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with a global carbon emissions-control regime

The delegates to COP21 in Paris, in conjunction with nationally formulated commitments and pledges,

resolved that countries should take actions to "hold the increase in global temperature to well below

2 °C above pre-industrial levels” and to achieve “a balance between anthropogenic emissions by sources and

removal by sinks of greenhouse gases in the second half of this century”. This resolution for action suggests a

step towards a global carbon emissions-control regime which, due to regional variabilities and remaining
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uncertainties as to the exact effects of atmospheric CO, concentrations, must be considered within the
purview of risk management. In this Opinion, four topics are discussed that intertwine science, technology,
legal, and policy issues critical to the implementation of any global carbon emissions-control regime: (i) What

to regulate and at what levels; (i) Regulating short-term versus long-term emissions; (iii) Validation of
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Broader context

compliance in a regulated global emissions regime; and, (iv) Legal aspects of geoengineering.

Recent global diplomatic conventions have focused on limiting global temperature increases, in conjunction with a goal for mid/late 21st century carbon-

emissions levels. In addition to the deployment of low-carbon energy technologies, mitigation of climate change will require numerous technically based legal
and policy instruments to assess compliance with a carbon-control regime on national, regional, and global levels. This Opinion evaluates some of the policy

and long-term risk factors involved with controlling global temperature changes, as well as some policy and technology aspects of monitoring national and
regional compliance with a carbon-emissions control regime. Some technical, legal, policy, and risk aspects of monitoring long-term carbon emissions from

carbon capture and storage reservoirs, as well some legal and policy aspects involved with geoengineering, are also presented for discussion.

The mixing ratio of carbon dioxide in the atmosphere, CO,,¢m,
now has a seasonable peak slightly over 400 parts per million by
volume (ppmv). This value is currently higher than at any time
in the past 670 000 years, and probably higher than at any time
in the past 20 million years.” The increase in atmospheric CO,
concentration is primarily the result of anthropogenic activities,
predominantly from fossil-fuel consumption.> Moreover, the rate of
increase in anthropogenic CO, emissions more than doubled in
the period 2000-2014, to 2.5-2.7% per annum, relative to the 1.1%
per annum increase in the 1990-1999 period.>* At the current rate
of emissions increase, within 40 years, CO,am, Will be over double
its pre-industrial, if not pre-human levels.

From ice core data that extend back for over 670 000 years,
changes in CO,,.y, have been correlated with changes in
average global temperatures.” Prior changes in average global
temperatures preceded the average global changes in CO,a¢m
over this same period, indicating that the initial changes in
COyarm Observed historically are the result of temperature
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changes, as opposed to being their cause. These periodic changes,
which have repeatedly prompted glaciation/deglaciaton cycles, are
reasonably ascribed to the dynamics of the Earth’s orbit with
respect to the sun (the so-called Milankovitch cycles).” The resulting
change in insolation is not however sufficient to account quantita-
tively for the magnitude of the observed temperature changes.
Hence the resulting change in CO,ay, is hypothesized to amplify
the temperature-increasing effect of the changes in orbital-related
radiative forcing.?

Carbon dioxide is the most oxidized form of carbon in the
naturally oxidizing (rich in oxygen) atmosphere of the earth.
Hence, no natural chemical destruction mechanism exists for
atmospheric CO,. After a relatively rapid equilibration of atmo-
spheric CO, with the biosphere, which accounts for why only
approximately 60% of the total amount of CO, emitted by
fossil-fuel burning persistently appears in the atmosphere,
the remainder of the atmospheric CO, will persist until it is
removed by transport and mixing of CO, between the near-surface
ocean and the deep oceans, along with sequestration in long-
lived trees and weathering.” Assuming a complete cessation of
anthropogenic CO, emissions once COpatm 550 ppmv
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were reached, approximately 2 of the CO,um would decay in
400-500 years, and 1 would persist for 10 000 years or more."*”’
If unmitigated and unabated, 21st century anthropogenic CO,
emissions will thus persist in the atmosphere for a timescale
comparable to recorded human history.

The exact effects, both negative and positive as well as variable
regionally, that such atmospheric CO, concentrations will produce
will remain uncertain, to varying degrees, until those levels are
reached and observations are made on the state of the planet. An
improved scientific understanding of the chemical and physical
fate and transport processes in the atmosphere, biosphere and
oceans, and some degree of understanding of associated feedbacks
and nonlinearities such as water vapor feedback, ice melting, cloud
type and distribution, and the effects of salinity changes on
transport and sequestration in the ocean, as well as robust methods
for data validation and assimilation, are needed to confidently
formulate an assessment of current conditions. Such methods are
also needed to enable confident projection of observed trends for
decades and perhaps centuries into the future.

In response to an increase in the atmospheric CO, concentration,
climate models generally indicate warming globally, with varying
global and regional impacts.” The sign of the effect is physically
reasonable, because based on optical absorption measurements, a
doubling of COy,m to 550 ppm will produce an additional 4 W m >
of radiative forcing relative to preanthropogenic levels, as compared
to the spatially and temporally averaged value for the solar constant
of 340 W m ™ at the top of the atmosphere. Although CO, emissions
constitute the major and most long-lived anthropogenically
produced greenhouse gas, other species, including methane,
aerosols, nitrous oxide, and hydrofluorocarbons are also important.
Moreover, the temporal and geospatial variation of atmospheric
CO, is also an important indicator of regional or national actions
in a global carbon-emissions control regime. Some of the major
uncertainties in climate modeling lie in understanding the
linear and nonlinear responses of the various sections of the
planet, including the atmosphere, land, oceans, ice, etc., to such
an increase in radiative forcing. Feedbacks can be both positive
and negative in sign, and chemical and physical couplings
between these components occur on timescales ranging from
seconds to centuries. To estimate the projected system response
and its variance, individual climate models are run for many
different initial conditions of cloud formations, global temperatures,
etc. Of course, the Earth is a chaotic system that is not on
an average path, but on a particular path, and nobody knows
what distinguishes that path from other possible ones. Regula-
tion of CO, emissions therefore falls under the purview of risk
management.

Technical means, economic costs, and policy measures involved
with reducing anthropogenic CO, emissions have been discussed
widely, especially in Energy and Environmental Science at the
research and development level. Instead, this Opinion focuses onto
four topics that intertwine science, technology, legal, and policy
issues. These topics must be considered in any global carbon
emissions control regime, even though they may have received
relatively little attention to date. They are also timely in view of the
recent outcome of COP21 in Paris, in which the delegates, in
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conjunction with nationally intended commitments and pledges,
resolved that countries should take actions (per Article 2) to
“hold the increase in global temperature to well below 2 °C above
pre-industrial levels”” with an additional goal (per Article 4) of
“achieving a balance between anthropogenic emissions by
sources and removal by sinks of greenhouse gases in the
second half of this century”... “in order to achieve the long-
term temperature goal”.1

A. What to regulate and at what levels?

An explicitly stated goal of the COP21 Paris agreement is to
prevent globally averaged temperature increases of greater than
2 °C relative to preanthropogenic levels, with no specific base-
line temperature precisely specified. This amount of temperature
increase is often (but not always) associated with mixing ratios of
CO,aum in the range of 450 ppmv. However, while we know enough
to correlate increases in CO, concentration with rises in temperature,
we do not know for certain what levels of CO, will lead to what
temperature changes. Additionally, any specific total CO, emissions
budget can be produced by an infinite number of time-dependent
emissions pathways, with further emissions trajectories allowed
mathematically if negative emissions technologies are deployed.
Other greenhouse gases, as well as aerosols, can also have
substantial effects on atmospheric temperatures.

¢ If CO, emissions are controlled with the intent to produce
an atmospheric CO, mixing ratio of - say, 450 ppmv - are
further immediate, mandated cut-backs in CO, emissions
required to comply with COP21 and/or other global accords if
temperatures change by more than 2 °C?

e If some, or all, of the temperature changes are eventually
ascribed to either some degree of natural variability or to other,
non CO,-emitting activities such as urbanization or land-use
changes, would increased CO, emissions be allowed?

e What if some regions suffer climate-derived damage even
at a 2 °C global average temperature increase, because an
average 2 °C global temperature change could produce tempera-
ture changes at least twice as large in the polar regions, melt ice,
disrupt communities, and possibly effect major economic and
social changes in large regions of countries and/or continents?

e What actions would be taken if temperatures were held in
check, but the coral reefs continued to be bleached, due to
changes in ocean chemistry from increases in the concen-
tration of CO, dissolved in sea water?

e What if 450 ppmv CO, levels keep the global average
temperature change to 2 °C, but produce an amplification of
the hydrological cycle that is predicted by most climate models,
leading to an increased frequency of Category 5 hurricanes that
cause extensive damage to major cities?

e How does one determine that a particular hurricane was at
least in part caused by an anthropogenically derived increase in
the CO, concentration in the atmosphere, to establish a legal
basis for seeking relief for damages? Who, if anyone, is liable
for such impacts? From what source would be such damages
awarded? How would attribution be established?

Energy Environ. Sci., 2016, 9, 2172-2176 | 2173


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6ee00272b

Open Access Article. Published on 02 June 2016. Downloaded on 7/18/2025 10:48:58 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Energy & Environmental Science

A further limitation is that the relationship between anthro-
pogenic emissions of CO, and the CO,,,, mixing ratio can be
established with some degree of accuracy within the framework
of the current earth climate system, in which ~60% of the
emitted carbon stays in the atmosphere, with the remainder, in
approximately equal parts, partitioning into the biosphere and
the oceans.” If non-linearities in the global carbon cycle start to
become important, then a predetermined rate of anthropogenic
emissions, hypothesized to produce a given concentration of
anthropogenic CO, in the current atmosphere, could produce
much higher, or lower, actual CO, concentrations in a future
atmosphere. Further CO, emissions may for example lead to
warming that melts the permafrost, which then releases more
CO, and CH,, that in turn leads to more warming, which in
turn leads to more melting of the permafrost.

e Are emitters in violation of the global accord if they are
following a prescribed emissions profile hypothesized to produce
COsatm = 450 ppmyv, but the atmospheric CO, mixing ratio never-
theless increases beyond initial expectations, due to carbon cycle
feedbacks?

e Can emitters be sanctioned retroactively if their emissions
caused higher than initially anticipated CO, concentrations or
temperature changes?

It seems that the only choice from a regulatory perspective is
to define a CO, emissions budget either globally or by country,
as opposed to attempting to regulate, control, target, or define
the consequences of, a specified global average temperature
change, or even a total atmospheric CO, concentration. All
CO, levels above the preanthropogenic value of 280 ppmv will
necessarily entail unknown, and imprecisely definable, risks.
The risk of ‘“dangerous” CO, levels likely increases with
increased atmospheric CO, concentrations, but the exact risk vs
CO, concentration profile is not well defined, or probably well
definable.

At present, aerosols provide a net radiative forcing of
—0.9 (+0.9) W m? relative to preanthropogenic levels.> Hence
a reduction in aerosols that would accompany a cessation of
coal combustion would, by itself, produce an increase in
radiative forcing and thus result in an increase in the tempera-
ture of the atmosphere.

e Are nations encouraged to use more coal, so as to produce
more aerosols and thereby cool the planet, if such avoids the
stated maximum temperature change even transiently?

Regional concerns are also important to consider.

o If climate changes produced a northern movement in the
corn belt and dust-bowl conditions in the midwestern U.S.,
would Canada be encouraged to engage in enhanced corn
production to sustain global food supplies, and additionally
benefit from associated land-use changes that would reduce
Canada’s net carbon emissions? Or would Canada be subject to
sanctions and/or economic damages to compensate the U.S. for
a loss of agricultural productivity and food export revenue?

Most low-carbon energy technologies, including batteries,
wind turbines, solar panels, fuel cells, etc., entail a significant
capital expense, and thus energy invested, so that upon deployment,
the energy returned bears relatively small ongoing “fuel costs”.
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e If a country emits CO, to manufacture solar panels or
batteries for export, and another country installs said panels or
grid-storage batteries and consequently lowers their CO, emissions,
should the manufacturing country receive a portion of the
emissions-reduction credit?

e If not, why would a country bear the fossil-energy burden
of manufacturing low-carbon technologies for export, when
another country would solely realize the carbon-control-regime
compliance benefits?

e Which country bears the burden of fossil-fuel emissions
associated with transcontinental shipment of solar panels from
manufacture to installation?

Rigorous life-cycle assessments of the energy returned on
energy invested, including labor associated with installation
and operation of the resulting infrastructure, would provide a
beneficial and foundational input for assessing the situation in
detail.

B. Regulating short-term vs. long-term
emissions

One of the most complex issues involved in devising a frame-
work to regulate CO, and other greenhouse-gas emissions is
that the impacts can be manifested on timescales from years to
millennia. Some carbon, for various time periods, can be stored
in terrestrial biomass, as indicated in Article 5 of the COP 21
agreement. Another proposed technology to mitigate CO, emissions
involves capturing the CO, emitted from a coalfired power plant
and burying the CO, underground in a geologic reservoir. This
approach is often called carbon sequestration, or carbon capture and
storage (CCS). A related technology is bioenergy with carbon
capture and storage (BECCS), in which electricity is produced by
the combustion of biomass, and the resulting CO, is captured
and sequestered.® BECCS can thus contribute to reductions in
atmospheric CO, concentrations.

The above-ground engineering and technology costs asso-
ciated with capturing CO, are reasonably well-estimated, but
the fate and transport of the sequestered underground CO, is
much less established. Natural gas has remained trapped in
geologic reservoirs for millennia, but the global geologic gas
reservoir inventory can only hold 30-50 years of current CO,
emissions. At current global CO, emissions rates, underground
aquifers could provide a larger estimated capacity, of between
50-150 years of global carbon emissions.’

A key metric for the technical success of CCS/BECCS is that
the reservoirs must not appreciably leak over long periods of
time. If, for example, CCS is practiced for 50 years, and 2% of
what is put into the reservoirs leaks per year, then after 50 years
the emissions would be the same as not having sequestered at
all, and emissions are merely temporarily delayed. If the goal
is to stabilize atmospheric CO, concentrations using this
approach, then the globally averaged leak rate of the CCS
reservoirs needs to be 0.1% or less per annum for > 1000 years.
Every reservoir formation and site is geologically different, and
hence requires its own technical risk assessment.

This journal is © The Royal Society of Chemistry 2016
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e Given that we might, at best, have 10-20 years of data on
the rate of CO, movement underground, at a few sites, between
now and when CCS would have to be practiced at global scale,
how could one technically and legally establish, with reasonable
certainty, the leak rate of such sites for centuries to millennia
into the future?

o If a reservoir has a 90% chance of holding 95% of the carbon
buried therein for 100 years, is that an acceptable site for CCS?

e Who would assume the liability for personal or property
damage if a CO, leak occurred at a CCS site, and how would
leaks be mitigated?

e How would one prove that the leak came from the site and
was not caused by other sources, natural or otherwise?

Technologies and operational systems that can monitor the
fate and transport of subsurface CO, would clearly be helpful to
establish a firmer basis for a technical risk assessment of
CCS sites.

Enormous quantities of CO, would need to be involved in
CCS to mitigate a significant amount of fossil-fuel-derived CO,
emissions. A liquid volume of CO, the size of Lake Superior
would need to be sequestered underground every year to
mitigate current U.S. CO, emissions. If distributed uniformly
over the lower 48 states, after 100 years of such CCS processing,
such an amount of CO, material would be equivalent to a rise
in elevation of the entire continental U.S. by over 5 cm.
Proposals have been made to store massive amounts of CO,
off shore, below the sea floor, where the CO, is calculated to be
thermodynamically stable to migration.

e Should on-shore CCS be prohibited in favor of the more
remote and more expensive (and also not yet proven) off-shore
storage concept, pending proof in the affirmative that on-shore
storage can be achieved with the needed technical require-
ments over both short and long time scales?

e How would one establish a legal and technological frame-
work to ensure that adequate CCS success is validated in the
long run as well as in the short run?

C. Validation of compliance in a
regulated global emissions regime

Inventories of CO, emissions emanating from various countries
are currently based on self-reported data. The COP21 accord
specifies that a global “stocktaking’” based on such inventories
will be updated every 5 years." In cooperative nations, monitoring
mechanisms such as the U.S. EPA’s “polluter pays” approach for
CO, emissions monitoring have been proposed. In a global CO,
emissions regulatory regime, some nations might be economically
motivated to inaccurately report their fossil fuel consumption
and resultant CO, emissions. Such patterns of non-treaty-
compliant nation-state behavior are routinely seen or suspected
with respect to treaty obligations for military purposes, such as
the nuclear non-proliferation treaty, the chemical weapons
convention, and other arms-control export regimes.

e If a country deliberately underreported its fossil-fuel
production and consumption, how would one know?

This journal is © The Royal Society of Chemistry 2016
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There is ample precedent for the use of technological means to
ensure compliance with international treaties, such as for the (not
ratified but observed) comprehensive nuclear test ban treaty. In
that instance, the putative signatories have agreed to cooperate in
the installation, monitoring, and operation of a global network of
sensors of various types (infrasound sensors, seismic arrays, atmo-
spheric particle monitors, etc.), to monitor compliance with the
treaty obligations preventing testing of nuclear devices above a
certain specified yield.' The International Monitoring System is
an operational system that monitors compliance.

Globally averaged values of CO,,.y, can be measured at fixed sites
such as Mauna Loa, Hawaii. Large-scale regionally averaged CO,a¢m
levels can be measured by satellites, with km-scale resolution.™
However, CO, is a well-mixed gas in the atmosphere, hence, tracing
it back to its source regionally on a relatively rapid timescale is not
yet well-established technically. Additionally, the annual changes of
CO,aum are relatively small. In many cases, it would be challenging to
confidently detect, at yearly intervals, deviations by a specific country
or region from a prescribed emissions budget.

e What technologies would be employed for ensuring com-
pliance in a globally regulated carbon-emissions regime?

e Would every industry and power plant be required to
install a point-source continuous CO, emissions monitor?

e Would approaches such as the U.S. EPA’s “polluter pays”
tailpipe and stack monitoring technology and policy be robust,
transparent, and enforceable in openly or covertly non-compliant
nations?

e Would the existing Open Skies Treaty'> be broadened to
include CO, and other greenhouse gas sampling, and according
to what protocol? Who would operate and pay for satellites and/
or airborne platforms that performed remote CO, monitoring
and who would have access to the data?

e How would one know how much electricity, for example, a
given nation-state actually consumed in a given year, and how
much of that came from fossil-fuel consumption, and from
what fossil-fuel source?

e What monitoring technologies would be acceptable to, for
example, U.S. industries, while still protecting them from being
vulnerable to some form of industrial espionage? What group
would be delegated to review the data and mandate enforce-
ment actions, and with whose backing?

e What penalty would be levied for noncompliance?

D. Legal aspects of geoengineering

Several methods of geoengineering have been proposed to counter
anthropogenically the effects of an increased CO,-induced global
warming. Geoengineering is not of course a direct carbon-emissions
control technique, but is generally reserved for consideration in the
eventuality of a “climate emergency”."* Geoengineering has a unique
set of very complex technical and legal aspects that warrant
consideration, because geoengineering could prove to provide a
tool for maintaining average temperatures to well below 2 °C
above pre-industrial levels if a carbon-control regime fails to
accomplish this goal. Geoengineering legal and policy issues
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are substantially more notional than those associated with a
carbon-emissions control regime.

Some proposals involve deployment of “space parasols” that
would shade a fraction of the sunlight from hitting the earth. Other
proposals involve continuously, in perpetuity, injecting aerosols into
the stratosphere, where they would scatter incident sunlight and
thereby cool the planet (while also turning blue skies instead
into a grey color, due to the light scattering from the injected
aerosols). None of the geoengineering approaches proposed to
date deal with the non-radiative impacts of increases in CO,a¢m,
such as the chemical impacts of acidification of the oceans and
thereby increasing the bleaching of coral, or other chemical and
ecological impacts (either adverse or beneficial) that would be
derived from increases in CO,,m. Even the developers of geo-
engineering concepts admit that such measures are inherently
risky and ought to be considered only as measures of last resort,
in the eventuality that emissions are not curtailed and in the
event that the impacts produced by such unstabilized atmo-
spheric CO, concentrations are deemed so unacceptably serious
that they require decisive attempts towards mitigation."®

Because we admittedly do not fully understand the impacts of
changing CO,.m, (ppmv) on the factors that control weather and
climate, such as cloud formations, cloud distributions, etc., it stands
to reason that we have at least an equally incomplete understanding
of the effects of man-made perturbations of the system away from its
normal state. Furthermore, the timescales of monitoring the impact
of such changes would range from months to centuries.

o If the U.S. launched a space parasol and restored tempera-
tures over North America, but left alone (or even warmed
further) Africa, is that acceptable?

o If three Category 5 hurricanes hit Mexico shortly after a
European space parasol were deployed, would Mexico be
entitled to damages, and from whom?

o If temperatures were restored but CO,,¢y, continued to rise,
and the oceans thus continued to acidify, could Belize and
Australia seek remediation for loss of tourism, and for loss of
their natural resources, associated with coral reef bleaching?

e Would such countries have an implicit self-defense right to
launch their own satellites or attack previously deployed space para-
sols to re-tune the climate and environment of their own regions?

Clearly, Earth systems measurement and monitoring techno-
logies are needed to establish a scientific basis to assess such
changes, and even to form an actionable basis for a case to
support remediation or penalties.

None of the questions raised in this Opinion likely has an
easy answer. Most are moot only in two limiting scenarios:
(a) the world chooses the (default) path involved with allowing
anthropogenic CO, emissions to continue unabated into the
21st century, and bears the risks (as well as the historical and
current benefits) associated therewith; or (b) the world acts
quickly, voluntarily, decisively, transparently, and globally, to
dramatically curtail CO, emissions to levels needed to produce
stabilized CO, concentrations near preanthropogenic levels.
More likely, the future will lie in between these limiting cases,
in which case the issues raised in this piece will become of
critical importance in the establishment, and success, of a
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global carbon emissions-control regime. The present rate of
accumulation of atmospheric CO, is rapid and its lifetime in
the atmosphere is long. Long times are furthermore historically
associated with effecting significant changes in energy infra-
structure. Hence, the decision on which path to take, within a
framework supported by the appropriate laws of state and laws
of economics, needs to be made imminently. Otherwise, by
default, the path will be chosen for us, supported instead by the
unrepealable laws of the physics and chemistry of our planet.

I acknowledge the Department of Energy and the National
Science Foundation for sustained support that made the pre-
paration of this piece possible.
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