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Here, we demonstrate that light and oxygen-induced degradation is
the main reason for the low operational stability of methylammonium
lead triiodide (MeNHzPbl;z) perovskite solar cells exposed to ambient
conditions. When exposed to both light and dry air, unencapsulated
MeNH3Pbls solar cells rapidly degrade on timescales of minutes to a
few hours. This rapid degradation is also observed under electrically
bias driven current flow in the dark in the presence of O,. In contrast,
significantly slower degradation is observed when the MeNH3Pblsz
devices are exposed to moisture alone (e.g. 85% relative humidity
in Np). We show that this light and oxygen induced degradation can
be slowed down by the use of interlayers that are able to remove
electrons from the perovskite film before they can react with oxygen
to form O, . These observations demonstrate that the operational
stability of electronic and optoelectronic devices that exploit the
electron transporting properties of MeNHsPbls will be critically
dependent upon the use of suitable barrier layers and device config-
urations to mitigate the oxygen sensitivity of this remarkable material.

Methylammonium lead trihalide perovskites (e.gz MeNH;3Pbl;)
are currently generating extensive interest with respect to their
use in a range of devices such as light emitting diodes, solar cells,
transistors and lasers.’™ The successful exploitation of these
technologies ultimately depends on the ability to achieve both
high device performance and operational stability. A device
configuration of particular interest is the MeNH;PbI; perovskite
solar cell. Over the last few years, remarkable progress has been
made and solar light to electrical power conversion efficiencies of
such devices have quickly risen from approximately 10% in 2012
to over 20% at present.*® As such, it is increasingly recognised
that stability is a key challenge for this technology.” Promising
operational stability has been reported for MeNH;PbI; solar cells
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Broader context

Hybrid organic-inorganic metal halide perovskite solar cells (PSCs) are a
potentially low cost and efficient third generation photovoltaic technol-
ogy. Recent advances in the performance of lab based devices have seen
certified efficiencies in excess of 20%. This, in combination with the
solution processible nature and low cost of the precursor materials, has
seen worldwide scientific and industrial interest in perovskite solar cells
grow rapidly in the past 4 years. However, the instability of the perovskite
photoactive layer still represents a major barrier that must be overcome
before the successful commercialisation of PSC. Until now much of the
published literature on PSC stability has been concerned with the
inherent moisture sensitivity demonstrated by the perovskite layer. We
demonstrate herein that an additional degradation mechanism induced
by the combination of light and oxygen in combination, and show that
this can be the primary degradation pathway under device operation. We
show this degradation pathway can be partially suppressed under condi-
tions of rapid electron extraction from the perovskite layer. We go on to
demonstrate how this oxygen induced degradation pathway is not limited
to only photovoltaic devices, but is also relevant to all electric devices that
employ an organic-inorganic perovskite layer exposed to oxygen under
operation. This is an important finding since it affects not only con-
siderations of barrier layer and encapsulation design for such hybrid
perovskite electronic devices but also suggests a key materials design
challenge in developing hybrid perovskite active layers with reduced
oxygen sensitivity.

encapsulated under an inert atmosphere using glass as a barrier
layer."®™"* Whilst it is common place to encapsulate similar
optoelectronic devices (such as OPVs and OLEDs), sensitivity to
environmental exposure, and specifically to water and/or oxygen
ingress, is likely to be key concern for many practical technology
applications where flexibility is needed and glass barrier layers
are not viable. Some progress has been made in this regard, with
promising shelf life (dark) stability reported for unencapsulated
MeNH,Pbl; employing a metal-oxide top contact,’® and under
operation for devices employing enhanced electron extraction.'%'?
However, the underlying origin(s) of these improvements in
device stability have not been elucidated, and in particular in
the literature to date relatively little attention has been placed
on determination of the relative importance of different factors
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limiting material and device stability. While several external agents
(e.g. temperature, phase behaviour, pressure, ultraviolet light,
moisture and crystallinity) have been reported to influence the
stability of perovskite solar cells,"** it has largely been assumed
that moisture-induced degradation is the dominant issue affecting
MeNH,PbI; device stability under ambient conditions. As such,
most stability studies have focussed on the role of moisture in
the deterioration of MeNH;PbI; solar cell performance.'”2%*
In contrast, we have recently demonstrated that exposure of
MeNH;PbI; films to both light and molecular oxygen can cause
rapid degradation.”>*® Specifically, we have shown that this
reaction is initiated by the deprotonation of the methyl-
ammonium cation of the perovskite by a photogenerated reactive
oxygen species (superoxide, O, ) where the O, is generated by
the reaction of photo-generated electrons in the perovskite and
molecular oxygen.>”> These observations raise two important
questions, namely does oxygen induced degradation affect the
stability of fully-functioning perovskite solar cells and secondly
whether the degradation can also be induced by the reaction
of electrically injected electrons in the perovskite and oxygen.
The ability of oxygen induced degradation to be facilitated by
electrical bias would be expected to have a profound impact on
the stability of a wide range of devices such as light emitting
diodes and transistors as well as solar cells. Herein we address
these two issues. Specifically, in this paper we focus on the
stability of MeNH;PbI; based solar cell devices under different
operating (e.g. light and dark) and environmental exposure
conditions and conclude, remarkably, that oxygen induced degra-
dation, rather than moisture induced degradation, is the domi-
nant process that limits the operational stability of optoelectronic
devices containing MeNH;PbI; under ambient conditions.
Furthermore, we show that this drop in device performance
can be slowed down by the integration of electron acceptor
layers within device architecture. Such layers are shown to
enhance electron extraction from the perovskite absorber before
they can react with oxygen, thus reducing the yield of superoxide
0O,  and improving device stability.

When exposed to both light and oxygen, MeNH;Pbl; photo-
active layers rapidly degrade, as illustrated in Fig. 1. Specifically,
Fig. 1 presents the absorption characteristics of MeNH;PbI; films
prepared on non-conducting glass before (blue trace) and after
(red trace) ageing for 48 hours in controlled environments (where
(A) is exposed to light and under a N, atmosphere, (B) is in the
dark under clean dry air, (C) is in light under clean dry air and
(D) is in light under ambient air (RH ~ 48%)). The as-prepared
MeNH;PbI; films all exhibit the reported absorption onset at
approximately 780 nm.* It is apparent that degradation of the
MeNH;Pbl; films takes place in dry air with light (Fig. 1C) and
ambient air with light (Fig. 1D). However, no degradation is
observed in control samples aged in N, with light (Fig. 1A) and
dry air in the dark (Fig. 1B). Moreover, it can be seen in Fig. 1C
and D, that exposure to light and oxygen for just 48 hours results
in a dramatic blue shift in the absorption onset from 780 nm to
520 nm and a profound change in colour of the sample from dark
brown to yellow; both these observations being consistent with
the breakdown perovskite crystal and the subsequent presence of
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Pbl, in the final degraded films.*” The data presented herein
are consistent with our previous work and further confirm the
presence of a degradation pathway that is light activated,
independent of moisture and requires molecular oxygen.?*?*

Our observation of a profound sensitivity of MeNH;PbI;
films to light and oxygen raises a key question, namely whether
and to what extent this degradation pathway contributes to the
low stability of MeNH;PbI; based solar cells. To investigate how
light and oxygen affect the performance of complete photo-
voltaic devices, stability studies were undertaken. The relevant
experimental details of device fabrication are given in the ESI}
section. Briefly, solar cells of type: ITO/compact-TiO,/meso-
TiO,/MeNH;Pbl;/spiro-OMeTAD/Au were fabricated in a dry,
oxygen-free glove-box. These devices, without further encapsu-
lation, were then placed in an environmental chamber for
stability measurements. Ageing illumination was provided by
a 1 sun equivalent white LED array equipped with a UV blocking
filter. Power conversion efficiencies (PCE’s) of the solar cells were
determined from photocurrent-voltage measurements at regular
time intervals (0.02 V s~ scan speed, using same LED light
source) over the course of 12 hours with the solar cells being
subjected to different environmental conditions. Fig. 2 shows
the PCE versus time profile with the solar cell devices aged in
controlled conditions (where device (a) is exposed to light and
N,, (b) exposed to dry air in dark, (c) exposed to N, in the dark (d)
exposed to light and N, with 85% relative humidity, (e) exposed to
dry air in light and (f) exposed to dry air and 85% relative
humidity in the light). Raw data (device parameters obtained
from current-voltage scans under these different environmental
conditions as a function of time) are presented in Fig. S1 (ESIt).
It is evident from the data presented in Fig. 2 that the performance
of control devices a, b and c remains relatively constant, even
increasing marginally in performance over 12 hours. In contrast,
the device exposed to light and dry air (device e) shows a dramatic
and large drop in PCE with ageing time with, for example, this
device exhibiting a 50% drop in PCE from its original value within
2 hours. This observation clearly demonstrates that the perfor-
mance and stability of MeNH;Pbl; based solar cells is critically
affected when exposed to both light and oxygen. In contrast, the
PCE of device (d) exposed to light, 85% relative humidity (RH) in
N, remains relatively constant, with this device showing a com-
paratively small 10% drop in PCE over the 12 hour aging period.
Furthermore, it can be seen from the data presented in Fig. 2 that
the rate of decrease in PCE is similar in devices exposed to light
and dry air (device e) and light, dry air and 85% RH (device f).
We therefore conclude that light and oxygen induced degradation,
and not moisture induced degradation, is the dominant factor
that determines the stability of MeNH;Pbl; based solar cells
under ambient operating conditions.

Next, we consider how the impact of light and oxygen induced
degradation on device stability can be minimized in MeNH;Pbl;
solar cells. We have recently demonstrated that the yield of
O, generation can be decreased by the use of suitable electron
acceptor layers within the MeNH,;Pbl; film.>* In this context, the
electron acceptor layer functions to extract photogenerated elec-
trons from the MeNH,;Pbl; layer before they react with oxygen

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Shows the absorption spectra for MeNHzPbls films on glass before (black) and after (red) ageing in different conditions (see legends). Also shown

are photographs of films before (left) and after (right) ageing.
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Fig. 2 Normalized power conversion efficiencies (PCE) of MeNH3zPbls
solar cells measured following exposure to different environmental conditions
as detailed in figure legend (with dry air comprising 20.95% O,, 78.09% N,).
Solar cells with the following architecture were used for this study:
FTO/compact-TiO,/mesoporous-TiO,/MeNH3PIs/spiro-OMeTAD/Au. Light
exposure was provided by a 1 sun equivalent white LED array equipped with a
UV blocking filter.

thereby competing with the formation of O,.>* As such, it is
reasonable to expect that perovskite solar cell structures compris-
ing layers that are able to efficiently extract electrons would exhibit
better stability. To test this hypothesis, the relative stability of three

This journal is © The Royal Society of Chemistry 2016

types of MeNH;Pbl; perovskite solar cell structures comprising
different electron extractor layers were investigated. In this study,
device (1) employed a compact-TiO,/mesoporous-TiO,/MeNH;Pbl;
film; device (2) employed a compact-TiO,/MeNH;PbI; film;
and device (3) employed a compact-TiO,/mesoporous Al,Os/
MeNH;PbI; film. All three devices (1, 2 and 3) employed doped
spiro-OMeTAD and gold as the hole-transporting material and
top metal contact respectively.>* Fig. 3A shows the PCE versus
time profile for devices 1, 2 and 3 aged in dry air and light.
Full current-voltage data are presented in Fig. S2 (ESIt). As can be
seen by a comparison of the PCE versus time profiles for devices
1, 2 and 3 (Fig. 3A) the time taken for the performance of these
devices to drop by 50% is 2.2, 0.6 and 0.17 hours respectively.
Relatively better stability of device 1 was attributed to the superior
electron extraction capability of the compact-TiO,/mesoporous-
TiO, electrode as compared to the compact-TiO, and compact-
TiO,/mesoporous-Al,O; electrodes.

MeNH;Pbl; photoluminescence (PL) quenching experiments
and O, yield were employed to investigate the origin of the trend
in device stabilities shown in Fig. 3A. Fig. 3B presents the steady-
state PL data for compact-TiO,/mesoporous-TiO,/MeNH;PbI;,
compact-TiO,/MeNH;Pbl;, compact-TiO,/mesoporous-Al,Os;/
MeNH;Pbl; and glass/MeNH;PbI; films. It is clear that, all
three electrode systems show reduced emission intensity

Energy Environ. Sci., 2016, 9, 1655-1660 | 1657
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Fig. 3 (A) shows normalized power conversion efficiency, versus time
for three different MeNH3Pblz solar cells aged with dry air and light.
Device 1 comprises: FTO/c-TiO,/m-TiO,/MeNH3zPbls/spiro-OMeTAD/Au;
Device 2 comprises: FTO/c-TiO,/MeNH=Pblz/spiro-OMeTAD/Au and
Device 3 comprises: FTO/c-TiO,/m-AlbOz/MeNH=Pblz/spiro-OMeTAD/Au.
(B) Shows corresponding MeNHszPbls photoluminesence spectra for the
three different photoactive layers, relative to a MAPI3 control film (measured
in absence of spiro-OMeTAD/Au, using 485 nm excitation). (C) Shows the
normalized fluorescence intensity at 610 nm (following 520 nm excitation) of
the O, probe solution. /¢(t) is the probe fluorescence intensity maximum at
time t, whilst /¢(to) is the background fluorescence intensity of the probe at
t = 0. The ratio I((t)/IF(to) is a measure of the yield of superoxide generation.

relative the glass/MeNH;Pbl; sample. By evaluation of the
integrated areas of the respective spectra in Fig. 3B, we find that
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yield of MeNH,;PbI; PL quenching is 85%, 78% and 56% for
the compact-TiO,/mesoporous-TiO,, compact-TiO,, compact-TiO,/
mesoporous-Al,O; films respectively, indicative of a trend in
the efficiency of electron extraction between these three device
architectures, in agreement with literature data.>® We note that
the same trend in PL quenching efficiency was obtained from
time-resolved PL measurement, as illustrated in Fig. S3 (ESIT).
We next consider the correlation between the yields of MeNH;PbI;
PL quenching and O, generation in the three films. The presence
of superoxide was detected, as previously, by using a fluorescent
molecular probe, hydroethidine.>® Fig. 3C shows the rate of
increase in probe emission ([Zx()]/[Ix(t,)] versus ageing time) and
therefore O, generation yield. As expected, a good correlation
can be seen between the MeNH;Pbl; PL quenching efficiency
and O,  generation yield. Interestingly, it is apparent that the
compact-TiO,/mesoporous-Al,0;/MeNH;PbI; film exhibits a lower
PL quenching efficiency and a higher O, yield as compared to the
compact-TiO,/MeNH;Pbl; film. This is most likely due to: (i) the
presence of the mesoporous-Al,O; film reducing the effective
electron extraction area of the compact TiO, layer and (ii) reduced
crystal size of MeNH;PbI; in compact-TiO,/mesoporous-Al,0;/
MeNH;PbI; relative to that in the ‘planar-type’ compact-TiO,/
MeNH,PbI; film. It is reasonable to suppose that both these
factors would lead to poorer electron extraction and therefore
an increased probability of electron transfer to oxygen. Taken
together, the data presented in Fig. 3 indicates that better electron
extraction leads to better device stability. This improved stability
derives from a reduction in yield of O,  generation as a conse-
quence of better electron extraction from the MeNH;PbI; film.

Further evidence for the importance of electron extraction for
the stability of MeNH;PbI; solar cells was obtained from device
performance measurements as a function of externally applied
bias. Fig. 4 shows the PCE versus time profile for solar cells biased
at short-circuit (Vyias = 0 V) and open-circuit (Vijas = Voe = 0.9 V).
As expected, more rapid degradation is observed when the device
is biased at open-circuit rather than short-circuit, consistent with
better electron extraction under short circuit conditions. This
enhanced electron extraction was confirmed by enhanced MAPI;
PL quenching at short-circuit compared to open-circuit (Fig. 4A
(inset)). These observations further highlight the importance to
device stability of removing electrons from the photoactive layer
before they can react with O, to form O,

We now consider the wider relevance of our observations to
other electronic and optoelectronic devices that exploit the semi-
conducting properties of MeNH;Pbl;. Thus far, we have shown
that the degradation of MeNH;PbI; solar cells can be triggered by
the reaction of photogenerated electrons and oxygen. The next
question that arises relates to whether degradation can also be
induced by the reaction of electrically injected electrons and
oxygen. In order to address this, we investigated the degrada-
tion of the MeNH;PbIj; solar cells in the dark (no illumination)
under forward bias (Vs = 0.9 V,J =20 mA cm ™) in a N, or dry air
environment. Device degradation in the dark was monitored by
brief measurements of device photovoltaic PCE under light irra-
diation (Fig. 4B), as well as by monitoring MeNH;PbI; decoloration
using a camera (Fig. 4B inset). Remarkably, we find that the

This journal is © The Royal Society of Chemistry 2016
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(A) Shows the relative performance of FTO/c-TiO,/MeNHsPbls/spiro-OMeTAD/Au solar cells as function of aging time. Measurements were

performed with the solar cells being exposed to light and oxygen. Data was collected with the solar cells were biased at open circuit (Vpias = 0.9 V), short
circuit (Vpias = 0 V) and maximum power point (Vyias = 0.66 V). (A) (inset) Shows the corresponding MAPIs PL data measured under these applied biases,
employing 485 nm excitation. (B) Shows the relative performance of such solar cells aged in the dark in the presence of either dry air or nitrogen under
electrical bias (Vyias = 0.9 V, current density 20 mA cm™2). For reference the equivalent data for a cell held in dark and dry air conditions with no external
bias is included (black dashed line, taken from Fig. 2). From (B) (inset) shows the degraded device pixel (1) after ageing at Vy,.s 0.9 V; decolouration of the
pixel from dark brown to yellow indicates degradation of the MeNH3Pbls. For the data presented in (B) the aging was performed in the dark but the PCE

measurements were performed under 1 sun equivalent illumination using a

MeNH,PbI; devices degrade even in the dark and operating in
the forward bias regime when oxygen is present (Fig. 4B, blue
trace and inset LH pixel). However, such degradation was not
observed when the device was in a nitrogen atmosphere or in the
absence of forward bias. Our observation of device degradation
under forward bias in the dark suggests that in the presence of
oxygen, MeNH;PbI; is fundamentally unstable when transporting
electrons. This finding indicates that oxygen induced degrada-
tion of MeNH;PbI; reported in this paper is likely to be important
in limiting the operational stability of not only MeNH;Pbl; based
solar cells, but also that of other electronic and optoelectronic
devices employing MeNH;PbI; as an electron transport material,
such as LED’s and transistors.

Herein, we have shown that MeNH;PbI; based films and solar
cells degrade remarkably quickly, on timescales of minutes to a
few hours when exposed to both light and oxygen. In organic
solar cells, the presence of a metal top contact has been observed
to substantially improve device stability under light/oxygen expo-
sure, attributed to slow lateral oxygen diffusion kinetics through
the organic layer.”® For MeNH;Pbl; devices studied herein, in
contrast, the presence of a metal top contact does not appear to
produce the same effect (i.e. enhance stability). This observation
is indicative of relatively rapid oxygen diffusion kinetics within
the device structure. Such rapid diffusion kinetics would be
consistent with the observation that even much larger species
(e.g. 17, Pb>" and CH;NH;") are able to migrate within the
MeNH;Pbl; perovskite films.>” Further studies addressing oxygen
diffusion in MeNH,;PbI; films, and its impact upon device stability
are currently underway and will be reported in our future work.

In summary, this work elucidates a major cause of the relatively
low stability of MeNH,;PbI; solar cells when operating in ambient
conditions and provides a pathway to address the problem.
Specifically, we have demonstrated that light and oxygen induced

This journal is © The Royal Society of Chemistry 2016

white LED array.

degradation can be the dominant factor that determines the
operational stability of MeNH;PbI; solar cells in ambient
conditions. We show that, under these technologically important
conditions, light and oxygen induced degradation occurs faster
than the more widely studied moisture induced degradation.
Moreover, we have shown that this degradation can be slowed
down by the integration of electron extraction layers within the
device architecture. Specifically, we have demonstrated that better
electron extraction leads to a reduction in the yield of O, and an
improvement in device stability. Finally, we have shown that
MeNH;Pbl; devices also degrade in the dark under forward bias
when exposed to oxygen. The present findings suggest that oxygen
induced degradation can influence the operational stability of not
only solar cells but also other devices that utilize MeNH;Pbl; as
an electron transporting material. Ultimately, in their current
state, the long term stability of optoelectronic and electronic
devices containing organic-inorganic lead halide perovskite
semiconductors will be reliant on successful encapsulation and
effective barrier layers.

Acknowledgements

S. A. H. acknowledges financial support from the Engineering
and Physical Sciences Research Council (EPSRC) through (EP/
M023532/1) and (EP/K010298/1) projects and the European
Community’s Seventh Framework Programme (Nanomatcell,
grant agreement number 308997). J. R. D. and D. B. acknow-
ledge financial support from the EPSRC (EP/I019278/1 & EP/
M023532/1) and the Welsh Assembly government funded Sér
Solar project. Thanks to Diego Alonso Alvarez and Ned Ekins-
Dawkes for their assistance with the TRPL measurements and
Li Xiaoe for her assistance with device manufacture.

Energy Environ. Sci., 2016, 9, 1655-1660 | 1659


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ee00409a

View Article Online

Communication Energy & Environmental Science

References 14 B. Conings, ]J. Drijkoningen, N. Gauquelin, A. Babayigit,

Open Access Article. Published on 13 April 2016. Downloaded on 11/2/2025 8:55:58 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

1 Z-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo,
R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos,
D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H.
Friend, Nat. Nanotechnol., 2014, 9, 687.

2 G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim,
R. H. Friend and N. C. Greenham, Nano Lett., 2015, 15, 2640.

3 M. M. Lee, ]J. Teuscher, T. Miyasaka, T. N. Murakami and
H. J. Snaith, Science, 2012, 338, 643.

4 H.-S.Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro,
S.-J. Moon, R. Humphry-Baker, J.-H. Yum, ]. E. Moser,
M. Gritzel and N.-G. Park, Sci. Rep., 2012, 2, 591.

5 G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba,
M. Gritzel, S. Mhaisalkar and T. C. Sum, Nat. Mater., 2014,
13, 476.

6 F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D.
Jarausch, R. Higler, S. Hiittner, T. Leijtens, S. D. Stranks,
H. J. Snaith, M. Atatiire, R. T. Phillips and R. H. Friend, J. Phys.
Chem. Lett., 2014, 5, 1421.

7 X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno and C. Soci, Nat.
Commun., 2015, 6, 7383.

8 N.]J.Jeon,]. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and
S. L. Seok, Nature, 2015, 517, 476.

9 Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger,
A. Petrozza and H. J. Snaith, Adv. Eng. Mater., 2015, 5, 1500963.

10 W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen,

E. Bi, I. Ashraful, M. Gritzel and L. Han, Science, 2015,
350, 944.

11 X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi,

A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M.
Zakeeruddin and M. Griétzel, Eng. Tech., 2015, 3, 551.

12 J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao,

M. K. Nazeeruddin and M. Gratzel, Nature, 2013, 499, 316.

13 J.You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang,

Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco
and Y. Yang, Nat. Nanotechnol., 2016, 11, 75-81.

1660 | Energy Environ. Sci., 2016, 9, 1655-1660

15

16

17

18

19

20

21

22

23

24

25

26

27

J. D’'Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck,
J. Manca, E. Mosconi, F. D. Angelis and H.-G. Boyen,
Adv. Energy Mater., 2015, 5, 1500477.

C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorg.
Chem., 2013, 52, 9019.

T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee and
H. J. Snaith, Nat. Commun., 2013, 4, 2885.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. ]J.
Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller,
T. Bein, J. Nelson, P. Docampo and P. R. F. Barnes, Chem.
Mater., 2015, 27, 3397.

F. K. Aldibaja, L. Badia, E. Mas-Marza, R. S. Sanchez,
E. M. Barea and 1. Mora-Sero, J. Mater. Chem. A, 2015, 3, 9194.
A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin and
M. Gritzel, Chem. Mater., 2014, 26, 6160.

J. A. Christians, P. A. Miranda Herrera and P. V. Kamat, J. Am.
Chem. Soc., 2015, 137, 1530.

J. Yang, B. D. Siempelkamp, D. Liu and T. L. Kelly, ACS Nano,
2015, 9, 1955.

N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval,
M. Brown, L. Martinez, T. Rath and S. A. Haque, Angew.
Chem., Int. Ed., 2015, 54, 8208.

F. T. F. O'Mahony, Y. H. Lee, C. Jellett, S. Dmitrov, D. T. J.
Bryant, J. R. Durrant, B. C. O’Regan, M. Graetzel, M. K.
Nazeeruddin and S. A. Haque, J. Mater. Chem. A, 2015,
3, 7219.

J. Troughton, D. Bryant, K. Wojciechowski, M. ]J. Carnie,
H. Snaith, D. A. Worsley and T. M. Watson, J. Mater. Chem.
A, 2015, 3, 9141.

A. Listorti, E. J. Juarez-Perez, C. Frontera, V. Roiati, L. Garcia-
Andrade, S. Colella, A. Rizzo, P. Ortiz and 1. Mora-Sero, J. Phys.
Chem. Lett., 2015, 6, 1628.

S. Shoaee and J. R. Durrant, J. Mater. Chem. C, 2015,
3, 10079.

C. Eames, ]J. M. Frost, P. R. F. Barnes, B. C. O’Regan,
A. Walsh and M. S. Islam, Nat. Commun., 2015, 6, 7497.

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ee00409a



