM are not known, and one has to rely on model calculations to predict the impact of such distributions on k_{rad}. Let us assume that k_{rad} for the electron transfer reaction between TC and \cdotCDOM* can be expressed by eqn (6) using constant values for k_d and λ. In Fig. 7, Rehm–Weller plots are shown for five hypothetical \cdotCDOM*; having $F \times E^*($CDOM*) being 10^{-5} to 5 kJ mol$^{-1}$ ($\Delta E^* = 52$ mV). Assuming equal $[\cdot$CDOM*]$_\infty$ for all chromophoric units, one can use the average of these five curves to represent k_{rad} for this group of five chromophores. The resulting curve (in the logarithmetic representation, see thick line in Fig. 7) has a similar shape but a smoother transition between the diffusion-controlled plateau and the steep linear decrease compared to the single Rehm–Weller curves. We therefore refer to this as a pseudo-Rehm–Weller curve. With these considerations in mind, one can conclude that the determination of $E^*($S*/S$^-)$ for CDOM will remain fuzzy.

A possible approach to empirically determine the shape of the pseudo-Rehm–Weller curve for \cdotCDOM* consists of using a suite of probe compounds (PCs) with different (and exactly known) oxidation potentials and unit product yield for excited triplet state quenching, as recently proposed elsewhere. Thereby, it is suitable to define an “effective” concentration of \cdotCDOM* capable of oxidizing a given PC by dividing an experimentally determined k_{rad} through the best guess for the maximum second-order rate constant for the electron-transfer reaction from the PC to \cdotCDOM* (e.g., $= 3 \times 10^8$ M$^{-1}$ s$^{-1}$, but an optimized value might be obtained from a consistent set of quenching data for model photosensitizers in aqueous solution). The “effective” concentration of \cdotCDOM* obviously decreases with increasing PC oxidation potential. In such a way, a function of [CDOM*] vs. oxidation potential of PC can be constructed and used for the prediction of the “effective” concentration of \cdotCDOM*, and consequently of a pseudo-first-order transformation rate constant, for the transformation of any TC by \cdotCDOM* (provided that the one-electron oxidation potential of the TC is known).

After the kinetic considerations made in this section, one might ask why a corresponding analysis is not available for triplet energy transfer rate constants. Indeed, energy transfer kinetics can be treated in the frame of analogous models, which lead to equations of the same or similar form as those derived for electron-transfer processes. Thereby, the difference in triplet energy between donor and acceptor assumes the same role as $\Delta_0G^0_\text{e}$ in electron transfer processes. To our knowledge, there has been no application of these concepts to the photochemistry of CDOM to date, but this approach appears to be promising.

Comparison to well-defined triplet oxidants

Another way to look at the question of the triplet state one-electron reduction potential of CDOM is to consider known values from well-defined compounds. Table 1 gives $E^*($S*/S$^-)$ values for a series of compounds that have structures that could plausibly be similar to constituents of CDOM. These $E^*($S*/S$^-)$ values come from the compounds triplet energies (E_T) and ground state reduction potentials ($E^*($S*/S$^-)$) (eqn (5)), which are also listed in Table 1. These data are visualized in Fig. 8, with a plot of E_T vs. $E^*($S*/S$^-)$.

A word of caution about excited state redox potentials is in order. There are several difficulties associated with obtaining accurate (ground state) aqueous one-electron reduction potentials for the various compounds listed, which lead directly to difficulties in calculating accurate excited state reduction potentials. First, most of the compounds (excluding the quinones) are poorly behaved electrochemically, displaying irreversible redox couples, which necessitates some estimation of the triple reduction potential. Second, the observed couples are also often not associated with pure one-electron transfers, but rather have an associated protonation process. For predicting the kinetics of electron transfer, the potential associated with just the one-electron process is needed. Third, the compounds are often poorly soluble, leading to the use of cosolvents or non-aqueous conditions, which can drastically alter the potentials. In compiling the data for Table 1, every effort was made to find values in water or water–alcohol mixtures. In the case of the polycyclic aromatic hydrocarbons, one value was only found in DMF and the others were from experiments in 75 : 25 dioxane : water mixtures. Additionally, for reduction potentials of the ketones and other carbonyl-containing compounds, values from the highest pH conditions were taken to get as close to the pure one-electron potential as possible. The values collected here differ somewhat from other compilations, for example the excellent compilation of Loef, et al. All of this is to say that, while we believe the values in Table 1 are the best available, they should be used with some caution.

Caveats aside, it can be seen that this relatively small selection of compounds covers a wide range of $E^*($S*/S$^-)$, from 0.15 V for anthracene to 2.42 V for benzoquinone, suggesting that triplet CDOM oxidants will be found across the entire range of possible potentials in aqueous solution.

There are some other notable observations that can be made by examining this collection of representative triplets. One is that the $E^*($S*/S$^-)$ values of different functional group classes are somewhat distinct, with polycyclic aromatic hydrocarbons having the lowest reduction potentials (i.e., relatively weak oxidants, $E^*($S*/S$^-)$ ≈ 0.69 V) of this set and quinones having the highest (i.e., strong oxidants, $E^*($S*/S$^-)$ ≈ 2.19 V). Indeed, excited state triplet quinones are such strong oxidants that they are above the one-electron reduction potential for water at pH 7 ($E^0($OH$^-$/OH$^-$) = 2.18 V), which is actually the oxidation of hydroxide ion ($E^0($OH$^-$/OH$^-$) = 1.77 V) corrected for its activity at pH 7. Incidentally, the one-electron oxidation of water itself requires a much higher potential of $E^0($H$_2$O$^-$/H$_2$O) = 2.65 V. This makes quinones one of the prime suspects in the CDOM-sensitized formation of hydroxyl radical or lower-energy hydroxyl radical-like species. Whether or not quinones actually oxidize hydroxide ion (or water) to produce hydroxyl radical has been a controversial topic. To give just two concrete examples, both methylbenzoquinone and...
AQ2S give positive results when challenged with hydroxyl radical probes, but deeper investigations suggest very little if any free hydroxyl radical involvement in these processes.

Carbonyl-containing compounds fill the middle of the series with potentials ranging from 1.10 V (13, 2AN) to 1.96 V (14, xanthone). Among the carbonyl-containing compounds, aromatic ketones and aldehydes in particular, represented by compounds 5–13 in Table 1 and Fig. 8, have been considered an especially important sensitizer type in CDOM.

Further support for the importance of ketone- and aldehyde-containing sensitizers in CDOM comes from experiments in which the CDOM-sensitized photooxidation rates of trimethylphenol (TMP, a probe molecule for triplet oxidants) were significantly reduced following removal of the ketone and aldehyde functional groups by treatment of the CDOM samples with sodium borohydride. Similarly, Sharpless showed that borohydride-treated DOM formed O$_2$ at lower rates than (but with the same quantum efficiency as) untreated DOM. In most cases, treatment with borohydride led to incomplete loss of photosensitization ability, suggesting that non-ketone and -aldehyde photosensitizers are also involved.

Quinones, which are reduced by borohydride but quickly revert under aerated conditions, are candidates for this other pool of photosensitizers. Flavones, which are not easily reduced by borohydride and have similar triplet state properties to aromatic ketones (Table 1 and Fig. 8), are also possible candidates.

A second observation concerns a potential noted in Fig. 8 as a vertical line at 1.22 V. The line corresponds to the one-electron oxidation potential for TMP, E^\prime(ArOH$^+$/ArOH), which is a popular probe molecule for CDOM*. One-electron transfer reactions between TMP and any of the triplets to the right of this line are exergonic. This does not necessarily forbid reactions between TMP and the triplets with E^\prime(ArOH$^+$/ArOH) < 1.22 V, but rather means that strict one-electron transfer oxidations of TMP by these sensitizers will be thermodynamically unfavorable. The way around this problem for weaker oxidants is to oxidize TMP via hydrogen atom transfer or some other proton-coupled electron transfer (PCET) reaction that yields a phenoxy radical directly. For example, 2AN (0.1) oxidizes TMP and one strong piece of evidence favoring PCET as the oxidation mechanism comes from the isotope effect on this reaction. Photooxidation of TMP by 2AN in D$_2$O was 3.4 times slower than in H$_2$O, which can be interpreted as a result of the phenolic O–H/D bond being broken in the rate-determining step. When Suwannee River fulvic acid or Fluka humic acid was used as the sensitizer for TMP photooxidation, isotope effects of only $k_D/k_H = 1.1 \pm 0.1$ and 1.2 ± 0.1, respectively, were observed. This suggests that the majority of the oxidants responsible for the oxidation of TMP in these two DOM isolates did not undergo PCET, and the most obvious reason is that their E^\prime(ArOH$^+$/ArOH) values were significantly greater than 1.22 V.

Another observation is that triplet quenchers based on energy transfer, such as isoprene, HDA, and other dienes, are only able to capture a subset of the total triplet pool. One might be tempted to conclude from eqn (5) that using a diene quencher would lead to preferential quenching of the highly oxidizing triplets, but even with the small set of triplet states shown in Fig. 8, it is clear that some highly oxidizing triplets could be missed. For example, low-energy triplet species that are strong oxidants include benzil (5), diacetyl (8), and 9-...
fluorenone (12). On the other hand, the data in Fig. 8 suggest that energy transfer quenching by O$_2$ is thermodynamically feasible for essentially all triplet states. If this is true, a potentially surprising finding was that high concentrations of TMP were shown to inhibit the production of 1O$_2$ completely, indicating that nearly all of the 1O$_2$-sensitizing triplets in 3CDOM* (Elliot Soil humic and fulvic acid, in this case) have a sufficiently high E^*(S^*/S^-) to oxidize TMP.*

A final set of observations regards the sensitizers that are commonly used in laboratory studies. Perinaphthenone (PN), rose bengal (RB), and methylene blue (MB) are widely employed for generating 1O$_2$, but all three have also been found to be triplet oxidants, with E^*(S^*/S^-) ranging from 1.03 to 1.50 V (Table 1). Flavin-type photosensitizers, such as riboflavin (E^*(S^*/S^-) = 1.88 V) and lumichrome (E^*(S^*/S^-) = 1.91 V), are even stronger triplet oxidants, with potentials near the most oxidizing triplet ketone sensitizers. Near the far end of the spectrum is AQ2S, a powerful triplet oxidant (E^*(S^*/S^-) = 2.28 V), which has been reported to give very low yields of either 1O$_2$ or hydroxyl radical.125 Thus AQ2S might model some of the most oxidizing triplet states found in 3CDOM*, but is a considerably stronger oxidant than the average 3CDOM* species.

It would be remiss not to mention that there is often a discussion in the chemistry of triplet excited states of whether the triplet is an nπ* triplet (strong sensitizer) or ππ* triplet (weak sensitizer).114,115 The difference has to do with the electronic configuration of the triplet, in which the lower energy SOMO has more non-bonding (n) or π-bonding (π) character. For example, many triplet aromatic ketones are classified as nπ*, while triplet PAHs are ππ*. We have not included discussion of nπ* and ππ* classifications in this review for a few reasons. First, and foremost, we are mostly concerned with 3CDOM* and, while there seems to be some hope in the near term of determining the average and spread of excited state energies (E_T) and excited state reduction potentials (E^*), assessing the distribution of nπ* and ππ* triplets in 3CDOM* is beyond the currently visible horizon. Second, assigning a triplet as nπ* or ππ* is not trivial, as the SOMO in question may have mixed character. For example, duroquinone has been taken as a prototypical nπ* triplet and ππ* triplet in different studies.114,115 Finally, while some have found the nπ$^*/ππ^*$ framework useful for interpreting reactivity, other models have also been used. For instance, the variation in 1O$_2$ yields from O$_2$ quenching of triplet states has not only been interpreted using the nπ$^*/ππ^*$ concept (where ππ* triplet states give higher 1O$_2$ yields),122 but also in terms of E_T and excited state oxidation potential (E^*(S^*/S^-)) [where low E_T and low E^* triplet states give higher 1O$_2$ yields], without considering the electronic configuration.113,14,115

Outlook

Despite the importance of 3CDOM* in the transformation of organic molecules, its study has lagged behind other important PPRI, especially 1O$_2$, OH, H$_2$O$_2$, and O$_2$•-. This is clearly because 3CDOM* is a complex mixture, and its complexity confounds both direct (i.e., spectroscopic) and indirect (i.e., molecular probe methods) methods to observe and/or quantify these states. While this certainly provides a challenge, the situation is far from hopeless. Some strategies for attaining a clearer picture of 3CDOM* are outlined below along with some of the most pressing research problems.

A critical strategy for studying a complex mixture like 3CDOM* is to use methods that integrate the disparate signals arising from the mixture’s components and give a single signal that is more easily detected. The best and most accessible example is the use of 1O$_2$ as a proxy for 3CDOM*. As mentioned above, quenching of triplet states by O$_2$ to yield 1O$_2$ is not quantitative, but it is the best universal triplet detection method of any available. Singlet oxygen formation quantum yields provide solid lower bounds for 3CDOM* formation quantum yields. Additionally, the steady-state concentrations of 1O$_2$ and 3CDOM* must be within a factor of two of each other (when 0.25 < $f_{\Delta S} < 1$; see eqn [4]).

While O$_2$ quenching of 3CDOM* gives a picture of essentially all of the component triplets, using energy transfer quenchers of different energies is a clear way to probe the distribution of triplet energies in 3CDOM*. For example, HDA (sorbic acid), being a diene, is an excellent probe for quantifying the high energy triplet states capable of transferring energy to diene-containing contaminants such as domoic acid.44 At the moment, there is a large gap between the energy of 1O$_2$ (94 kJ mol$^{-1}$) and the diene quenchers that have been employed ($E_T \approx 250$ kJ mol$^{-1}$; see Fig. 2), giving us only a rudimentary idea of the distribution (e.g., Fig. 3). While triplet energy acceptors with intermediate energies are certainly known, such as 1,3-cyclohexadiene ($E_T = 221$ kJ mol$^{-1}$), anthracene (178 kJ mol$^{-1}$), ferrocene (167 kJ mol$^{-1}$), azulene (163 kJ mol$^{-1}$), and tetracene (123 kJ mol$^{-1}$), they pose technical challenges including long wavelength absorbance, poor aqueous solubility, and/or susceptibility to photooxidation. All of these challenges can and will eventually be overcome.

The use of HDA isomerization and TMP oxidation as probe reactions for 3CDOM* is gaining in popularity. The fact that these methods are based on different mechanisms (energy transfer and oxidation, respectively) is not widely discussed in the aquatic photochemistry literature. This is potentially problematic as energy transfer- and oxidation-based probe methods are reporting on different, but overlapping, subpopulations of 3CDOM*. This will hopefully change in the future as a more nuanced and detailed view of 3CDOM* is brought into focus by further research. This also brings up the larger issue of the correct use of probe molecules and quenchers in photochemical studies. As essentially all probe molecules react by different pathways (e.g., with triplet states and with 1O$_2$), care must be taken in both conducting the proper control experiments and in interpreting the outcome. We refer the interested reader to a recent review on the use of molecular probes for studying PPRI.111

Finally, the composition of 3CDOM* is clearly different for different sources of organic matter. In particular, there has been growing evidence of significant variability in the nature of 3CDOM in DOM of terrestrial origin (e.g., surface waters with input from soil organic matter) and of microbial origin (e.g.,
surface waters dominated by algal DOM or wastewater effluent DOM.124 The photochemistry of sulfa drugs serves to illustrate the point. Sulfa drugs are widespread contaminants in wastewater-impacted surface waters that have been the subject of several recent studies seeking to understand their photo-transformation.45,46,73,74,135,136 In three separate studies, with three different sulfa drugs, significantly better photosensitization by autochthonous (algal) than allochthonous (terrestrial) CDOM has been observed. Chin observed that sulfadimethoxine undergoes enhanced degradation when sensitized by Pony Lake (Antarctica) fulvic acid (PLFA, a standard for microbially derived organic matter) and eutrophic lake water, but not terrestrial isolates (e.g., Suwannee River fulvic acid, SRFA).73,135 Arnold found that sulfamethoxazole degraded much more rapidly in the presence of effluent organic matter than with CDOM from other sources.45 Canonica found that sulfadiazine undergoes more rapid degradation when sensitized by PLFA than SRFA.74 In each case, convincing evidence that \(^3\)CDOM was responsible for the indirect transformation was obtained.

Why do autochthonous-dominated DOM samples (e.g., PLFA) seem to show increased reactivity compared to SRFA and other terrestrially derived organic matter samples? One possibility is that both PLFA and SRFA photooxidize compounds similarly, but SRFA contains many more antioxidants which repair some of the photooxidation damage (intermolecular or intramolecular) and slow down the macroscopic transformation rate. This idea definitely has support from studies showing the antioxidant properties of DOM in photoreactions.66,137,138 Another possibility is that the PLFA-derived \(^3\)CDOM is a stronger oxidant (higher \(E^\ast(\text{S}^\ast/\text{S}^-)\)) than the SRFA-derived \(^3\)CDOM. The only way to answer the question is to determine the fundamental photophysical properties of both terrestrially derived and microbially (algal) derived CDOM.

It is clear that the study of \(^3\)CDOM is both important and difficult. Despite the challenges, a fair amount of information about its reactivity, steady-state concentrations, and physical properties can already be inferred from existing data. Future studies, taking advantage of energy transfer-based probe methods (e.g., \(O_2\) and HDA) and oxidation-based probe methods (e.g., TMP) will only further our understanding of the scope, reactivity, and variability of \(^3\)CDOM. There is an especially important link between \(O_2\) and \(^3\)CDOM* that makes \(O_2\) probe methods (both spectroscopic and reaction-based) particularly useful in this regard. With additional study, a clearer and more detailed picture of the components contributing to \(^3\)CDOM and their reactivity patterns will come into view, which will in turn allow a better understanding of the role of \(^3\)CDOM in the photochemical fate of contaminants and sunlight-driven biogeochemical processes.

Acknowledgements

We thank Caroline Davis, Paul Erickson, Elisabeth Janssen, Douglas Latch, Vivian Lin, Rachele Ossola, Kimberly Parker, Fernando Rosario-Ortiz, and Markus Schmitt for helpful feedback on the manuscript. We gratefully acknowledge funding from the Swiss National Science Foundation (Grant number 200021_156198).

References

13. M. Bodesheim, M. Schütz and R. Schmidt, Triplet state energy dependence of the competitive formation of \(O_2\) \(\cdot\Delta_g\) and \(O_2\) \(\cdot\Delta_e\) in the sensitization of \(O_2\) by triplet states, Chem. Phys. Lett., 1994, 221(1), 7–14.
14. C. Schweitzer, Z. Mehrdad, A. Noll, E.-W. Grabner and R. Schmidt, Mechanism of photosensitized generation of singlet oxygen during oxygen quenching of triplet states...
and the general dependence of the rate constants and efficiencies of \(\text{O}_2 (^1\Sigma_g^+), \text{O}_2 (^3\Delta_g), \) and \(\text{O}_2 (^1\Sigma_g^+) \) formation on sensitizer triplet state energy and oxidation potential, \textit{J. Phys. Chem. A}, 2003, \textbf{107}(13), 2192–2198.

Critical Review

42 D. Ren, B. Huang, T. Bi, D. Xiong and X. Pan, Effects of pH and dissolved oxygen on the photodegradation of 17α-ethynylestradiol in dissolved humic acid solution, Environ. Sci.: Processes Impacts, 2016, 18(1), 78–86.

69 A. C. Gerecke, S. Canonica, S. R. Müller, M. Schärer and R. P. Schwarzenbach, Quantification of dissolved natural organic matter (DOM) mediated phototransformation of

97 D. J. Kieber, G. W. Miller, P. J. Neale and K. Mopper, Wavelength and temperature-dependent apparent

100 Y. Zhang and N. V. Blough, Photoproduction of one-electron reducing intermediates by chromophoric dissolved organic matter (CDOM): relation to O$_2^-$ and H$_2$O$_2$ photoproduction and CDOM photooxidation, Environ. Sci. Technol., DOI: 10.1021/acs.est.6b02919.

