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Knowledge of ionic concentrations in natural waters is essential to understand watershed processes.
Inorganic nitrogen, in the form of nitrate and ammonium ions, is a key nutrient as well as a participant in
redox, acid—base, and photochemical processes of natural waters, leading to spatiotemporal patterns of
ion concentrations at scales as small as meters or hours. Current options for measurement in situ are
costly, relying primarily on instruments adapted from laboratory methods (e.g., colorimetric, UV
absorption); free-standing and inexpensive ISE sensors for NOz~ and NH4* could be attractive
alternatives if interferences from other constituents were overcome. Multi-sensor arrays, coupled with
appropriate non-linear signal processing, offer promise in this capacity but have not yet successfully
achieved signal separation for NOs~ and NH4* in situ at naturally occurring levels in unprocessed water
samples. A novel signal processor, underpinned by an appropriate sensor array, is proposed that
overcomes previous limitations by explicitly integrating basic chemical constraints (e.g., charge balance).
This work further presents a rationalized process for the development of such in situ instrumentation for
NOs~ and NH,4*, including a statistical-modeling strategy for instrument design, training/calibration, and
validation. Statistical analysis reveals that historical concentrations of major ionic constituents in natural
waters across New England strongly covary and are multi-modal. This informs the design of a statistically
appropriate training set, suggesting that the strong covariance of constituents across environmental
samples can be exploited through appropriate signal processing mechanisms to further improve
estimates of minor constituents. Two artificial neural network architectures, one expanded to
incorporate knowledge of basic chemical constraints, were tested to process outputs of a multi-sensor
array, trained using datasets of varying degrees of statistical representativeness to natural water samples.
The accuracy of ANN results improves monotonically with the statistical representativeness of the
training set (error decreases by ~5x), while the expanded neural network architecture contributes
a further factor of 2-3.5 decrease in error when trained with the most representative sample set. Results

using the most statistically accurate set of training samples (which retain environmentally relevant ion
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Accepted 19th April 2016 concentrations but avoid the potential interference of humic acids) demonstrated accurate, unbiased

quantification of nitrate and ammonium at natural environmental levels (+20% down to <10 puM), as well
as the major ions Na*, K*, Ca?*, Mg?*, Cl~, and SO42~, in unprocessed samples. These results show
rsc.li/process-impacts promise for the development of new in situ instrumentation for the support of scientific field work.
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This work presents a rationalized process for in situ instrumentation development with a focus on the measurement of ammonium and nitrate, key players in
important environment-human coupled processes (agricultural runoff and water treatment) as well as participants in redox, acid-base, photochemical, and bio-
logically driven transformation pathways. Built on a statistical-modeling strategy for instrument design, training/calibration, and validation, the process suggests
a novel methodology for overcoming signal interferences. The analysis presented informs our understanding of the (highly covarying) statistical relationship of ions
in fresh waters, while the tested architecture enables in situ measurements in non-processed samples down to micromolar levels, serving to increase spatiotemporal
resolution of natural studies, enable adaptive sampling, and optimize relevancy of the limited number of grab samples included in most campaigns.
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1 Introduction

In natural waters, biological productivity, floral and faunal
composition, and suitability of waters for human use are
profoundly influenced by the concentrations of major ions as
well as ionic forms of key nutrients that occur at lesser
concentrations. Ammonium and nitrate are of particular
interest due to their varied roles, including contributions to
coastal eutrophication' from fluxes attributed to a wide variety
of non-point sources (e.g., fertilizers, wastewater treatment, or
land use change) as well as roles in acid-base, redox, and photo-
chemistry. These species furthermore undergo biologically
driven transformations that alter both the quantity and form of
biologically available nitrogen (i.e., nitrification, denitrification,
uptake, DNRA, and anammox), resulting in water compositions
that provide little insight into original nutrient sources or forms
- knowledge needed for diagnosis or remediation - unless
measurements are obtained at adequate temporal and spatial
frequencies directly within the system of interest. However,
ammonium and nitrate remain particularly difficult to measure
in situ and at the appropriate spatiotemporal scales.

To date, most commercial field instrumentation for
measuring N species has been based on wet chemistry and
spectrophotometric methods (e.g., EnviroTech NAS-3X/EcoLAB,
YSI 9600, Systea NPA/DPA) which require on-board reagents,
pumps, and waste containment and generally have significant
power and maintenance requirements. UV absorption may be
a viable alternative for the measurement of nitrate in marine
environments* but is less applicable in fresh waters where
humic acids can play a major role. Because of their small size
and low power requirements, ion selective electrodes (ISEs) are
attractive alternatives despite challenges such as cross-ion
interferences and limitations in the lowest concentrations for
which linear (Nernstian) responses are achieved. As examples of
the latter, ISE-based instruments recently introduced by YSI
(6820) and Hach (Hydrolab series) for the in situ measurement
of NO;~ and NH;" (typically two- or three-sensor arrays also
including a measurement of chloride and/or electrical
conductivity) have reported uncertainty of the maximum of
+10% or 2 mg N per L.° This implies a best-case scenario
detection limit of >143 pM for both analytes, whereas concen-
trations of tens of uM (or less) are of interest or concern in many
natural waters.®

Commercial ISEs themselves have response limits in this
range (e.g., see Table SI.1t). The challenge, therefore, in
lowering ISE detection limits without sample pre-processing
(i.e., for direct in situ use) is in both (1) utilization of the
response in the non-Nernstian region near the detection limit
and (2) overcoming interferences from other naturally occurring
ions that are often present in natural waters at levels 10-1000
times that of ammonium or nitrate. Multi-sensor arrays,
coupled with non-linear signal processing methods, present
one promising strategy for doing so by simultaneously quanti-
fying both target and interfering species and retrieving decon-
volved data from the set of highly non-linear sensor responses.
Such multi-ISE instruments, initially conceived for ion
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measurements in biological liquids,” have been tested for
analysis of heavy metals,**® inorganic pollutants,'®** and small
sets of inorganic ions'>* in a range of environmental contexts
(e.g., simulated polluted groundwaters). Conventional non-
linear signal processing methods, e.g., partial least squares
regression, artificial neural networks (ANNs), and more recently
Bayesian (blind) source separation,*** have been successfully
used to reconstruct concentrations of interest from the suite of
interference-laden sensor signals. Although nitrate and
ammonium ions have been targeted in specific applications
where concentrations are expected to be much higher than
natural levels (e.g., fertigation,**'” eutrophied surface waters®),
measurements at lower concentrations inevitably show
systematic bias from total salinity,’® leading researchers to
suggest the use of a more comprehensive set of ISEs.

Further, in previous work, representativeness (i.e., compo-
sition similarity to waters targeted for study) of samples used to
calibrate (or “train”, in the case of ANNs) signal processing
algorithms has been identified as a primary driving force of
system quality.’® In general, ANN calibration has been con-
ducted using individual standards bracketing target concen-
trations or synthetic samples with a fixed background
(approximating the mean of targeted waters) to which ions of
interest are added at fixed increments. In limited cases, the
background constituents have further been systematically
varied at 2-3 concentrations across target ranges'® or a limited
number of field samples have been incorporated'®'® into the
calibration set. While all of these methods bracket the
concentration ranges of interest, they (1) are unlikely to be
statistically representative of actual environmental waters if all
calibration samples are equally weighted when presented to the
mathematical algorithms and (2) inherently fail to capture
covariance among analytes, which theoretically may be exploi-
ted to improve performance. The use of large training or cali-
bration sets of actual environmental water samples could
mitigate both issues but presents further challenges: (1) the
need for sample processing to avoid sample-changing biolog-
ical activity during transport and storage (which itself alters
samples from in situ conditions), (2) the risk of non-represen-
tativeness if collection of samples is restricted to a small
geographic area or time interval, and (3) the presence of addi-
tional (and possibly interfering) compounds such as DOC or
humic acids which one may wish to avoid in early stages of
development.

This work investigates the hypothesis that the development
of in situ instrumentation to support scientific field studies of
nitrate and ammonium ions (and other ionic species) can be
enabled and expedited by combining (1) an improved under-
standing of the statistical characteristics of the target waters
and (2) a signal processor which is able to take advantage of
information available in (a) statistical relationships among
sample analytes, (b) interference-laden ISE responses, and (c)
an a priori understanding of the chemistry governing all surface
waters. A statistical model of ion concentrations in the target
environment is developed and used to create a synthetic
training set that explicitly honors the covarying statistics of
ionic constituents. To test the proposed hypothesis, a standard
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ANN and an expanded ANN incorporating a priori chemical
knowledge of the system (i.e., charge balance, conductivity)' are
trained using this sample set as measured by a comprehensive
sensor array, as well as two other training sets with decreasing
statistical representativeness. Results are validated by
measuring the accuracy with which ion concentrations are
estimated in independent statistically representative synthetic
environmental samples. Additional tables available as ESI{ are
referenced in the text.

2 Experimental (materials and
methods)
2.1 Sensor hardware

The array of sensors, comprised primarily of ion selective elec-
trodes but also including sensors measuring conductivity,
temperature, and pH (parameters affecting the ISE response
and characterizing system conditions), was selected to ensure
a measurable response (on at least one but often several chan-
nels) to all ions making up the majority of charge balance
(>95%) of natural waters, i.e., Na*, K", CI", Ca*>", Mg**, SO,°~,
NH,', NO;~, and the pH and carbonate systems. Commercial
ISEs (details in Table SI.11) were purchased to measure the
following: Na* (glass), Na* (solid state), K*, CI~, Ca**, hardness
(Mg?* and Ca®"), NH,*, and NO, . Sensors marketed for the
measurement of CO;>~ and SO, were also purchased and
used for data collection in the array; however these data were
ultimately discarded as the relevant sample concentration
ranges were below the response limit of the sensors.

2.2 Non-linear signal processor: artificial neural networks
(ANNs)

While a number of algorithms have demonstrated utility for
processing data from ISE sensor arrays, ANNs were selected for
this work because (1) no assumptions need to be made about
the form of the sensor responses (e.g., semi-empirical/physics-
based descriptions such as the Nikolsky-Eisenman equation)
and (2) the underlying mathematical structure is amenable to
integration of a priori chemical knowledge of the system. A brief
introduction of ANNs is provided here for context, while the
reader is referred to the literature for further details of standard
ANN algorithms*>**** and the strategy developed by the authors
to integrate chemical information into the ANN architecture.*

An ANN is an unconstrained non-linear function estimator
modeled on a (conceptual) understanding of the human neural
structure. The mathematical representation is a topology of
interconnected neurons whose firing triggers (or fails to trigger)
subsequent neurons based on the relative strength of the
interconnections. The number of inputs need not match the
number of outputs, and in fact ANNs are well-suited for solving
over-constrained systems. A prototypical structure is given in
Fig. SI.1f along with additional details of architecture, param-
eterization, and training methodologies. It is important to note
that ANN problems have no closed form solution, i.e., it is not
possible a priori to predict the optimal parameterization or
number of required training samples/iterations. Prior work has,
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however, investigated sensitivity to a choice of parameter values
for chemical applications,*>**?* providing a starting point for
analysis of new problems."?® In spite of this, it is still typically
necessary to explore the permutations of possible ANN param-
eters through trial-and-error to find an optimal system on an
application-by-application basis as system results can be
determined more strongly by parameterization than by training
data.”

As described in ref. 19, the ANN architecture integrating
chemical knowledge takes advantage of the built-in neuron
signal architecture to create output neurons that calculate
conductivity (a property-weighted sum of all ions) and charge
balance (a charge-weighted sum of all ions). Such calculations
are possible because the hardware described above measures
conductivity as well as ions representing >95% of the charge
balance of natural waters. Error in these signals is used in
addition to error in the ion concentrations to drive system
training.

2.3 Multidimensional probability density function for ions
in surface waters

To create a statistically representative training set, it was first
necessary to build a statistical model of the target waters.
Developing this model required data for a large suite of water
samples for which all ion concentrations (as stated above: Na',
K', ClI, Ca®*, Mg*", SO,’”, NH,", NO;~, and the pH and
carbonate systems) were accurately known; it was further
desirable that such data cover a wide range of surface water
characteristics to ensure the applicability of the resulting
instrumentation to varied field conditions. New England was
selected as the study area as (1) numerous historical datasets
are available, e.g., from USGS monitoring efforts, (2) waters were
expected to vary from soft to hard and oligotrophic to eutrophic,
and (3) future in-field validation efforts would be facilitated.

Statistical characterization of New England waters was based
on 50 years of historical data, downloaded from the USGS
database for water quality samples.”® Between 25 000 and
65 000 data points (measurements of a single analyte at a given
site and time) were downloaded for each of the five states (MA,
CT, VT, NH, ME). While such data can be used directly to esti-
mate underlying one-dimensional probability density functions
(PDFs - in this case, scaled histograms) for each analyte, which
are informative in terms of range and frequency of particular
ion concentrations, such PDFs fail to capture key information
about the statistical covariance of environmental analyte
concentrations. Specifically, it can generally be shown that
surface water ion concentrations are not statistically indepen-
dent, i.e., the joint PDF is not simply related to the product of
the individual ion PDFs:*

px,‘xz(xl: x2) + le(xl)sz(xz) (1)

for any two concentrations for the ions studied here, and by
extension for the entire suite:

pxlv--x,‘(xl"'xn)i ﬁpxi(xi) (2)

This journal is © The Royal Society of Chemistry 2016
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To accurately capture the covarying properties of the target ions
in natural water samples, it is therefore necessary to refer
instead to the distribution described by the n-dimensional joint
PDF p,. . (X1...X,).

USGS data were used to create a discrete estimate of this joint
PDF by identifying instances where surface water ions had been
measured simultaneously (identical sample date, time, and site).
The total set of approximately 200 000 available data points
yielded 3218 instances when simultaneous measurements of the
full set of 8 ions were made. The joint PDF was represented as an
8-dimensional matrix (each dimension representing the
concentration of a single analyte) such that each entry in the 8-D
matrix specified a concentration range (dictated by the binning
width) of each of the 8 analytes. Concentration ranges for each
analyte were individually divided into 10 bins equally spaced in
log1o[M] units. The 3218 points identified above were indexed
(the 8-D index corresponding to the bin number on each axis),
the total number of samples indexed to each location counted,
and the final counts divided by the total (3218) to produce an 8-D
surface which encloses a hypervolume of 1.

2.4 Statistically representative training samples

Based on this statistical model, a representative set of training
samples was generated for ANN training. Seventy-five environ-
mentally representative sample compositions were selected
randomly from the 8-D joint PDF using a Monte Carlo meth-
odology for discrete random variables.*® The concentration for
each constituent was selected from a uniform random distri-
bution across the selected bins; however ammonium and
nitrate were specified at ‘low’ (3 uM) and ‘high’ (100 uM) levels
in a subset of samples to support the particular study of
quantification of these analytes.

Synthetic samples were created from sixteen stock aqueous
solutions (NaCl, Na,SO,;, Na,COs;, KCl, KNO;, K,CO3, CaCl,,
Ca(OH),, MgCl,, Mg(NO5),, MgS0O,, MgCO,, NH,Cl, HCl, HNO;,
and H,SO,). All solutions were 100 mM concentration, with the
exception of Ca(OH), and MgCO; which were 20 mM and 1.2
mM, respectively, due to their low solubility. Except for the HC]
standard which was diluted from a 0.1 N aqueous standard, all
standards were created using reagent grade salts, dried overnight
at 55 °C if anhydrous or purchased new for hydrated salts, and
weighed using an Ohaus precision standard TS4KD balance. Salts
were dissolved in Millipore Milli-Q water (18.2 MQ cm ') and
diluted to the appropriate volume (typically 2 L) in a class A
volumetric flask. Glass and plasticware used in this process were
first acid washed for at least 24 hours in 10% HNO; and rinsed 7-
10 times in Milli-Q water. Volumes of liquid stocks required to
match the ion concentrations for the 75 samples were calculated.
Specified volumes were added to Milli-Q water, diluted to 2 L in
a class A volumetric flask, well mixed, and then transferred to 2 L
LDPE bottles (acid cleaned and rinsed using the method speci-
fied above, after which they were capped and stored until use).
Propagated errors due to weighing (+£0.01 g) and dilution (£0.5
mL flask accuracy) bound concentration errors in the final
samples at =+0.8 uM (with the highest relative errors expected

for salts with low molecular weights or ions at low
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concentrations). pH of the resulting samples ranged from 7.1-8.6
when equilibrated with atmospheric CO,. The electrical

conductivity of samples ranged from 29 to 1644 psiemen cm ™"

2.5 Single-salt training samples

For comparison to the proposed statistically representative
training samples outlined above, five sets of single-salt cali-
bration standards were used to characterize the response of
each ISE to each ion in the synthetic samples. Concentrations
from 0.1 uM to 100 mM were used to span ranges identified in
natural waters, with three standards per decade (e.g., 1.0, 2.5,
and 5.0 uM). The salts used were KNO;, Na,SO,;, Mg(NO3),,
NH,C], and CaCl,, and the same procedure was followed for
standard creation and storage as described above.

2.6 Electrode selection and characterization

To evaluate ISE selections, the response of each ISE was
measured independently for each of the ions considered in this
experiment using the five sets of single-salt standards described
above. Calibration curves were created for each ISE relative to its
primary ion (or secondary ion, in cases such as Mg>* where no
ISE was available for a given ion) to provide a baseline method
for sensor signal interpretation and quantification of inter-
fering analyte contribution to signals in complex solutions. The
linear response region was identified by maximizing R* of the
linear fit for a variable number of calibration points, which
provided an objective measure of where the ‘knee’ started.
Sensors maintain a measurable response above the baseline
well into the ~pM range, making these sensors theoretically
usable at environmental levels (see Table SI.2t).

2.7 Creation of training datasets using training samples

The sensor response to training samples was measured as
previously described® and is briefly summarized here. Elec-
trodes were pre-conditioned following the manufacturers’
recommendations (typically 10 minutes to 1 hour) once at the
start of each sampling session. Electrode outputs were indi-
vidually amplified using custom differential amplifiers based
on the LMC6001 ultra-low input current op-amp (input resis-
tance > 1 tera-ohm); op-amp outputs were connected directly to
the giga-ohm input impedance analog inputs of the National
Instruments 6218 data acquisition board (16 bit ADC, 250k
samples per second). Custom LabView software recorded ISE
potentials at approximately 1 Hz, with steady state potential
identified following most recent IUPAC recommendations,*
i.e., with ‘steady state’ determined when the absolute value of
the time derivative of the emf remains below a specified limit
for a specified duration of time. The relevant values used were
0.4 mV min~' and 40 s, as determined to be optimal in
a previous study by these authors.** Response time of electrodes
was 1-5.5 min depending on analyte concentration.

Seven replicates of each sample were measured, with
measurements being made in a pseudo-random order relative
to constituent concentrations for environmentally representa-
tive samples or with increasing concentration for single-salt
standards. After ISE data were logged, electrical conductivity
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(EC) (Amber Science Model 604) and temperature of each
sample/replicate were measured. These measurements were not
taken simultaneously with the ISE measurements to avoid
interference to ISE signals by currents induced in the water
during EC measurements. Electrical conductivity measure-
ments were corrected for temperature following the literature.*
The EC meter and pH ISE were calibrated daily with commercial
calibration standards (0.73-10 000 psiemen cm ™' at 25 °C; pH
4, 7, 10). Calibration at the end of the sampling period
(approximately two weeks) was not statistically different
compared to the initial calibration, i.e., the slope and intercept
were within the confidence interval of the initial linear cali-
brations (drift was negligible).

2.8 ANN software calibration and optimization

Development and optimization of the novel extended artificial
neural network (ANN) architecture used for this work is
described in detail in previous publications.'>** Briefly, ion
concentrations in training samples and corresponding hard-
ware responses were used to train a wide range of potential
ANNSs from which the optimum was ultimately selected for each
combination of training set and architecture constraints.
Sensor outputs (11 ISE mV outputs, one EC value, and
temperature) served as the input data, while the known ionic
concentrations, the quantities of interest for this analysis, in
each of the samples served as the targets. Absolute concentra-
tions [mol L™'] were used as targets rather than the corre-
sponding log;, data (use of log-transformed data was
investigated as a technique often useful when concentration
ranges span several orders of magnitude) as this was shown to
decrease error by =50% for this application. Chemical
constraints based on charge balance and electrical conductivity
were implemented following previous work."

To test the hypothesis that the statistical representativeness of
training samples affects the achievable quality of software opti-
mization, ANNs were trained with several types of training data-
sets measured simultaneously by the full sensor array: (1) single-
salt standards spanning the relevant concentration space
(termed ‘SS’), (2) statistically representative synthetic environ-
mental samples (termed ‘SR’), and (3) a dataset comprised of
both (1) and (2) (termed ‘SS + SR’), with the degree of statistical
representativeness increasing from SS to SS + SR to SR. To test the
effect of integrating chemical understanding into the ANN
architecture, ANNs were trained with this capability alternatively
included and excluded, the latter being standard practice for
ANN techniques and therefore serving as a baseline reference. In
each case, the optimal ANN was selected by minimization of
NRMSE on the 8 ion channels, with a 10 : 1 weighting on the
nitrate and ammonium channels used to co-optimize results for
ion concentrations ranging across several orders of magnitude.

3 Results

3.1 Statistical character of New England waters

Water quality data tend to be managed by individual states,
making it convenient to compare one-dimensional PDFs for
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several key ions by state (MA, CT, VT, NH, ME) - see Fig. 1. Note
that binning was conducted by dividing the observed ranges
into 10 equal-width bins in log;o[M] units to create these dis-
cretized approximations of the true underlying PDFs. The
accuracy and resolution of such estimated distributions are
dependent on the sample size; in this study, the number of
available samples was relatively large (300 < n < 3800 for each
state/ion combination), allowing adequate resolution of ion
PDFs at the 10-bin level.

Examination of calcium concentration, as well as the Ca
Na' ratio, shows that waters in these five states range from hard
to soft: Vermont waters had significantly higher calcium
concentrations and relatively lower sodium concentrations than
other states (a fact also reflected in pH), while waters from
Connecticut are more frequently soft. Waters from New
Hampshire show a strongly bimodal distribution for calcium
content. For all states considered, mean values of nitrate and
ammonium concentrations are approximately 10 pM, and
distributions show the majority of samples within the 0.1-10
UM range, corroborating prior literature stating that concen-
trations of tens of pM are of interest for natural systems. The
nitrate and ammonium distributions also vary by state,
presumably reflecting both ecological and land use conditions.
Electrical conductivity is constrained to a range from 10-3000
psiemen cm ™. Overall single-ion PDFs tend to be skewed and/

2+/

Probability Density Functions for Surface Water Parameters in New England
25 0.

—e-CT
——ME
——MA
~e—NH

—-CT
——ME
——MA
—e—-NH

< VT ® VT

J conductivity f

15 25 3
logm(ﬁ,smmens/cmn

35

Fig.1 One-dimensional probability density functions for representa-
tive environmental ions and parameters, created using archived USGS
data?® for the five states listed. Density values are plotted at bin mid-
points. Substantial variability across the geography of New England
motivates the necessity of creating a training set which encompasses
data from all states.
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or multi-modal; ranges and averages calculated from the data
for these and other key ionic constituents (combined for all five
states) are given in Table 1 where, for reference, published and
measured response ranges for commercial solid state ISEs are
also provided.

3.2 Statistical relationship of ion concentrations

The extent to which analyte concentrations covary was investi-
gated through an analysis of the shape/distribution of the 8-D
joint PDF, i.e., the 8-dimensional version of a histogram (such
as those given in Fig. 1) wherein the number of counts falling
into any particular bin represents the proportional likelihood of
sample concentrations falling within the corresponding
concentration ranges. In the 8-D joint PDF, only 152 (of 10%)
bins had counts = 5 and a full 80% of sample density was
represented by only 401 bins (~0.0004% of the total 8-D
hypervolume), whereas 80% of the density of an 8-D multivar-
iate normal distribution would be concentrated in approxi-
mately 8% of the hypervolume. The data thus indicate that there
is a high degree of covariance in the environmental joint PDF.
To partially visualize this phenomenon, a subset of 2-D joint
PDFs are presented in Fig. 2.

The top two panels of Fig. 2 show combined effects of
weathering, runoff (e.g., including road salts), and groundwater/
precipitation mixing, resulting in an overall ‘more is more’
trend in the data, ie., a distribution that is strongly skewed
along the positive slope (non-Gaussian in nature). In such cases,
the conditional PDF, here py-na(K'|Na"), is a strong function of
sodium concentration. The mid-level panels show the joint
distributions of nitrate with chloride and calcium, while the
lower panels show joint distributions of ammonium with
sodium and nitrate, to demonstrate that these relationships
hold even for nutrients which would not be expected to be
jointly produced via weathering or necessarily be present in
a predictable ratio with the other water constituents.

Overall it is clear that, in addition to the single-ion PDFs
being skewed or multi-modal, the multidimensional joint PDFs
are neither uniform nor well represented by a multivariate
normal distribution. This high degree of correlation in envi-
ronmental ion concentrations supports the hypothesis that

Table1 Approximate concentration ranges for ions of interest in New
England waters surveyed by the USGS over the past 50 years
(log1p[MI]).2® The commercial solid state ISE manufacturer-published
‘range limit" and measured LOD are provided for comparison where
available (from Tables SI.1 and SI.2)

Analyte  Min. Mean Max. Range (manuf) LOD (meas.)
NO;~ —6.8 —5.1 -3.7 —5.3 —5.5

NH," —-6.8 —5.0 —-32 =57 <—6.0

Na* —-4.8 2.7 —-1.2 =57 —6.3

ca*t —4.8 -3.5 —2.2 —6.3 —5.9

K —-5.8 —43 —-3.2 =50 <—6.6

cl™ —5.7 —2.8 —-1.3  —4.5 —5.5

Mg>* -57 -39 -1.3 N/A N/A

S0, -53 —3.8 -13 N/A N/A
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Fig.2 Two-dimensional joint probability density functions for various
ionic constituents of natural waters, created using archived USGS data
for the five states listed. Density values are plotted at bin mid-points.
Distributions demonstrate an overall tendency for ion concentrations
to be positively correlated, however scatter around this line is typically
up to two orders of magnitude in width producing substantively
irreqular distributions.

constant background samples with varying additions of ions of
interest are unlikely to statistically honor the actual ion distri-
butions seen in target waters. It also supports our hypothesis
that a signal processing method can take advantage of the
additional information available in these statistical relation-
ships (e.g., artificial neural networks, which integrate such
information during the training process). Finally, PDFs contain
information that may be useful in the formulation of hypoth-
eses regarding control of regional water chemistry.

3.3 Integration of statistical knowledge to improve in situ
ISE use

Benefits of integration of this statistical understanding of the
target waters into the design of in situ instrumentation were
evaluated by training two types of ANNs (standard and extended
with chemical knowledge) each with three different sets of
training data having varying degrees of statistical representa-
tiveness of natural surface waters (SS, SS + SR, SR), as described
earlier. A standard ANN architecture trained with single-salt
standards bracketing concentrations of interest for each analyte
is taken as the base case for the measurement of relative
improvement as the proposed strategies are progressively
added. Note that ANN architectures are generally expected to
improve in predictive capability as the number of training
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samples is increased, and therefore, the SS + SR and SR cases
represent a measure of the advantages of ‘quantity’ versus
‘quality’. While the instrumentation quantifies all 8 target
ions™** (the two nutrient species of interest and 6 other ions
identified as important due to direct cross-reactivity with NH,"
or NO;~ ISEs), the discussion presented here will focus
primarily on results for the nitrogen species as these are of
particular environmental interest.

Fig. 3 demonstrates the extent to which interference is
experienced by the nitrate and ammonium ISEs with no signal
post-processing. It is clear that the use of a linear calibration
alone will fail to usefully determine actual ionic distribution in
the samples; errors in both nitrogen species as estimated using
these curves (representing the naive use of these ISEs as stand-
alone sensors as one would a pH sensor) further illustrate the
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Fig. 3 Mean response of N-specific ISEs as a function of primary
analyte concentration for environmentally statistically representative
synthetic training samples. The theoretical Nernstian slope (approxi-
mately 59 mV per decade) is shown for visual reference. The vertical
spread around what would be expected to be a linear calibration can
be interpreted as interference leading to approximately a factor of 10
error in prediction of these species at typical environmental levels
(=10 pM).
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Fig. 4 Scatter plots of NH4*" and NOs~ ion concentrations estimated
using the optimal ANN (extended ANN trained with set SR) as a func-
tion of true concentration (blue filled diamonds) as compared to
results using ISE linear calibrations (green open squares) where effects
of interfering analytes are highly visible. One-to-one line shown in red;
regression of ANN estimates against targets (concentration data) and
95% confidence interval on the linear fit shown in black.

challenge in adapting these sensors for in situ use (illustrated in
more detail below). A salient, though not unexpected, aspect of
the results is the large offset bias for ammonium or nitrate that
is introduced when using a simple linear calibration for
samples with relatively high concentrations of interfering ions.

3.4 N species estimation: optimal signal processor

Estimates of nitrate and ammonium concentrations from the
optimized expanded-ANN architecture (using the optimal
extended ANN configuration identified in ref. 19 and trained
with the most representative samples as described above) were
compared against the best results achievable using a standard
ANN configuration and two other training sets with decreasing
statistical representativeness of natural waters.

Table 2 shows a comparison of the estimation errors
(NRMSE) for the two types of ANNs and three training sets,

This journal is © The Royal Society of Chemistry 2016
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Table 2 lon concentration estimation errors as normalized root mean
square error (NRMSE) for standard and extended ANNSs as trained with
(I) only single-salt standards (SS), (ll) both single-salt standards and
statistically representative samples (SS + SR) and (Ill) only statistically
representative samples (SR). NRMSE is given for ammonium ion
(NH4"), nitrate ion (NOz7), and the summation of NRMSE for the 8
target ions (ALL) (note: data for the Extended/SR case shown in Fig. 4).
Factor of improvement is shown disaggregated by improvement due
to statistical representativeness of data (progression from SS to SR) and
integration of chemical knowledge into the ANN algorithm (standard
to extended)

NRMSE
Training
set NH," NO;~ ALL
Standard ANN SS 1.742 1.128 10.317
SS + SR 0.139 0.098 1.911
SR 0.271 0.097 2.02
Extended ANN SS 1.514 1.257 9.915
SS + SR 0.201 0.082 1.63
SR 0.081 0.037 1.024
Factor of improvement
Standard ANN, SR 6.43 11.63 5.11
vs. SS
Extended vs. 3.35 2.62 1.97

standard ANN, SR

disaggregated as NRMSE for ammonium, nitrate, and the sum
for all 8 studied ions. The comparison of results with training
sets SS, SS + SR, and SR demonstrates the contribution of
improving the statistical representativeness of the training data:
total error is decreased by a factor of 5, while error on nitrate/
ammonium channels decreases by a factor of 6-12. Notably,
comparing the SR training results against SS + SR results
provides a measure of the value of quantity vs. quality for ANN
training; in the extended ANN case, the inclusion of SS training
samples actually decreases predictive capability. The compar-
ison of extended and standard ANN architectures trained with
the SR set provides a measure of the improvement achieved due
to the integration of chemical knowledge into the ANN archi-
tecture: total error is decreased by a factor of 2, while nitrate/
ammonium error decreases by a factor of 2.6-3.4. It is further-
more clear that synergies are achieved by implementing both
improvements simultaneously; the extended ANN algorithm
provides an increasing improvement relative to standard ANNs
as the training set increases in representativeness. For refer-
ence, the NRMSE values for the optimal ANN estimates corre-
spond to mean relative errors of 10-20% for nitrate and
ammonium even at concentrations as low as or lower than 10
uM, while the standard ANN trained with the SS set has MRE >
450% and the standard ANN trained with SR has a MRE of 30-
55% for nitrate and ammonium.

Scatter plots in Fig. 4 show the results achieved using the
optimal ANN. ISE log-linear calibration curves were also used to
produce concentration estimates (expected to be highly erro-
neous due to the presence of interfering analytes) which are
overlain for visual reference of the level of experienced
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Table 3 Parameterization of the linear regression of optimal ANN
(extended architecture, SR training set) derived concentrations against
target concentrations for nitrate and ammonium; in both cases, the
slope and intercept are statistically indistinguishable from 1 and O,
respectively

NH," NO;~
Slope 0.996 + 0.013 1.000 =+ 0.007
Intercept (—2.84 £ 5.14) x 1077 (=2.15 £ 4.34) x 1077
R 0.997 0.999
RMSE [M] 1.77 x 10°° 1.38 x 10°°¢

interference. Note that vertical scales are different for each sub-
plot and are dictated by natural water concentrations (discus-
sion above). Significantly, in both cases the optimal ANN
produces concentration estimates (blue, filled) that generally
fall along the 1 : 1 lines (red), having successfully removed the
bias that is encountered when the ISEs are used in multi-
component mixtures (demonstrated by the displacement of the
bulk of open, green points from the 1 : 1 line).

Table 3 shows the parameters for linear fits of the optimal
ANN-derived (extended architecture, SR training set) concen-
trations against the target concentrations. The 95% confidence
interval on the slope contains 1 (perfect agreement) for both
nitrate and ammonium, and intercepts are not statistically
significantly different from zero. These facts identify the
extended ANN as an unbiased estimator (i.e., accurate), and
therefore, both the R*> and RMSE values provide information
about the magnitude of scatter around the targets (precision). It
is significant to note that concentration estimates of both
nitrate and ammonium were unbiased even for points below the
published detection limits of their respective electrodes.

4 Conclusions

A statistical analysis of natural water chemistry data demon-
strates that ion distributions are strongly correlated yet highly
irregular in the New England region and confirms that detec-
tion limits of =10 pM are needed to appropriately characterize
nitrate and ammonium levels in a large fraction of New England
surface waters. This appears to be feasible using ISE arrays with
ANN post-processing, however it is clear that neither sets of
single-salt standards bracketing expected concentration ranges
nor collection of environmental samples are likely to provide
a training set that is adequately statistically representative of
target waters. In such cases, the proposed methodology (crea-
tion of synthetic training samples based on a joint statistical
model of ion concentrations in environmental surface waters)
provides a valuable tool for expediting development and
training/calibration of sensor instrumentation. From
a geochemical perspective, the statistical relationships among
ions may also suggest hypotheses regarding underlying controls
of ionic concentrations in different watersheds throughout New
England as well as provide information which can be utilized by
the signal processing module to lower detection limits for ions
of interest.
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Nitrate and ammonium concentrations are quantified in
unprocessed samples at environmental levels and in environ-
mentally representative multi-analyte solutions, providing
unbiased concentration estimates down to <10 uM, with
improvements coming both from increasing statistical repre-
sentativeness of the training set and integrating chemical
constraints into the ANN architecture. Mean relative errors of
=20% of absolute concentration are achieved for most samples
(with maximum system errors of approximately 50% at the
micromolar concentrations for NH,"). This lowers detection
limits by more than an order of magnitude relative to those
achieved by current commercial state-of-the-art ISE-based
instruments for nitrate and ammonium (>100 uM) and removes
systematic bias at these low concentrations. These are two
major steps in the direction of real-time in situ quantification of
these environmentally important analytes; these capabilities are
critical for eutrophication studies, particularly in watersheds
that are strong contributors to estuaries where nitrogen is
typically suspected to be a major contributor.

The hardware used in this study, including the ISE array,
signal processing circuitry, and computational capability
implementing the ANN, indicates that it is possible to imple-
ment such a system in a package which is reasonably light and
compact (<15 Ibs) and has low power requirements (<1 W for
sensors and signal conditioning, with overall power consump-
tion dominated by the single board computer (1-5 W)). Each
measurement requires ~5 min, making such a system an
excellent candidate for field use. The short measurement time
and capability for large numbers of measurements in a single
deployment would further enable adaptive sampling
campaigns, which may also aid in the identification of broad
non-point sources of nitrogen nutrients to surface waters
through enabling real-time ‘tracking’ of nutrient signals. Even
when simply used as a guide for placement of limited grab
samples, the capability for real time sampling can improve
sample density, decrease uncertainty about the true character-
istics of a given ecosystem, and provide key data necessary to
inform environmentally conservative and fiscally responsible
management decisions. This study, therefore, presents an
important step in the direction of development of in situ
instrumentation for the broad support of scientific field studies.

A number of practical issues remain to be addressed to
facilitate the widespread use of the proposed hardware/software
architecture for scientific field work. Among these are an
appropriate daily calibration routine to counter the effects of
sensor drift (e.g., with 3-5 multi-analyte standards), a formal
analysis of the tradeoff between the number of sensors and
achievable accuracy (noting that error increased with removal of
any sensors included in this study), and a method for general-
izing application to other regional waters. The last is of partic-
ular interest as not all regions have historically been extensively
characterized, and therefore a system capable of adapting the
calibration for use across a wide range of environments would
be highly desirable.

Enhancement of the results presented here could further be
achieved through development of ISEs for sulfate, magnesium,
and/or carbonate at appropriate levels (none of which currently
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exist), as the nature of the ANN architecture takes advantage of
information available in all input signals to improve the accuracy
of all output signals. Expansion of the sensor set to include DO
and Fe would enable characterization of a wider range of surface
waters. Additional research directions include further optimiza-
tion (and potential expansion) of the training set and examina-
tion of possible effects of the background matrix of real waters; in
particular, it is suggested that the effects of humic materials,
inevitably present in natural waters, be explored. While humic
acids are not necessarily expected to affect the response of ISEs
themselves, they will contribute to the overall charge balance of
natural waters and their effects will therefore need to be incor-
porated into the ANN's chemical model. To overcome effects of
humic acids, addition of optical channels may be warranted and
could potentially provide additional information for other ana-
lytes (e.g., nitrate). Finally, due to the strong interest in the
eventual consequences of nitrogen contributions to estuarine
and coastal systems, exploration of the effectiveness of the
proposed methodology for more saline waters is recommended.

References

1 1. Valiela and J. Bowen, Environ. Pollut., 2002, 118, 239-248.

2 G. Mclsaac, M. David, G. Gertner and D. Goolsby, Nature,
2001, 414, 166-167.

3 R. Howarth and R. Marino, Limnol. Oceanogr., 2006, 51, 364-
376.

4 K. Johnson and L. Coletti, Deep Sea Res., Part I, 2002, 49,
1291-1305.

5 YSI, YSI 6820 V2 Compact Sonde for Field Sampling of
Dissolved Oxygen and More, 2013, http://www.ysi.com/
productsdetail.php?6820-V2-4.

6 M. Cutrofello and J. Durant, Chemosphere, 2007, 68, 1365—
1376.

7 M. Otto and J. Thomas, Anal. Chem., 1985, 57, 2647-2651.

8 C. Di Natale, F. Davide, J. Brunink, A. D'Amico, Y. Vlasov,
A. Legin and A. Rudnitskaya, Sens. Actuators, B, 1996, 34,
539-542.

9 J. Mortensen, A. Legin, A. Ipatov, A. Rudnitskaya, Y. Vlasov
and K. Hjuler, Anal. Chim. Acta, 2000, 403, 273-277.

10 A. Rudnitskaya, A. Ehlert, A. Legin, Y. Vlasov and
S. Buttgenbach, Talanta, 2001, 55, 425-431.

11 C. Di Natale, A. Macagnano, F. Davide, A. D’Amico, A. Legin,
Y. Vlasov, A. Rudnitskaya and B. Selezenev, Sens. Actuators, B,
1997, 44, 423-428.

12 J. Gallardo, S. Alegret, R. Munoz, M. de Roman, L. Leija,
P. Hernandez and M. del Valle, Anal. Bioanal. Chem., 2003,
377, 248-256.

13 M. Baret, D. Massart, P. Fabry, F. Conesa, C. Eichner and
C. Menardo, Talanta, 2000, 51, 863-877.

14 L. Duarte, C. Jutten and S. Moussaoui, 8tk International
Conference on Independent Component Analysis and Signal
Separation, 2009, pp. 662-669.

15 P. Dillingham, T. Radu, D. Diamond, A. Radu and
C. McGraw, Electroanalysis, 2012, 24, 316-324.

16 M. Gutierrez, S. Alegret, R. Caceres, ]J. Casadesus, O. Marfa
and M. del Valle, Comput. Electron. Agr., 2007, 57, 12-22.

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6em00043f

Open Access Article. Published on 03 May 2016. Downloaded on 11/18/2025 5:11:36 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

17 M. Gutierrez, S. Alegret, R. Caceres, J. Casadesus, O. Marfa
and M. del Vvalle, J. Agric. Food Chem., 2008, 56, 1810-1817.

18 M. Gutierrez, J. Gutierrez, S. Alegret, L. Leija, P. Hernandez,
L. Favari, R. Munoz and M. del Valle, Int. J. Environ. Anal.
Chem., 2008, 88, 103-117.

19 A. Mueller and H. Hemond, Talanta, 2013, 117, 112-118.

20 M. Bos, A. Bos and W. van der Linden, Analyst, 1993, 118,
323-328.

21 P. Daponte and D. Grimaldi, Measurement, 1998, 23, 93-115.

22 M. Bos, A. Bos and W. van der Linden, Anal. Chim. Acta, 1990,
233, 31-39.

23 M. Cortina, A. Gutes, S. Alegret and M. del Valle, Talanta,
2005, 66, 1197-1206.

24 E. Richards, C. Bessant and S. Saini, Chemom. Intell. Lab.
Syst., 2002, 61, 35-49.

25]. Gallardo, S. Alegret, M. de Roman, R. Munoz,
P. Hernandez, L. Leija and M. del Valle, Anal. Lett., 2003,
36, 2893-2908.

This journal is © The Royal Society of Chemistry 2016

View Article Online

Environmental Science: Processes & Impacts

26 F. Despagne and D. Massart, Analyst, 1998, 123, 157-178.

27 R. Srivastav, K. Sudheer and I. Chaubey, Water Resour. Res.,
2007, 43, 1-12.

28 United States Geological Survey, USGS Water Quality Samples
for USA: Sample Data, 2010, http://nwis.waterdata.usgs.gov/
nwis/qwdata.

29 W. Mendenhall, R. Beaver and B. Beaver, Introduction to
Probability and Statistics, Duxbury Press, Pacific Grove, CA,
14th edn, 2012.

30 C. Robert and G. Casella, MonteCarlo Statistical Methods,
Springer Science, New York, NY, 2nd edn, 2004.

31 A. Mueller and H. Hemond, Anal. Chim. Acta, 2011, 590, 71-
78.

32 R. Buck and E. Lindner, Pure Appl. Chem., 1994, 66, 2527-
2536.

33 M. Hayashi, Environ. Monit. Assess., 2004, 96, 119-128.

34 A. Mueller, PhD thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 2012.

Environ. Sci.. Processes Impacts, 2016, 18, 590-599 | 599


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6em00043f

	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f

	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f

	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f
	Statistical generation of training sets for measuring NO3tnqh_x2212, NH4+ and major ions in natural waters using an ion selective electrode arrayElectronic supplementary information (ESI) available. See DOI: 10.1039/c6em00043f


