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odels to estimate partition ratios
of organic chemicals between polymeric materials,
air and water†

Efstathios Reppas-Chrysovitsinos, Anna Sobek and Matthew MacLeod*

Polymeric materials flowing through the technosphere are repositories of organic chemicals throughout

their life cycle. Equilibrium partition ratios of organic chemicals between these materials and air (KMA) or

water (KMW) are required for models of fate and transport, high-throughput exposure assessment and

passive sampling. KMA and KMW have been measured for a growing number of chemical/material

combinations, but significant data gaps still exist. We assembled a database of 363 KMA and 910 KMW

measurements for 446 individual compounds and nearly 40 individual polymers and biopolymers,

collected from 29 studies. We used the EPI Suite and ABSOLV software packages to estimate

physicochemical properties of the compounds and we employed an empirical correlation based on

Trouton's rule to adjust the measured KMA and KMW values to a standard reference temperature of 298 K.

Then, we used a thermodynamic triangle with Henry's law constant to calculate a complete set of 1273

KMA and KMW values. Using simple linear regression, we developed a suite of single parameter linear free

energy relationship (spLFER) models to estimate KMA from the EPI Suite-estimated octanol–air partition

ratio (KOA) and KMW from the EPI Suite-estimated octanol–water (KOW) partition ratio. Similarly, using

multiple linear regression, we developed a set of polyparameter linear free energy relationship (ppLFER)

models to estimate KMA and KMW from ABSOLV-estimated Abraham solvation parameters. We explored

the two LFER approaches to investigate (1) their performance in estimating partition ratios, and (2)

uncertainties associated with treating all different polymers as a single “bulk” polymeric material

compartment. The models we have developed are suitable for screening assessments of the tendency

for organic chemicals to be emitted from materials, and for use in multimedia models of the fate of

organic chemicals in the indoor environment. In screening applications we recommend that KMA and

KMW be modeled as 0.06 � KOA and 0.06 � KOW respectively, with an uncertainty range of a factor of 15.
Environmental impact

Assessments of exposure and human health risk associated with organic chemicals in the indoor environment depend on accurate knowledge of equilibrium
partition ratios of the chemicals between polymeric materials found in the indoor environment and air and/or water. We compiled a database of 1273
measurements of partition ratios of 446 different chemicals between nearly 40 different polymeric materials and air or water. We developed empirical models to
estimate partition ratios for other chemicals from octanol/water and octanol/air partition ratios, and from Abraham solvation parameters estimated from
structure. Our screening-level models can be applied in prospective exposure and risk assessments for chemicals, and to guide the collection of additional data.
Introduction

The intensity at which chemicals are produced is growing on
a global scale. World chemical sales in 2013 increased by about
V70 billion compared with 2012, and investment in the
synthesis of new chemicals has notably increased over the past
ve years.1 In the United States, the total production volume of
Analytical Chemistry (ACES), Stockholm

-mail: matthew.macleod@aces.su.se

tion (ESI) available. See DOI:

hemistry 2016
chemicals in 2015 is expected to be 8.3% higher than in 2010.2

Organic chemicals constitute the largest volume of seaborne
trade, accounting for nearly half of the total market volume
shipped over the past 30 years.3 Construction and housing, light
vehicles, consumer products and agriculture are the key end-
use markets for chemicals.1,2 Materials produced in these
sectors ow through the technosphere, and throughout their
life cycle they act as a repository of organic chemicals that can
enter the indoor and outdoor environment and eventually cause
exposure risks for humans and ecosystems.4,5

There is growing interest in developing models to describe
and quantify the ow of organic chemicals out of consumer
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products and materials and into the indoor6 and outdoor7

environment. A notable example is the ExpoCast program, in
which the United States Environmental Protection Agency is
currently developing rapid, high-throughput exposure models
to provide human exposure estimates for thousands of chem-
icals.8 Exposure modeling for organic chemicals depends on
accurate estimation of partition ratios of the chemicals.

Partition ratios describe the distribution of organic chemicals
between two phases at equilibrium, and are oen used to indi-
cate the direction of diffusion and, generally, to quantitatively
describe mass transport phenomena. Partition ratios between
polymeric materials and air (KMA) or water (KMW) are required for
models of fate and transport of organic chemicals in the indoor
environment, e.g. houses, workplaces and vehicles, that have
been developed to describe exposure pathways to humans and
explain variability of indoor concentrations.6 In recent years
there has been increasing interest in measuring partition ratios
of organic chemicals for polymers such as polyurethane and
polydimethylsiloxane that are present in the indoor environ-
ment and also are used as passive samplers of air and water by
environmental analytical chemists. Thus, KMA and KMW have
been measured for a growing number of substances and mate-
rials, but signicant data gaps still exist to reliably quantify these
partition ratios for the myriad of organic chemicals and poly-
mers that humans might encounter in a typical day.

Single parameter and polyparameter linear free energy rela-
tionships (spLFERs and ppLFERs) are semi-empirical modeling
approaches that can be applied to estimate partition ratios
where measurements are not available. Models based on
spLFERs are correlations between the logarithms of two parti-
tion ratios that have one phase in common. Octanol has oen
been used as a surrogate for organic phases in spLFERs, for
example in widely used models that estimate partition ratios
between organic carbon and water (KOC) from the octanol–water
partition ratio (KOW),9 and that estimate partition ratios between
aerosols and air from the octanol–air partition ratio (KOA).10

The spLFER approach relies on the embedded assumption
that the free energies of transfer of chemicals between phases in
the two partition ratios in the correlation are linearly related.11

The ppLFER approach is based on the less stringent assump-
tion that the free energy of transfer between different phases
can be quantied as the linear sum of energetic contributions
from different types of molecular interactions of the chemical
with the phases.11 A common form of ppLFER is based on ve
empirical chemical descriptors that represent a chemical's
ability to participate in molecular interactions through
hydrogen bonding acidity (A) and basicity (B), van der Waals
dispersive interactions described by the logarithm of the hex-
adecane–air partition ratio (L) and polarity/polarizability (S),
and McGowan characteristic volume (V), which accounts for
energy costs to form cavities in solvents to accommodate the
chemical.12 Well-calibrated models based on ppLFERs are in
general expected to perform better than equally well-calibrated
spLFERs, as they account for a diversity of types of molecular
interactions, and they havemore degrees of freedom than single
parameter models.13 There are some cases, however, where the
performance of ppLFERs and spLFERs is similar and the two
668 | Environ. Sci.: Processes Impacts, 2016, 18, 667–676
methods can be used interchangeably.14 In any application, the
information about molecular interactions and the potential for
higher accuracy offered by ppLFERs must be weighed against
the additional requirements for data compared to spLFERs.

Our goal in this paper is to develop a suite of alternative
semi-empirical LFER models for estimating KMA and KMW, and
to evaluate the performance of these models and make recom-
mendations about their utility in different applications such as
indoor models of fate and transport, selection of materials for
passive sampling, and high-throughput exposure estimation.
We assembled a database of 363 KMA and 910 KMW measure-
ments for 446 individual compounds, along with their esti-
mated physicochemical properties. The database includes
measurements for nearly 40 individual polymeric materials,
collected from 29 studies. Our hypothesis was that spLFER
models would be more suitable for screening-level applications
where (i) the polymer is treated as a bulk substance or (ii) the
chemical and/or polymer are poorly characterized. Accordingly,
we hypothesized that ppLFER models developed for better
characterized cases of substances and materials would perform
better than spLFERs in estimating KMA and KMW.
Materials and methods
Literature search and database

We used Google Scholar to identify studies of potential interest
by searching for combinations of keywords such as “partition
coefficient”, “material” and “polymer”. Our search yielded an
initial set of 45 peer-reviewed journal articles. We screened
these papers to exclude measured partition ratios that did not
pass certain criteria. Specically, we excluded studies that re-
ported partition ratios that were obtained via extrapolations
from kinetics rather than from direct measurements at equi-
librium and/or for which the authors of later literature reviews
expressed concerns about whether the partition ratios were
measured at equilibrium. We further excluded studies in which
partition ratios were measured for sea water since assumptions
about the effect of salinity on KMW would contribute to uncer-
tainty in our models. Finally, compounds for which the
ABSOLV-estimated logarithm of the acid disassociation
constant (pKa) was lower than ve (pKa < 5) were excluded to
avoid measurements that were likely to have been strongly
inuenced by partially dissociated acids. Such measurements
would probably be outliers and they would contribute to
increase the error in our models. We retained six compounds
that contain basic functional groups (codeine, L-a-acetylme-
thadol, L-methadone, meperidine, naltrexone and trimetazi-
dine) in our database.

Aer screening the initial set of 45 peer-reviewed journal
articles according to the criteria above, data from 29 articles
(ref. 15–43) were included in our database.
Temperature correction and data curation

For each of the compounds in the database, we employed EPI
Suite44 to calculate molecular weight, octanol–air partition ratio
(log KOA), octanol–water partition ratio (log KOW), dimensionless
This journal is © The Royal Society of Chemistry 2016
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Henry's law constant (log KAW), vapor pressure and subcooled
liquid vapor pressure. We used the ABSOLV soware45 to esti-
mate Abraham solvation parameters for the development of
ppLFERs. We employed an empirical correlation based on
Trouton's rule46 to calculate the internal energy of phase change
between air and polymericmaterials, and assumed that enthalpy
of phase change between water and polymeric materials was
20 kJ mol�1. Then, we used the Van't Hoff equation to adjust the
measured KMA and KMW values to a standard reference temper-
ature of 298 K. We used a thermodynamic triangle (air–poly-
meric material–water) with the EPI Suite values of the Henry's
law constant, together with measured values of either KMA or
KMW to calculate a complete set of 1273 KMA and KMW values at
298 K. A detailed mathematical description of these steps is
included in the ESI.†

Finally, we achieved a uniform set of “dimensionless”
partition ratios by employing material densities to convert the
units of partition ratios that were expressed on a volume/mass
basis (e.g. mL g�1) to a volume/volume basis. In cases where
information on the densities of the polymers was not reported
in the studies, we used an average material density value from
manufacturers' websites. Densities used in these calculations
are included in the spreadsheet that is part of the ESI.†
Model development

We developed a family of models to estimate KMA and KMW from
the octanol–air (KOA) and octanol–water (KOW) partition ratios
(spLFERs; eqn (1a) and (1b)) and Abraham solvation parameters
(ppLFERs; eqn (2a) and (2b)) using simple and multiple linear
regression, respectively, i.e.,

log KMA ¼ g1 � log KOA + h1 (1a)

log KMW ¼ g2 � log KOW + h2 (1b)

where gi is the slope and hi is the intercept of the simple linear
regression (eqn (1a) and (1b)), and,

log KMA ¼ aMA � A + bMA � B + lMA � L + sMA

� S + vMA � V + c1 (2a)

log KMW ¼ aMW � A + bMW � B + lMW � L + sMW

� S + vMW � V + c2. (2b)

The phase descriptors aPQ, bPQ, lPQ, sPQ and vPQ describe the
differences between any two phases (P, Q) with regard to
the same intermolecular interactions, and ci is the constant of
the multiple linear regression (eqn (2a) and (2b)). The molec-
ular descriptors (A, B, L, S and V) of the chemicals are listed in
ESI.†

We present models for partition ratios to six categories of
polymeric materials that are dened based on the 2D chemical
structures of their corresponding monomers: polyethylene,
polyurethane, polydimethylsiloxane, carbohydrates, polyoxy-
methylene and nylons. 3D structural differences among the
materials associated with properties such as degree of crystal-
linity, density, porosity and permeability were not taken into
This journal is © The Royal Society of Chemistry 2016
account in classifying the polymers into different models.
However, the form of our models implicitly assumes that
absorption, rather than adsorption, is the dominant partition-
ing process. Absorptive processes occur between a volume of
polymer and a volume of air or water. Therefore we expect
differences in the 3D structure among polymers to be reected
in the regression parameters determined when we t our
models. As shown in other studies,47–49 the constants in both
LFER approaches are partially determined by the fraction of the
matrix that is available/accessible for sorption.

We also developed KMA and KMW models for a generic “bulk
material”, which is based on combining all the KMA or KMW

measurements in the dataset, regardless of the type of material
to which the chemicals partition. The generic bulk material
models include more measurements than the sum of the
measurements used to develop the six categories of polymeric
materials since there are polymers in the database such as
polystyrene, acrylate polymer, vinyl, polyethylene terephthalate
and polyhydroxyethylmethacrylate32 that are not included in any
of the six categories listed above, and for which there were only
a few measurements, and materials such as kitchen towel23 for
which the 2D chemical structure of the polymeric material was
not known. In total, the generic bulk material models contain
93 measurements that are not used to develop models in any of
the six material-specic cases.

We calculated the correlation coefficient (R2) and the root
mean squared error (RMSE) for each model to quantify uncer-
tainties, assess the relative performance and make recommen-
dations about possible applications for estimating KMA and
KMW. For model development and outlier detection we
employed the Python Statsmodels package. The outlier detec-
tion method we used is based on the adjusted Bonferroni
p-values for the studentized residuals.
spLFER models

Initial screening of the database indicated that the slopes gi in
spLFER models were frequently not signicantly different from
1 at the 95% condence interval. We therefore chose to force the
slope to 1 in all spLFERs to derive simple generic models suit-
able for screening purposes and/or screening estimations of
partition ratios when information on material composition is
missing. By forcing the slope gi to 1, we implicitly assume
octanol is a good surrogate for the polymeric material or the
bulk material described by the model. The intercept (hi) can
then be viewed conceptually as a measure of the polymer's
equivalent content of octanol or as a measure of the free energy
of transfer for a compound between the polymer and octanol, in
the form of a material–octanol partition ratio (KMO). If one
assumes that the polymers have identical sorption properties as
octanol, then the intercept represents a measure of the fraction
of the polymeric material available for sorption.

When gi ¼ 1, eqn (1a) and (1b) can be written as

KMA ¼ 10h1[�/O10RMSE] � KOA (3a)

KMW ¼ 10h2[�/O10RMSE] � KOW (3b)
Environ. Sci.: Processes Impacts, 2016, 18, 667–676 | 669
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where h1 is calculated as the arithmetic mean,

h1 ¼ log KMA � log KOA for each modeled set, and h2 is simi-

larly calculated as the arithmetic mean of log KMW � log KOW.
We expect the spLFER models of KMA and KMW of the same

material (i.e. eqn (1a) and (1b)) to have the same intercept when
we force the slope to 1, i.e. we expect h1 ¼ h2. This expectation is
a result of our data curation process since the value of either of
the two partition ratios, KMA or KMW, is dependent on the other,
measured value (i.e. KMW or KMA) through a thermodynamic
triangle. A deviation between the intercepts of the material–air
and a material–water spLFERmodels for a given material would
indicate problems with the application of Trouton's rule or with
the calculation of consistent partition coefficients in the ther-
modynamic triangle made up of KMW, KMA and the dimen-
sionless Henry's law constant, KAW.

The error introduced in the spLFER models by forcing the
slope to 1 is accounted for by the RMSE value of the model,
which reects the total uncertainty of each model.
Fig. 1 Chemical partitioning space showing the partition ratios
between air, water and octanol of the 446 chemicals in our database of
material–air and material–water partition ratios (KAW ¼ air–water
partition ratio, KOA ¼ octanol–air partition ratio).
Results
The database

Our database contains measurements for 446 individual
organic compounds that are all small molecules with molecular
weight lower than 500 g mol�1. Most of these compounds (80%)
contain rings, of which 73% are aromatic. Almost half (213/446)
of the compounds contain halogen atoms; mainly chlorine
(205/446), but there are also a few compounds that contain
bromine (3/446), iodine (3/446) or uorine (2/446). Oxygen
atoms are present in 35% of the compounds (157/446), and
fewer chemicals contain nitrogen (70/446), sulfur (22/446) and
phosphorus (15/446). Alcohols make up 7.5% of the chemicals
in the database (34/446).

Fig. 1 depicts the 446 compounds of the database in
a chemical partitioning space dened by log KOA and log KAW.
The database contains chemicals spanning about 20 orders of
magnitude of KAW and KOA and about 10 orders of magnitude of
KOW, including hydrophobic (log KOW > 6), volatile (log KAW > 2),
and highly water soluble (log KAW <�8) chemicals. The range of
chemical space represented in the training sets of semi-empir-
ical models largely determines the applicability domain of the
models. A broader domain of applicability renders the
prospective power of the models stronger by expanding their
range of applicability. Based on the 1273 measurements of the
database, we derived a total of 28 different models to estimate
KMA or KMW, as described below.
KMA and KMW models

In Fig. 2–4 we present all 28 models for KMA and KMWwith the R2

and RMSE values of eachmodel. Models developed for the same
phases (material–air, material–water) are plotted so that they
share the same vertical y-axis (experimental log KMA or experi-
mental log KMW) to facilitate comparison between the spLFER
and ppLFER approaches. For spLFER models, the horizontal
axis is either log KOA (panel a) or log KOW (panel b), and for
ppLFER models, the horizontal axis is the modeled partition
670 | Environ. Sci.: Processes Impacts, 2016, 18, 667–676
ratio derived from the multiple linear regression. For all
ppLFER models, simple regressions of the measured and esti-
mated data yielded an intercept of zero and a slope of one,
which is conrmation that the multiple linear regression was
carried out without error.

Fig. 2 shows themodels developed for the bulk material case,
Fig. 3 shows models for the material-specic cases of poly-
ethylene, polyurethane, polydimethylsiloxane and carbohy-
drates, where the number of observation (n) is over 100, and
Fig. 4 shows models for polyoxymethylene and nylon where n is
less than 100. This selective presentation of plots is based on
a rule of thumb50 according to which multiple linear regression
works in the most meaningful way for 10–20 observations per
model parameter, including the regression constant. In the case
of ppLFER models there are six parameters: the ve Abraham
solvation parameters and the regression constant. Thus models
with n $ 100 meet the minimum data requirements for
ppLFERs more strictly than models with n < 100. Measurements
identied as outliers in each model are indicated in red, and
a list of the compounds identied as outliers in each of the
28 models can be found in ESI.†

Discussion

Our initial hypothesis was that spLFERs would prove to be more
suitable for screening-level applications where the polymer is
treated as a bulk substance or the chemical and/or polymeric
material are poorly characterized. Our hypothesis was based on
a recognition that although ppLFERs have more degrees of
freedom to account for specic and non-specic molecular
interactions, this conceptual and mathematical advantage is
This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Linear free energy relationship models to estimate material–air (KMA) and material–water (KMW) partition ratios developed using all
measurements in the database regardless of material type.
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not utilized in modeling the inconsistent partitioning behavior
of poorly characterized material. The generic bulk material
models illustrated in Fig. 2 provide a basis to test the hypoth-
esis. The intercept in the spLFER models of the generic bulk
material (Fig. 2a and b) is�1.24 and thus KMA ¼ 0.06 � KOA and
KMW ¼ 0.06 � KOW. The RMSE of both spLFER bulk models is
1.21, implying that within an uncertainty range of a factor of 15,
a wide range of polymers can be modeled as consisting of 6%
octanol or as consisting purely of octanol from which 6% is
available for sorptive processes. We view this conceptually
simple spLFER model as suitable for screening-level applica-
tions. The performance metrics of the ppLFERs for the generic
bulk material are similar to those of the spLFERs (Fig. 2c and d,
This journal is © The Royal Society of Chemistry 2016
RMSE ¼ 1.31 and 1.16). Although the KMW ppLFER model for
the bulk material case has slightly lower RMSE than the corre-
sponding spLFER model, considering both RMSE and R2 indi-
cates that spLFER and ppLFER models could be used
interchangeably to model the partition ratios of a chemical to
a polymeric material. As spLFERs have fewer degrees of freedom
and lower data requirements than ppLFERs, our initial
hypothesis that spLFER models would be most appropriate for
screening-level applications that are based on estimated prop-
erty data is supported. However in some applications ppLFERs
might still be preferred because the equations provide insight
into the nature of the intermolecular interactions that deter-
mine the partition ratios.
Environ. Sci.: Processes Impacts, 2016, 18, 667–676 | 671
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Fig. 3 Linear free energy relationship models to estimate material–air (KMA) and material–water (KMW) partition ratios of chemicals for materials
with more than 100 measurements (polyethylene, polyurethane, polydimethylsiloxane and carbohydrates).
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Our secondary hypothesis was that the ppLFERs we devel-
oped would outperform spLFERs in the material-specic
models where the polymers were well characterized. In many of
672 | Environ. Sci.: Processes Impacts, 2016, 18, 667–676
the material-specic models illustrated in Fig. 3 and 4 the
model performance metrics for the ppLFERs are indeed better
than for the spLFERs. However, the differences in most cases
This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Linear free energy relationship models to estimate material–air (KMA) and material–water (KMW) partition ratios of chemicals for materials
with fewer than 100 measurements (polyoxymethylene and nylon).
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are small. Moreover, there are a few cases (KMA for poly-
dimethylsiloxane, polyoxymethylene and nylon) where spLFERs
have lower RMSE and higher R2 values than the corresponding
ppLFER models. Therefore, our second hypothesis is weakly
supported, but ppLFERs are not markedly superior to spLFERs.

It is clear from theoretical considerations that ppLFER
models should outperform spLFER models for specic mate-
rials and chemicals with accurate Abraham solvation parame-
ters.13 In studies where partition ratios are measured using
a consistent methodology and ppLFERs are developed based on
accurately measured Abraham parameters, correlation coeffi-
cients can be 0.99 or higher.51–53 The lower correlation coeffi-
cients and comparable performance of ppLFERs and spLFERs
that we observed in this study reects limitations of our data
quality and comparability that arise from our use of estimated
property data and from combining studies primarily based on
having a common monomer in the polymeric material.

It is notable that ppLFER models for KMW perform better
than the corresponding spLFER models according to both R2

and RMSE in nearly all cases. A possible explanation for the
This journal is © The Royal Society of Chemistry 2016
better performance of ppLFERs compared to spLFERs for KMW

is the specic H-donor and acceptor interactions between some
chemicals and water. Another possible explanation is that
calculating KMA through the application of the thermodynamic
triangle introduced some random errors that mitigated the
advantages of the ppLFER models over the spLFER models.
There were initially more experimental KMW values than KMA

values, so random errors introduced by the thermodynamic
triangle would affect KMA more signicantly.

Variability in the polymeric material itself among the various
studies that form the basis of each material-specic dataset is
another possible source of variability in our material-specic
models that might not be well-described by the ppLFERmodels.
A cross-sectional examination of the material-specic models
implies a positive correlation between RMSE and the number of
studies used to form each polymeric material group. In two
material groups that consist of comparable number of obser-
vations (polyurethane, n ¼ 273 and polydimethylsiloxane, n ¼
251), the ppLFER model developed for the partition ratio that
was experimentally determined (KMA or KMW – without the
Environ. Sci.: Processes Impacts, 2016, 18, 667–676 | 673
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application of the thermodynamic triangle) in the largest
number of studies (polydimethylsiloxane, 11 studies, water) has
higher RMSE values (0.77) than the partition ratio measured in
fewer studies (polyurethane, 2 studies, air, RMSE ¼ 0.59).

Another aspect of material variability among the different
studies is the age of the material used in the experiments and
the overall handling of the material prior to the experimental
procedure. In aged polymers some of the covalent bonds in the
polymer structure might be degraded,54 leading to a difference
in the sorption capacities of an aged and a fresh polymer.
Database and data curation

Our database includes partition ratios for materials and
chemicals with a wide range of structural diversity. Semi-
empirical LFER models should only be extrapolated to estimate
partition ratios for chemicals that are within their domain of
applicability, which means to chemicals that are similar to
those in the training set. In principle the ppLFERs should have
a wider domain of applicability since they represent a diverse
set of intermolecular interactions. However, even the ppLFERs
should be applied with caution to substances that are not rep-
resented in the training set, such as siloxanes, which are not
well described by ppLFER models that do not include siloxanes
in their training set.55,56 Similarly, compounds with molecular
weight greater than 500 g mol�1 and those that combine many
different functional groups are not represented in our database
and are likely outside the range of applicability of our models.

Our database was assembled using EPI Suite's estimated
values of log KAW to create a thermodynamic triangle, Trouton's
rule to estimate enthalpies of phase change between material
and air, and the Van't Hoff equation for temperature adjust-
ment to 298 K. Each of these three calculations contributes to
the introduction of uncertainty in the models. We expect
spLFER models to be more susceptible to the introduction of
random errors than ppLFERs because they have fewer degrees
of freedom. EPI Suite's estimations have been found to be
generally consistent with estimates of other soware,57 but
errors introduced by the use of EPI Suite's estimated log KAW

would be difficult to detect since they are incorporated consis-
tently through the data curation and model development.
Trouton's rule is in theory limited to nonpolar chemicals and
compounds that are capable of forming strong hydrogen bonds
are typically exceptions to this rule. The Van't Hoff equation is
based on the assumption that enthalpy change remains
constant over the temperature range under consideration. Our
database contains polar compounds that form hydrogen bonds.
Also, the temperature range over which the partition ratios were
measured in the 29 studies we used to assemble the database
spans from 277 K to 373 K. However, uncertainty for most of the
models developed in this study is typically a factor of 10, while
the range of partition ratios spans several orders of magnitude.
This result implies that both Trouton's rule and Van't Hoff
equation assumptions are not sufficiently violated to introduce
large errors. In all spLFER models the intercept of the KMA and
KMW relationships was identical and the RMSEs were similar for
models developed for the same group of materials. The internal
674 | Environ. Sci.: Processes Impacts, 2016, 18, 667–676
consistency of the KMA and KMW spLFER models indicates that
there were no errors introduced in the calculation of partition
ratios using the thermodynamic triangle.

Model development and performance

A critical point in the development of spLFER models in this
study is our decision to force the slope to 1 at the expense of
higher RMSE values. We forced the slope to 1 in all spLFER
models, even in the 10 cases where this value did not fall within
the 95% condence interval. Forcing the slope to 1 allowed us to
deliver simple empirical relationships of the form of eqn (3),
and provides a common ground to compare our material-
specic spLFER models with each other and with the bulk
material spLFER model, through the conceptual lens of the
apparent “octanol equivalents” each material exhibits.

Our ppLFER models are based on A, B, L, S and V, which is
consistent with recommended practice for environmental
applications.58 The estimation of these Abraham solvation
parameters by ABSOLV is a source of uncertainty for ppLFER
models. In the estimation of KMA, there are cases of material-
specic spLFERs such as the ones developed for poly-
dimethylsiloxane, polyoxymethylene and nylon that have
a lower RMSE than the corresponding ppLFER models. This
result contradicts our initial theoretical considerations. In
theory, ppLFERs are more accurate than spLFERs – especially
when the chemicals and the phases to which they partition are
well dened and characterized. A possible explanation for this
unexpected result lies in the accuracy (or lack thereof) of
ABSOLV's estimations.

Among our spLFER models, those developed for carbohy-
drates have the highest RMSE, and also much higher RMSE
than the corresponding ppLFER models (see Fig. 3). The rela-
tively poor performance of the spLFER models for carbohy-
drates led us to re-examine this group of materials and we
identied a subset of partition ratios that consistently appeared
in the outliers. These partition ratios were obtained from the
same study and they also clearly dened a different sub-
segment of polymeric materials that we initially considered as
carbohydrates. This is the sub-segment of paper; it consists of
imitation parchment paper, Kra paper and cardboard. We
suspect that paper has different partitioning properties than the
rest of the materials that form the carbohydrates aggregation
because it has typically undergone various treatments to reach
its nal state. It is possible that due to crystallinity,49 the
cellulose in the paper is not as available for sorptive processes
as in the rest of the materials in the carbohydrates group. The
models for carbohydrates without the paper sub-segment, as
well as the models for the paper sub-segment are included in
the ESI.† When the paper sub-segment is removed from the
carbohydrates group, the R2 for the spLFER for KMA rises from
0.55 to 0.77 and the RMSE falls from 1.7 to 0.96.

Outliers

We examined the outliers identied in each model to further
investigate model performance and behavior. With few excep-
tions, the outliers identied in the KMA and KMW spLFER
This journal is © The Royal Society of Chemistry 2016
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models developed for the same group of materials are the same.
Moreover, the number of KMA measurements identied as
outliers is nearly always equal to the number of KMW measure-
ments, and those partition ratios were all measured at 298 (�5)
K. This result largely eliminates the temperature correction as
a source of outliers.

As discussed above, partition ratios measured in a single
study of partitioning between paper and water that were
included in our models for ‘carbohydrates’ were frequently
identied as outliers, especially in the spLFER models. In
general, we believe that studies focused on specic polymers
that are not representative of the larger group in which they are
collected for modeling purposes would be a source of outliers.
The performance metrics for models of the carbohydrates group
are markedly better when paper is excluded, which indicates
paper has different characteristics than other polymeric mate-
rials in the ‘carbohydrates’ group.

Endosulfan I (alpha) is the only compound that is an outlier
for two different ppLFER models for specic polymers (poly-
dimethylsiloxane and polyethylene) measured in two different
studies, and is also an outlier in both bulk material ppLFER
models. In contrast, endosulfan I (alpha) is not an outlier in any
spLFER model. Thus the Abraham solvation parameters esti-
mated by ABSOLV for endosulfan I (alpha) may be suspect.

Notable outliers are bisphenol A and 4-deoxypyridoxine in
the paper sub-segment, hexane in polyurethane and styrene in
crystalline polystyrene. Four out of six of the compounds that
contain basic groups were detected as outliers (codeine,
L-methadone, naltrexone, trimetazidine), mainly in ppLFER
models. This result indicates that the partition ratios of these
compounds might have been measured in their disassociated
form. Our inspection of the other 44 individual compounds that
were identied as outliers in various models did not lead to the
identication of other specic chemicals or classes of
compounds that were consistently identied as outliers.
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