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The implementation of large-scale carbon dioxide capture and storage (CCS) is dependent on finding
materials that satisfy several different criteria, the most important being minimising the energy load
imposed on the power plant to run the process. The most mature CCS technology, amine scrubbing,
leads to a loss of 30% of the electrical work output of the power station without capture, which is far
too high for widespread deployment. High-temperature CO, absorption looping has emerged as a
technology that has the potential to deliver much lower energy penalties, but further work is needed to

Received 23rd October 2015, find and develop an optimal material. We have developed a combined computational and experimental

Accepted 15th January 2016 methodology to predict new materials that should have desirable properties for CCS looping, and then

DOI: 10.1039/c5ee03253a select promising candidates to experimentally validate these predictions. This work not only has

discovered novel materials for use in high-temperature CCS looping, but analysis of the entirety of the

www.rsc.org/ees screening enables greater insights into new design strategies for future development.

Broader context

Given the likelihood of continued fossil fuel use, carbon capture and storage (CCS) technologies become increasingly required, if the world is to reduce
atmospheric CO, concentrations. The current challenge in implementing widespread CCS is finding materials and processes that achieve acceptable levels of
energy efficiency. While much work has been done to optimise the processes involved in CCS, less attention has been given to the discovery and optimisation of
new materials. In this work we present a high-throughput computational screening methodology that allows the efficient prediction of the relevant CCS

Open Access Article. Published on 21 January 2016. Downloaded on 1/8/2026 6:54:28 PM.

(cc)

properties for known materials, and succeeds in finding several suitable candidates with improved performance over commonly used materials. Furthermore,

extensive experimental testing of candidate materials validates the accuracy of the screening and suggests further iterations for its future use.
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Introduction

The challenge of reducing anthropogenic greenhouse gas emis-
sions, particularly that of CO,, has been the focus of numerous
governmental and industrial initiatives in recent years. Despite
government policies penalising industry for CO, emissions, it is
likely that total global emissions of CO, will continue to
increase over the next decades as countries continue to exploit
their natural resource reserves." In this instance, large-scale
carbon dioxide capture and storage (CCS) applications represent
one of the main initiatives to mitigate the rise of global CO,
emissions.”

There are a number of different broad categories of proposed
materials to separate CO, from the flue gas mixture, typically
composed of ~75% N,, ~10-15% CO,, ~10% H,O, and
~3% O, at 40 °C and 1 atm. These include physical adsorption

This journal is © The Royal Society of Chemistry 2016
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processes utilising materials with high internal surface areas
such as zeolites, metal-organic frameworks (MOFs), zeolitic
imidazolate frameworks (ZIFs) and activated carbons;*® physical
separation processes utilising membrane materials” and high
temperature CO, absorption looping processes involving the
chemical reaction of CO, with alkaline earth oxides, notably
MgO and CaO and related materials to form solid carbonates.®
These high-temperature processes are particularly appealing,
given the possibilities of achieving very low energy penalties
(~6-8% with respect to reference power plants without CO,
capture), the maturity of the technology being reflected in the
number of pilot plants using CaO-based sorbents already operating
around the world, and the wide range of materials that could
possibly be used in such a process.’

There is interest in developing new materials for high-
temperature CCS, or modifying existing ones, because of the
problems with capacity loss encountered when using a pure
Ca0-CaCO; system. In studies using natural limestone, the
CO, capture capacity of the solid sorbent can decrease by as
much as 90 mol% within 5 cycles owing to sintering of the solid
particles.'® Recent research has focussed on the use of various
additives to form solid supports and avoid sintering of the
limestone, including Al,O3, Ca;,Al;40;3, SiO, and MgO."' ™"

Beyond the current approaches, there is a very wide range
of basic oxide materials which could potentially be used in
developing an optimal process. Practically, synthesising and
testing all possible materials is not feasible, and therefore it is
desirable to develop a screening methodology based on ab initio
computations to identify the most promising candidates for the
target application.

There have been a few examples of previous approaches
utilising various theoretical methods to screen materials for
CO, capture. Lin et al. generated a database of potential zeolite-
like structures that were subsequently analysed via interatomic
potentials to determine their thermodynamic stability.** CO,
absorption isotherms were constructed using molecular simu-
lations, which allowed the calculation of the parasitic energy
for the stable materials, corresponding to the penalty imposed
on a power plant if fitted with a CCS process using the material
(including the energy to compress the gaseous CO, for storage).
Their screening showed a theoretical limit to the minimum
parasitic energy obtainable with zeolitic and zeolitic imidazolate
framework (ZIF) materials. A subsequent study applied this
parasitic energy metric to a wider class of materials including
both experimentally-realised and hypothetical materials, finding
that it is suitable for evaluating materials for CCS, as it combines
various relevant thermodynamic properties.’> Several other
studies have also been performed on similar materials, albeit
on small sets, with some comparison between theoretical and
experimental results."®™® High-throughput synthesis methods
have also been used to find novel ZIF materials for CO, capture.®

The group of Duan et al.**"*" have focussed on lithium-based
oxide materials for high-temperature CCS applications, using
density functional theory (DFT) and phonon calculations to
determine the carbonation reaction thermodynamics of these
materials, and comparing them with experimental results.
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Other studies have also outlined a possible screening process
based on theoretical DFT and phonon calculations to identify
the most suitable materials from a large starting set, with
screening performed on smaller sets of alkali-based oxides.***?
The limitation of these studies is that they were applied to
a relatively small number of materials, many of them already
well known experimentally as being promising compounds
for CO, capture.

The goal of the present study is to theoretically screen
thousands of possible carbonation reactions from a very wide
range of solid oxide based materials, both with the hope of
discovering novel compounds for CCS applications, and that
the screening results can help elucidate the underlying principles
that can drive future design of CCS materials. Thus, we have
utilised the Materials Project database (www.materialsproject.org),
which contains structural, electronic and energetic data for over
50 000 compounds (as of August 2014) calculated using the Vienna
Ab initio Simulation Package (VASP).>*>® Importantly, the contents
of the database are accessible via the REST Materials APL,>” which
allows users to develop their own screening programs to search
the database using an open-source Python library (pymatgen) for
materials analysis.”® In this work, a screening methodology was
developed to search the database for suitable materials for
high-temperature CO, capture and to predict the thermo-
dynamic enthalpies for the in silico carbonation reactions of
these compounds. To rank these reactions we used an energy
penalty concept as used by others,'* which favours materials
whose use for CCS minimises the energy load imposed on a
power station. We also screened materials based on their
gravimetric CO, capacity as a preliminary measure of the
material cost per unit of CO, captured, and also the net volume
change of a material after carbonation as an indication of
cycling stability.

Experimental investigations of the carbonation reaction
thermodynamics, cycling stability and morphological changes
were performed as a comparison to the theoretical predictions,
so as to go beyond the solely theoretical framework used in
previous studies. X-ray diffraction (XRD) was used to characterise
the structures of the materials both pre- and post-reaction,
thermogravimetry and differential scanning calorimetry (DSC)
was used to characterise the carbonation enthalpy and cycling
capacity, while scanning electron microscopy (SEM) allowed us
to characterise the changing surface morphology of the cycled
materials. The particular candidate materials were chosen for a
number of different reasons. Firstly, materials for which there
had been no previous CO, capture properties reported were
studied to validate the claim that the screening could suggest
truly novel materials for CCS applications. Other materials were
then selected either as (i) benchmark materials to provide as
wide a comparison with other studies, or (ii) because of their
predicted performance as CCS materials. The experimental
studies showed that the theoretical screening could indeed
accurately predict (within error) the carbonation properties of
the candidate compounds, validating this method as a tool for
the discovery of novel CCS materials. Furthermore, rational
design guidelines emerged from the overall screening results,
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giving valuable insights as to where future research efforts
should be aimed to optimise the materials used in CCS.

Methodology
Dataset construction

Given the ground state energies of all the phases present in a
given carbonation reaction, it is possible to calculate AEpgr for
the reaction, which is equal to AHcarponation at 0 K and zero
pressure. The first part of the screening process therefore is to
determine this value for all possible reactions within a given
subset of compounds. Furthermore, since these reactions will be
performed at varying CO, partial pressures and temperatures, a
single variable can be defined by considering all reactions under
varying CO, chemical potential (uco,), with a more negative value
corresponding to either higher T or lower pco,.

The screening focussed on oxide materials that were either
binary or ternary compounds in this initial screening, as this not
only drastically narrows the phase space within which the search
is conducted, but it also excludes compounds with four or more
elements that are more likely to phase segregate to simpler binary
or ternary compounds during the cycles of carbonation and
calcination. Furthermore, materials were limited to those con-
taining elements from the 37 most abundant within the earth’s
crust, because this realistically reflects concerns about cost and
availability of a useful CCS material.f The geometry optimised
structures and ground state Epgr of the relevant materials were
retrieved from the Materials Project database, having been pre-
viously calculated by the Materials Project using VASP.>*

The screening comprised 640 unique compounds with a total of
1442 simulated carbonation reactions. To obtain all compounds
that matched these initial criteria, quaternary phase diagrams of the
form A-M-O-CO, were simulated, where M is a non-alkali element,
using the Phase Diagram app within the pymatgen library.>**"
Because the primary interest lies in the evolution of the phases
under reaction with CO,, the approach found in previous studies
that generated open phase diagrams with respect to uo, *"** was
adapted to study the phase equilbria under changing tco,.

Open phase diagram construction

In order to construct these phase diagrams, we initially assumed
that the system is closed with respect to every element except
CO,, which is non-ideal but reasonable given that pco, > po,
during both the carbonation and decomposition reactions.
Furthermore, we separately tested each compound for its stability
with respect to po,, and this was included as an additional filter
in our screening, excluding compounds that would oxidise or
reduce under conditions similar to those for carbonation. In this
case the relevant potential is the CO, grand canonical potential
which can be defined as:

¢(T;P;NA,NM1N01HCOZ) =G — pico,Nco, = E — TS + PV — lco,Nco,

(1)

i Sb was also included in the screening, despite not being within the most
abundant elements, because of our work on a novel CCS material, Ba,Sb,0,.2°
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where G is the Gibbs free energy, E is the internal energy, T'is the
temperature, S is the entropy, P is the pressure, V is the volume,
and N; is the number of atoms of species i in the system. If it is
assumed that the change in the PV term is small and primarily
cancels between the solid phases relative to the £ and TS terms
for a reaction that primarily involves solid condensed phases,
and ¢ is normalised so that the sum of the A, M and O
components is equal to 1, eqn (1) can be rewritten as

E—-TS — MCOzNCOZ
Na + Nm + No

(/)(T7 P,xA,xM,xoz,yCOZ) = (2)
where x; is the component fraction of 7 in the ternary phase
diagram. To clarify, Ny is the amount of oxygen remaining in a
phase after adding or removing stoichiometric amounts of CO,,
for example in the phase Li;COs, Ngo, =1 and Np = 1.

In order to construct these open phase diagrams it is
normally necessary to calculate the entropy change in the solid
and gas phases due to different vibrational, configurational and
electronic excitations. For solid crystalline structures this would
normally be approached by calculating the various phonon
frequencies (and hence the phonon densities and dispersion
curves) for individual phases and using these to derive the total
vibrational energy of the crystal at different temperatures. This
approach is tractable when it comes to studying a small number
of phases and reactions, but in a screening study involving
thousands of different compounds, these calculations are too
expensive to be feasible.

Fortunately, some assumptions can be employed to simplify
the calculation of the phase diagram. Given that all the reac-
tions of interest involve CO, gas absorption, it is reasonable to
assume that the reaction entropy is dominated by the CO, gas
entropy, rather than changes due to solid-solid transformations.
In fact, it has been previously shown that the Gibbs free energy
of solid phase surfaces vary to a very small degree (<10 meV)
over a wide range of temperatures (<1500 K) and pressures
(<100 atm).**** As such, the change in the CO, chemical
potential can account for the majority of the effect of tempera-
ture on ¢. At a given temperature T and CO, partial pressure
Dco,, the chemical potential can be described as:

o, (T.pco) = Eco, + PV — TSE + lenl% 3)

where pco, is the CO, partial pressure, p, is a reference CO,
partial pressure (0.1 MPa), k is Boltzmann’s constant and Sgé’f is
the CO, entropy, obtained from the NIST-JANAF thermochemical
tables.* If the gas is ideal, the PV term is equal to kT, leaving the
chemical potential dependent only on T and pco,. The expres-
sion for ¢ can be further simplified, given the assumption that
the contribution of S¢o, within pico, Nco, dominates compared to
S (the entropy of the solid phases):

E— Hco, N CO,

N @)
Na + Nm + No

¢(T7 P7 XA XM, szn“COz)
It is possible then to interpret carbonation reactions as the

evolution of phases over successive ternary phase diagrams
A-M-O with different uco,, essentially tracking the decomposition

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Ternary Li-Si-O phase diagrams under different uco, obtained by applying the CO; grand potential to the Materials Project database. The
physical equivalent of increasing the chemical potential is either an isothermal reaction performed with increasing pco,, or an isobaric reaction under
decreasing temperature. Vertices that are present in the lefthand phase diagram but are not present in righthand phase diagram represent phases which
have decomposed as a result of the change in uco,. The product phases of this decomposition reaction with CO, are situated at the vertices at either
end of the edge where the original phase was formerly located. For example, Li4SiO4 transforms to a mixture of Li,COsz and Li,SiO3z with increasing Uco,

(see pink shaded area of the phase diagram).

of a given phase under increasing temperature or CO, partial
pressure. An example of this can be seen in Fig. 1, showing
different projections of the Li-Si-O-CO, phase space at
constant fico, slices.

A summary of the assumptions used in simplifying the CO,
grand canonical potential can be seen in Table 1.

Correction for CO, molecule

It is also necessary to obtain a more accurate estimation of the
energy of the CO, molecule found in the database, because the
database entry for CO, is based on solid, rather than gaseous
CO,. More pertinently, solid—-gas reactions in density functional
theory are subject to non-cancellation of errors that often
require empirical adjustment.’®*” To this end we calibrated
the database energy by comparing AEppr and AHcperimental
at 293 K for a small set of basic binary alkali oxides, and a
number of ternary Li-based oxides (Fig. 2). The average error
between the theoretical and experimental values was added
as a correction to Eco,, and the corrected value was used for the
screening. This correction will also account for some part of
the solid entropy change between 0 and 293 K not taken into
account in the calculations.

Comparison to other theoretical studies

There are previous theoretical results derived from a similar
level of DFT theory to model AEpgr for the carbonation

reactions of binary oxides and some different reaction pathways
for Li-based ternary oxides.'>?”***® To validate the calculated
energies in the Materials Project database, we compiled these
previous results and compared the respective A Eppr for the various
reactions. The respective values for AEppr are shown in Fig. 3.

It can be clearly seen that there is a small but constant
overestimation (more negative) of A Eppr in this work compared to
the previous studies. The main source of deviation between the
two studies is the different values of Eqo, used: —2191 kJ mol !
and —2219 k] mol " for our study and the work of Duan et al.
respectively,>* which would lead to our more negative AEpyr.

Energy penalty calculations

To evaluate the potential use of these compounds in CCS
applications, the overall parasitic energy penalty that would
be imposed on a model power plant through the use of this
material was considered, following the approach in previous
studies."* Further details of these calculations are available
in the ESL¥

Synthesis of candidate materials

Pure polycrystalline samples of the candidate materials were
prepared using a solid-state method. The starting reagents and
synthesis conditions are summarised in Table 2. Prior to
weighing, CaCO; was dried at 1000 K overnight to ensure there
was as little moisture present in the compound as possible.

Table 1 The form of the CO, grand canonical potential, and the assumptions used to obtain the simplified expressions used in the screening

¢ Assumptions

E — TS + PV — jico,Nco,
E—-TS— Hco,Nco,

E — jico,Nco,
E — Nco, <Eco2 kT — TS + len’%>
- 0
EPFT _ Neo, <Eg°(;g + kT — TSEL + kT In ’ﬁ>
) - - Do

This journal is © The Royal Society of Chemistry 2016

Exact form

PV small relative to E — TS

S small relative to Sco, (contained within uco,)
CO, behaves as an ideal gas

E =E"T at 0 K, Eco, fitted to experimental values
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2LiFeO, + CO, =»Li,CO, + Fe 0O,
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Fig. 2 Errors between AEppr and AHexperimentat at 293 K for selected binary and ternary oxides. The average error was used as a correction to Eco2 in the

Materials Project database.

Li,0+CO, = Li,CO

Na,0 + CO, =»Na,CO

K,0+CO, & K,CO

MgO + CO, =» MgCO

Ca0 +CO, =» CaCoO,
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L1 ZrO +CO - Li CO,L+2L1 ZrO

i ,Si0, £ CO, = Li,CO, + SiO

Li, SlO +CO—>L1CO +2S10

0.5Li, SlO +CO ->L1CO +05S10

L1 SIO + CO ->L1 CO +Li,Sio

0.25Li SIO b8 CO, ->L1 CO +0. 25 SiO,

0.33 Li,SiO, +CO, = Li,CO, +0.33 Li,SiO;

0.5 Li,SiO, + CO, ->L1CO +0.5 Li,SiO
KZrO +CO -> KCO +ZlO

-50
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= Duan et al.
= Materials Project
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(kJ/mol)

Dl'T

Fig. 3 Comparison between the calculated AEper for this work (blue), and with the studies of Duan et al. (red).1>2%2338 There is a small but constant
difference between the two studies, with the Materials Project AEpgr being 21 kJ molcoz’1 lower than the previous study on average.

Table 2 Synthesis conditions and starting materials for the compounds in the present study

Compound Starting materials Reaction programme Atmosphere
Ca,Nb,04 CaCO; + Nb,Os5 1173 K for 12 h, 1648 K for 12 h x 2 Air

LisFeO, Li,O + Fe,05 973 K for 12 h Argon
LigCoO, Li,O + CoO 973 K for 12 h Argon
Li,Sio, LiCO; + SiO, 1173 K for 12 h Air

LisAlO, Li,O + ALO; 973 K for 12 h Air
MgsMnOg MgO + MnO, 1173 K for 12 h Air
Na;SbO, Na,CO; + Sb,0; 923 K for 12 h, 1173 K for 12 h, 1223 K for 12 h Air

The stoichiometric mixtures were ground using an agate mortar
and pestle, except for the MgeMnOg starting materials, which were
mixed thoroughly with a high energy ball mill (SPEX SamplePrep
8000M) for 1 hour. Phase purity of the samples was monitored
by room-temperature X-ray powder diffraction (XRD), using a
Panalytical Empyrean diffractometer utilising Cu K, radiation.
The LisFeO, and LisCoO, samples were seen to visibly react over
the course of a day in air, as denoted by a distinct change in
colour, owing to reaction with CO, in the air. XRD and TGA
measurements confirmed the presence of Li,CO; in these samples
as a result of their reaction.

1350 | Energy Environ. Sci, 2016, 9, 1346-1360

Thermogravimetry

The carbonation and calcination reactions of the candidate
materials were investigated using a thermogravimetric analyser
(TGA/DSC 1, Mettler Toledo) operating at atmospheric pres-
sure. In each experiment, a sample of ~20 mg of powder was
placed in a 70 pL Al,O; or Pt crucible, supported on a cantilever-
type balance. Gases were fed to the reaction chamber through
three gas ports, viz. reactive gas, purge gas and protective gas.
The reaction chamber was electrically heated by a tubular
furnace surrounding the balance. Both the protective gas and

This journal is © The Royal Society of Chemistry 2016
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the purge gas were N,, and were fed to the TGA reaction
chamber with a flow rate of 50 mL min~'. The reactive gas
was a stream of pre-mixed N, and CO,, fed by a capillary so that
the gas could flow over the top of the crucible. The partial
pressure of CO, at the surface of the solid sample was adjusted
by varying the mix of N, and CO, in the reactive gas, while
keeping a constant overall flow rate of 50 mL min~".

For the experiments on differential scanning calorimetry
(DSC), the samples were first heated to 873 K under a flow
of N,, before being exposed to a pure stream of CO, for
10 minutes at a constant temperature. Integration of the heat
flow curves over this time interval with a baseline set to the heat
flow prior to carbonation gave the heat accumulated in the
sample during carbonation.

The actual CO, concentration at the gas-solid interface
was calibrated against the well-understood thermodynamic
Ca0/CaCO; carbonation equilibrium. For example, when a
carbonated sample of pure CaO (98 wt%) was slowly heated
in a specific mixture of CO, and N,, the temperature at the
onset of CaCO3; decomposition was recorded and the corres-
ponding CO, partial pressure in contact with the solid phase
was determined from the phase diagram of the CaO-CaCO;-CO,
system. In the temperature-programmed decomposition (TPD)
experiments, the samples were heated from 323 K to either
973 K (LisCoO, and LisFeO,) or 1223 K (Ca;Nb,0y, MgeMnOg
and NazSbO,) under a specific partial pressure of CO,, ie. a
specific N,/CO, ratio. The equilibrium temperature corresponding
to a given partial pressure of CO, was determined by the tempera-
ture at which the material started to decompose (after possibly
carbonating at a lower temperature), determined by the zero
of the first derivative of the mass curve.

Surface measurements

The surface morphologies of the solid samples at various stages
of the cycling experiments (viz. fresh, fully carbonated and fully
regenerated) were examined ex situ by scanning electron micro-
scopy (SEM). The samples were inspected in a field-emission
gun SEM (Hitachi S-5500) with a secondary electron detector.

The porosity and specific surface area (SSA) of the candidate
materials were determined using volumetric sorption measure-
ments (TriStar3000 analyzer, Micromeritics) in N, at 77 K.
The SSA was calculated using Brunauer-Emmett-Teller (BET)
analysis using N, sorption.’ Pore size distribution and pore
volumes were determined by applying the Barrett-Joyner-
Halenda (BJH) model using a 55 point adsorption-desorption
isotherm.

Results and discussion
Summary of screened materials

The screening of the Materials Project database for compounds
within the A-M-0O-CO, open phase diagrams found 640 distinct
compounds able to undergo reactions with CO,, with a total of
1442 distinct carbonation reactions. The difference in these
numbers is due to some compounds being able to undergo

This journal is © The Royal Society of Chemistry 2016
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Table 3 Total number of compounds and associated carbonation reac-

tions found in the original screening, and after screening out compounds
that either react with CO, below 293 K, or oxidise before carbonation

Original screening After filtering

Alkali metal ~Compounds Reactions Compounds Reactions
Ba 91 195 60 121
Ca 74 164 32 46
K 101 261 73 191
Li 57 118 50 103
Mg 48 84 19 32
Na 92 249 71 187
Rb 81 175 60 135
Sr 75 165 59 122
Non-alkali 21 31 8 9
Total 640 1442 432 946

several different decomposition pathways with increasing CO,
chemical potential. A breakdown of these numbers into separate
alkali metal compounds can be seen in Table 3.

Two subsequent filters were applied to the results to screen
realistically for materials that could be practically used for
high temperature CO, absorption looping applications. The
first filter removed materials whose decomposition reactions
occurred below 293 K, as practically a CCS process would have
to occur at room temperature or above. The second filter used a
similar open phase diagram construction as used previously in
the original screening process, except this time with the open
element being O,, to screen the materials for their stability at
the very low po levels expected in the calciner, the reaction
chamber where the carbonated materials are decomposed to
release gaseous CO, and reform the original material (po, < 0.01).
Those materials that would reduce or even oxidise under these
conditions were removed from the screening, as they would
transform before the carbonation reaction had a chance to occur.
The remaining distinct compounds, along with the number of
distinct possible carbonation reactions, can be seen in Table 3.

These results show that the methodology was able to find
materials that undergo carbonation reactions across all the
different alkali metals used, and is certainly the largest number
of solid oxide type materials ever to be considered for CCS
applications in a single study. Interestingly, while a reasonable
number of compounds are found in the database for the most
abundant alkaline earth metals, Ca and Mg, these compounds
are disproportionally removed by the filtering process. Potentially
the stability of the binary oxides CaO and MgO compared to the
other alkali binary oxides could simply result in fewer stable
tertiary phases with these elements.

Calculated properties of screened materials

Using the relative energies of the reactant and product phases
in each theoretical carbonation reaction it was possible to
compute a value for AHearbonation-— FOr a single compound,
the multiple reactions essentially describe the same decom-
position process, followed to different endpoints, with the
order following increasing AHcarbonation- EXperimentally, we
only observed the products of the first decomposition reaction,
even on increasing 7, and therefore the results could be further
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restricted to one carbonation reaction for each distinct com-
pound, the reaction with the most negative AH_arbonation:

In evaluating the theoretical energy penalties of the screened
materials, the most commonly used high temperature CCS
material, CaO, was used as a benchmark for comparison
(with a calculated energy penalty of 41.9 kJ (mol CO,)™"). For
reference, process engineering studies using CaO as a solid
absorbent in a postcombustion CCS setup found this process
imposes a 6-8% energy penalty as compared to plants without
CCS,**? and of that penalty, between 3-10% is attributed to
the energy to calcine CaCOj; to CaO. A commonly accepted goal
for an economically-viable CCS process set by the US Depart-
ment of Energy is to have an energy penalty of 5% or less, so if
we assume that our calculated energy penalty mostly accounts
for the calcination energy, this would mean finding a material
in our screening with E, < 35 kJ (mol CO,) . This is still only a
rough approximation, as any promising candidate would also
need to be subjected to in-depth process investigation to
determine its realistic energy penalty in a CCS process.

From the stoichiometry of the reaction, it is also possible to
determine the CO, gravimetric capacity (gco absorbed/Ssorbent) Of

View Article Online
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each theoretical carbonation reaction, as well as the volume
change for the reaction (derived from the change in the unit
cell volume of the optimised structures). There is some
evidence to suggest that changes in volume contribute to the
cycling instability of CaO, with large volume changes possibly
causing pore closure and particle sintering and resulting in
the rapid fading of the CO, capture efficiency over the first
10-20 cycles.'®**™** Therefore, the compounds were screened
based on the volume change with carbonation as a preliminary
indication of the stability of the compound over multiple cycles.

These different parameters were plotted for each of the
screened reactions in Fig. 4. There is a direct correlation with
AH and E,, as expected considering it is a dominant part of
the Qoss and Qrecoverea terms used to determine the overall
energy penalty (for more details see the ESIT). However, for less
exothermic carbonation reactions, the magnitude of these
terms is similar to that of the specific heat capacity term. The
approximate specific heat capacities of the compounds used in
the screening were calculated using the Dulong-Petit law,*® this
being a good approximation for solid state materials at high
temperature, and also being trivial to calculate as it only

-1.0h"”“° o0 oo °NO o MgSI0, Ca,Nb.O -1.0
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Fig. 4 Overview of results from the screening of the Materials Project database for compounds that undergo carbonation. Each data point represents
the carbonation reaction for each distinct compound with the most negative AH. The calculated energy penalty, E, for each reaction is plotted against
AH arbonation (top), CO, gravimetric capacity (middle) and volume change (bottom). The plots on the left are for the complete 640 distinct compounds in
the screening, and the plots on the right are for specific compounds of interest (including the five candidate materials).
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depends on the molar mass (MM) of the compound. In the
lower energy penalty part of the plot, some materials are seen
with similar Ep, but with AH that differ by as much as 0.5 eV. In
this region some control is possible over the balance between
AH and MM to achieve a given E,, and given that compounds
with a lower MM will normally have a higher gravimetric CO,
capacity, this means it is possible to select compounds on the
basis of this parameter. Conversely, for a process requiring
a smaller AH to reduce heat flow in and out of the system,
it is possible to select compounds with a higher MM to achieve
the same overall Ej,.

Selection of candidate materials

Our experimental studies focussed on five materials with
previously unreported CCS properties: MgsMnOg, Cay;Nb,Oq,
Na;Sb0O,, LisFeO, and LigCoO,4. MgsMnO;g has a much lower
theoretical Ej, than CaO and a comparably high gravimetric CO,
capacity, making it a promising material for future applica-
tions. Ca,;Nb,Oy and Naz;SbO, were chosen because they had
similar, but lower E, values than that of CaO from the screen-
ing, and as such they represent useful comparisons to the
benchmark material, especially in comparing their cycling
stability and the effect of adding a third element to the binary
Ca-O phase diagram (in the case of Ca;Nb,Oq). LisFeO, and
LigCoO, were chosen for their very high theoretical gravimetric
CO, capacities, and for comparison to previous studies on
similar Li ternary oxides.”””>' It should be noted, however,
that NazSbO, and LigCoO, are unlikely to find use in CCS
applications owing to the cost of Sb and the toxicity of Co,
although Ca,Nb,0y, MgesMnO;g and LisFeO, are made from
more abundant and safe elements and are thus particularly
appealing. The relevant parameters obtained from the Materials
Project screening for these materials are presented in Table 4.

Initial post-carbonation structural characterisation

XRD patterns acquired of the as-synthesised MgeMnOs,
CayNb,0q, NazSbO,, LisFeO, and LisCoO,4 samples confirmed that
all these materials were mostly a single pure phase, with some
small impurity phases present in the case of Na;SbO,. BET surface
area analysis was also performed on the materials, showing them
to have similarly low surface areas, consistent with oxides sintered
at high temperatures (results available in the ESIT). Further XRD

Table 4 Theoretical screening results for CaO and the preliminary can-
didates in the experimental analysis. The respective carbonation reactions
relating to the tabulated values are CaO + CO, — CaCOs; CasNb,Og +
2CO, - 2CaCOsz + CayNb,O7; MgGMnOg +5C0O, —» SMgCO3 + MgMnoj
NazSbO,4 + CO, — Na,COsz + NaSbOs; 0.5LisFeO4 + CO, — Li,CO3 +
0.5LiFeO,; and 0.33LigCo0O4 + CO, — Li,CO3z + 0.33CoO

E, AH_arbonation  CO» capacity Volume
Compound (K] (mol CO,)™") (kf mol™)  (gco,/Zsorbent) change (%)
CaOo 41.9 —179.5 0.78 124.4
MgsMnOg 9.7 —105.6 0.67 91.7
Ca,Nb,Oy 37.9 ~153.9 0.18 37.3
Na;SbO,  40.7 ~167.6 0.17 37.4
Li;FeO,  44.7 —208.7 0.57 59.9
LigCoO, 44.6 —217.4 0.80 104.9

This journal is © The Royal Society of Chemistry 2016
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patterns were then taken of these samples after being carbonated
under pco, = 0.37 bar at 773 K (MgeMnOg), 973 K (LisFeO, and
LigCo0O,4) or 1223 K (NazSbO, and Ca,Nb,0,) in a thermo-
gravimetric analyser (TGA) to identify the phases that formed
upon carbonation, and to see if these match with the phases
predicted by the screening. Carbonation temperatures were
identified by an initial TGA experiment to determine the range
over which the samples carbonated and regenerated. For Na;SbO,,
LisFeO, and LigCoO,4, phases present in the pre- and post-
carbonation samples could be indexed and their structures
and cell parameters were refined using Rietveld refinement,
as shown in Fig. 5. For LisFeO, a significant amount of the
original material remained after carbonation (19% by weight),
indicating that the reaction had not gone to completion.

Unfortunately in the case of MggMnOg and Ca,Nb,O,, even
after multiple attempts to carbonate the samples at different
temperatures and over longer time periods, no evidence for
reaction could be found in their XRD diffractograms. Sub-
sequent TGA experiments showed that the materials increased
their weight by a very small amount close to the detection limit
of the instrument (~0.01 mg) when heated under flowing CO,,
which likely is undetectable by diffraction. As these samples
were essentially unreactive with CO, they were excluded from
any further analysis.

Carbonation experiments

In order to determine AH arbonation @1d AScarbonation, the equili-
brium constants of the respective carbonation reactions as a
function of temperature were measured experimentally by TPD
in a TGA under various CO, partial pressures, with a typical
trace for Na;SbO, shown in Fig. 6. As described in previous
studies,*® the equilibrium curve for a carbonation reaction can
be fitted by an exponential curve of the form:

B
K, = pco, = Aexp (f ?) (5)

where pgo, is the CO, partial pressure in atm, T is calcination
temperature in K, and A and B are constants specific to each
reaction, which can be obtained by plotting a logarithmic curve
of 1/T measured at different pco,-

From these it is possible to calculate AH:arponation and
AScarbonation from these fitting constants, assuming that
AH arbonation aNd AScarbonation ar€ approximately constant:

K, = exp(AS,/R)-exp(—AH,/RT) (6)
A = exp(AS,/R) 7)
B =AH,/R (8)

The fits for the constants A and B for NazSbO, and Li,SiO4
(as an example of a promising material studied previously for
CCS*®) are shown in Fig. 7, and then compared against the
corresponding values obtained from the Materials Project
screening in Table 5. Attempts to perform a similar TPD
analysis for LisFeO, and LisCoO, failed because the phases
formed in the carbonation reactions do not decompose before
the melting point of Li,CO; at ~993 K, even though the
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Indexed XRD diffractograms (1 = 1.54056 A) and refinements of the as-synthesised NasSbOy, LisFeQ,4 and LisCoO,4 samples, and after carbonation

at 973 K (LisFeO4 and LisgCoQ4) or 1223 K (NazSbO4) under Pco, = 0.37 bar. The experimental data points are shown in red, with the pattern obtained from

the Rietveld refinements overlaid in black, and the difference curve below.
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Fig. 6 Temperature programmed decomposition (TPD) experiment for
NazSbO,4 at Pco, = 0.27 bar. The mass gain corresponds to the carbonation
reaction NazSbO4 + CO, — Na,COsz + NaSbOs. Calculation of the zero
point of the first derivative of the mass curve gives the temperature of the
onset of decomposition.

temperature of decomposition was predicted to be ~805 K at
Pco, = 1 from the screening. TPD traces of LisFeO, and LigCoO,
are given in Fig. 8, showing the mass gains as the materials
react with CO, to form Li,CO; and LiFeO, or CoO respectively.
Upon further heating, however, there is no mass loss, and

1354 | Energy Environ. Sci., 2016, 9, 1346-1360

therefore the same method of determining the carbonation
equilibrium constant cannot be used. It is also seen in these
TGA traces that the experimental CO, capacity is much less
than the theoretical value as obtained from the stoichiometry of
the carbonation reaction. One reason for this may be that a
large percentage of the sample had already reacted with CO, in
the air prior to the experiment, as it was not possible to keep the
samples in vacuum when transferring in and out of the TGA itself.
Furthermore, longer isothermal experiments should be performed
in future studies to better elucidate the combined effect of
thermodynamics and kinetics on the rate of these reactions.
For the materials studied, it is seen that there is very good
agreement between the theoretical and experimental values for
AH_arbonation- I the case of CaO, this is to be expected because
of the CO, energy correction applied which was derived from
experimental values for binary oxide carbonation reactions. But
for Na;SbO, and Li,SiO,, these results validate the accuracy
of the screening process and its ability to predict correctly
the carbonation equilibrium for both current promising CCS
materials and also for previously unstudied materials. Fairly
large errors are often seen in TPD fitting, especially because of
the sensitivity between any small amount of scatter in the TGA

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Plot of ln(Kp) against the inverse decomposition onset temperatures derived from TPD experiments for NazSbO,4 and Li,SiO4. The linear fit to

determine the constants A and B relating to K, is also shown on each plot.

Table 5 Experimentally derived values and predicted values from the
Materials Project screening of AHcarbonation @aNd AScarbonation for CaO,
NazSbO4 and LisSiO4. The screening values are based on the following
reactions: CaO + CO, — CaCOs, NazSbO,4 + CO, — Na,COs + NaSbOs
and LisSiO4 + CO, — Li>COz + LiySiO3

Experimental .
Screening
Compound  AH; (k] mol™")  AS;(Jmol ' K')  AH, (k] mol )
CaO —-170 £ 5 152 £ 5 —179.5
Na;SbO, —175 + 26 150 £ 23 —167.6
Li,SiO, —149 + 58 149 £ 59 —167.9
) e bl 973
MP Li CoO,
S
é“ B 773 3
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2 40 g
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Fig. 8 TGA traces for LisFeO4 and LigCoO4 under Pco, ~ 0.1 bar.

data (which can be due to instrumental factors) and the
enthalpy and entropy values that are eventually derived.

Determination of carbonation enthalpy by DSC

For materials whose carbonation products melt before decom-
posing, such as LisFeO, and LisC0o0O,, DSC experiments provide
an alternative way to determine AH ,ponation Without melting the
material. Integrated heat curves for the candidate materials, CaO
and Li5AlO, (as an example of a another similar material studied
previously for CCS>"*?) derived from DSC are shown in Fig. 9.
By taking a TGA trace simultaneously, the mass change of the
sample can be measured over the same time interval, and
calculating the CO, absorbed in moles allows AH_abonation il
k] mol " to be derived:

*dH

—d
1 dt !

AH = J 9)

The results are shown in Table 6 for experiments performed
isothermally at 873 K.

Comparing the AHcarbonation for CaO obtained from
DSC, —157 kJ mol ', with the known experimental value of
—169 kJ mol™*,*? it is seen that while the DSC method tends to
underestimate AHcarponation By ~10%, it can still be used as an

approximate experimental guide. For LisFeO, and Li5;AlO, there

20,
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Fig. 9 DSC obtained heat flow and cumulative heat traces for CaO, LisFeO,, LisCoO4 and LisAlO4 samples, studied isothermally at 823 K under
p(CO,) = 1 bar. There is a lag of ~60-100 s before carbonation begins due to the change of reactive gas flow in the TGA between pure N, and pure CO5.
The difference in lag between the trace for LisAlO4 and the other samples is due to the use of a slightly different gas flow setup which uses valves to

change between gases more quickly.

This journal is © The Royal Society of Chemistry 2016
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Table 6 Values of AHcarbonation Obtained from DSC and TPD experiments
compared with literature and the predicted values from the Materials
Project screening. All values are in kJ mol™*

DSC TPD Screening Literature
Compound AH, AH, AH, AH,
CaO —157 + 5 —-170 £ 5 —179.5 —169 + 4°°
LisFeO, —197 £ 5 —208.7
LigCoO, —158 + 5 —217.4
Li5AlO, —195 + 5 —212.8

is a reasonably good agreement between the experimental and
theoretical values, within error. For LigCoO, the theoretical
value is ~30% higher than that obtained from the DSC experi-
ment. Further thermogravimetric tests to gain a more accurate
experimental value of AHcarponation are ongoing, specifically
TPD experiments under more precisely determined p(CO,)
and ramp rates, which will allow greater confidence when
comparing to the values obtained from the Materials Project.

CO, cycling capacity studies

To further investigate the cycling performance of the novel CCS
material Na;SbO,, the sample was heated between 923 K and
1173 K for 40 minutes each to sequentially carbonate and
decarbonate the material. The switches between temperatures
were achieved by heating and cooling at constant rates of
20 K min~ " and —20 K min ", respectively, all under a constant
CO, partial pressure of 0.1 bar in contact with the solid sample.
The results of the cycling experiments were analysed by esti-
mating the CO, uptake ( gcoz/gsorbem) by the sorbent in each
cycle according to:

COzuptake _ Mmax,i — Mmin,i
Mmin,i

(10)

where M.y ; and Mmyin ; are the maximum and minimum mass
of the sample in the ith cycle respectively. The profile of CO,
uptake, as a function of cycle number, is plotted in Fig. 10a.
The results show that Na;SbO, carbonates at close to full
theoretical capacity on the first cycle, but shows capacity fading
upon further cycling. In particular, the capacity of Na;SbO,
rapidly decreases even by the second cycle, which showed
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approximately half the CO, uptake compared to the first cycle.
It settles to a gravimetric capacity of ~0.035 gco,/gsorbent after
24 cycles, which is roughly half the gravimetric capacity
displayed by CaO under similar conditions.*®

Further analysis of the maximum and minimum sample
masses measured during each cycle reveals that the reduction
in capacity is almost entirely due to the decreasing maximum
sample mass measured in each cycle, compared to the mini-
mum sample mass which stays relatively constant (Fig. 10b).
The minimum mass corresponds to the mass of the fully
regenerated sample, and as such these results indicate that
the sample is regenerating fully upon each cycle. The reduction
in the maximum sample mass shows that the capacity fading
is primarily due to the reduced amount of carbonate being
formed in each cycle.

These results indicate that volume change might not be
sufficient to indicate materials which might have improved
cycling stability, and that capacity fading is a more complex
process than can be described by a single variable.

Morphological studies of materials upon cycling

To further investigate the reasons for the degradation of CO,
capacity experienced by Na;SbO, upon cycling, the sample was
observed using SEM across a number of carbonation cycles, as
shown in Fig. 11.

The SEM results indicate that, like CaO and MgO, the
capacity of NazSbO, to absorb CO, is limited by the extent
of carbonation, which is a strong function of the surface
morphology.'®** The fresh particles (images (a) and (b)) show
a large amount of available surface area, allowing the max-
imum amount of reaction with gaseous CO,. It is much more
difficult to distinguish two different phases in the carbonated
samples (images (c) and (d)); instead, there appears to be a
phase formed with a different morphology and reduced surface
area and porosity. This is presumably Na,COj;, which sinters
because the sample was close to its melting point. The images
of the fully regenerated particle after 20 cycles (images (e) and (f))
show that the morphology mirrors that of the carbonated phase,
indicating that this sintering persists even upon regenerating the
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(a) Gravimetric CO, capacity as a function of cycle number for NazSbO,4, measured by TGA under p(CO,) = 0.1 bar. The full and dashed lines show the

predicted capacity, based on the stoichiometry of the carbonation reaction. NazSbOy, initially absorbs CO, at close to full theoretical capacity, but its capacity
quickly fades to between 25-35% of that of the first cycle. (b) Maximum and minimum sample masses measured during each cycle for NazSbOg.
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Fig. 11 SEM images of NazSbO,4 samples under two different magnifica-
tions (left: X500, right: x1500): heated to 1223 K under N, (A) and (B); fully
carbonated (C) and (D); and cycled 20 times, then fully regenerated under
N> (E) and (F). Upon extended cycling NasSbO,4 shows a drastic decrease in
both surface area and available porosity, which is likely responsible for its
reduction in cycling capacity. The drastic reduction in surface area can be
seen especially in the cycled material (F) as compared to the unreacted
material (B), indicating that this is a key parameter influencing the cycling
stability of NazSbO,.

sample, and that multiple cycles appear to lock in this reduction
of surface area and porosity. This would seem to explain the
reduction in carbonation capacity of these cycled particles as
there is less available surface area for CO, to react with. These
results indicate that thermodynamic parameters influencing the
ability to fully regenerate the original material, as well as finding
ways to control the surface morphology of the sorbents over
many cycles, are key to finding a material with a stable cycling
capacity. Both parameters influence the overall behaviour of a
sorbent, and only focussing on a single aspect is insufficient to
define a material’s ability to withstand multiple carbonation
cycles without losing capacity.

Discussion

Regarding gravimetric CO, capacity, CaO has one of the highest
capacities amongst the compounds screened, due to it having
a very small molecular mass (MM) that is able to react with
1 mol of CO, (and which makes it particularly desirable for use
in CCS). Similarly, the other binary oxides screened also had
very high gravimetric capacities due to their small MM. The
addition of ternary elements that do not directly take part in
the carbonation reaction and simply lead to the formation of

This journal is © The Royal Society of Chemistry 2016
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secondary reaction products would be thought to result in such
ternary materials generally having very low capacities. However,
there are some ternary compounds that show comparable
capacities, such as the compounds with very high alkali metal
content LisFeO,, LisCoO, and MgesMnOg. While it is important
to have a high theoretical CO, capacity, in practice a low Ej, is
more desirable in terms of reducing costs, so a lower capacity
can be offset with a lower Ej, to still produce a material that is
promising for CCS applications.

If we take volume change to be one indicator of a com-
pound’s resistance to capacity fading upon cycling, the spread
of results confirms that there is a wide composition space in which
to find more optimal materials with improved properties com-
pared to CaO. In particular, CaO had one of the highest volume
increases upon carbonation (124%) out of all the materials
screened, with only the binary compounds NiO, MgO and Li,O
having a larger volume expansion. However, a large volume change
is not always determinental, as seen in materials such as Ba,Sb,0q
which displays a large change in volume upon reaction, but also
did not fade in capacity over 100 cycles.*

Fig. 12 further filters the screened compounds to include
only those where A = Na, Li, Mg or Ca, to make a more direct
comparison of our screening results with the kinds of materials
that have been suggested previously in the literature, composed
of these metals. It is clear from Fig. 12 that the carbonation
equilibrium is greatly influenced by the choice of metal atom,
with Na-based compounds having the most negative AHc,rponation
and hence the largest E,, while Ca and Mg based compounds
have a much lower E}, generally. In particular, there seem to be
many Mg-based materials with relatively low E,, that could have a
desirable carbonation equilibrium. For example, the screening
found two ternary Mg-based compounds with very high gravi-
metric capacity: Mg,SiO, or olivine, which has already been
researched extensively as a geological CCS material®> and
MgMnOg, which unfortunately when investigated in the present
study was found to be extremely unreactive. The poor reactivity of
MgsMnOjg could be due to either poor intrinsic kinetics or mass
transport in the material. Similar to MgO, these materials
carbonate at much lower temperatures than Ca-based materials,
explaining the much slower reaction kinetics (which are com-
pounded by a generally smaller enthalpic driving force for the
carbonation reaction). Further studies are intended to optimise
this material’s reactivity potentially through producing a sample
with smaller particles that might improve its carbonation
kinetics, although grinding a material to increase its reactivity
introduces a further energy cost to the overall process.

The range of AH arhonation and E, within members of the
same alkali or alkaline-earth metal group seems directly related
to the relative stability of the corresponding binary alkali metal
oxides, which are the reactive species in all of the carbonation
reactions (regardless of what other metal atoms might be
present), and in the majority of cases the addition of a ternary
element increases AH urhonation and decreases Ep. This would
suggest that there is a good thermodynamic reason for pursu-
ing ternary alkali compounds as novel CCS materials and
moving beyond using simple binary oxides.

Energy Environ. Sci., 2016, 9, 1346-1360 | 1357
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Fig. 12 Screened materials containing Na, Li, Mg or Ca as their alkali
atom. Each data point represents the carbonation reaction for each
distinct compound with the most negative AH. The calculated energy
penalty, Ep, for each reaction is plotted against AHcarbonation (top), CO»
gravimetric capacity (middle) and volume change (bottom). The respective
binary oxides are circled for clarity.

In terms of gravimetric CO, capacity, obviously the screen-
ing results reflect the fact that the binary oxides have the
highest capacities, which is why they are so attractive for
further development. However, there are a suite of ternary
compounds with significant capacity, especially amongst
Li-based compounds. Some of these have already been
explored, such as Li,ZrO;,"” Li;AlO,>" and Li,Si0,,* but this
screening has found many others, such as LigCoO,4, LisMnO,
and LisFeOy,, that could be the subject of further research.

Volume change is perhaps the least important parameter
to optimise for, as it is still not fully understood how large a role
it plays in determining the cycling stability of a material.
However, given the influence volume change has on the
morphology of cycled materials and their subsequent reac-
tivity, it is still a worthwhile measurement to include in our
methodology. Furthermore, our results show that the binary
oxides have the largest volume change upon cycling, further
underscoring the necessity to pursue development of ternary
alkali oxides as materials of interest which might have more
moderate volume changes. Melting points of the phases
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involved, especially the carbonate phases, may also be an
important parameter to include in future screening studies.
Having a lower melting point generally leads to the cycled
materials having lower remaining available porosity due to
the earlier onset of sintering at the Tamman temperature
(generally defined to be half the melting point of the material)
and hence a smaller cycling capacity.

A further insight that cannot be ignored is the role of
kinetics in finding a suitable CCS sorbent. The apparent failure
of MgeMnOg and Ca,Nb,0O,, despite their very promising
predicted capabilities, shows that any relevant future large scale
screening approach must consider a way to build in reaction
kinetics into its rational design algorithm. In this particular case
the discrepancies between theory and experiment manifest from
different causes for MgsMnOg and Ca,Nb,Oo. In the case
of MgeMnOs, similar Mg-based minerals such as olivine and
even the binary oxide MgO are known to have very poor
carbonation kinetics in the solid state, requiring radically differ-
ent approaches to improve their performance such as including
H,O in the gas stream.’®”” For Ca,Nb,O,, it is likely that the
much higher sintering temperature (1648 K) leads to a loss in
available surface area for reaction, and hence leads to the slower
overall carbonation kinetics.

One idea is to adapt an approach used for framework
materials that characterises the internal surface volume and
connected porosity of materials from their structure to estimate
the kinetic barriers to gas diffusivity in these materials.>®
Conversely, it also means that more in-depth work to optimise
promising materials may be needed to overcome these kinetic
issues, lest excellent materials be missed after initial properties
testing.

An additional factor that may also influence the actual
performance of the screened materials is that of H,O in the
reactant gas stream. All our experiments and screening were
performed in dry conditions, but this is not the case in most
flue gases, which typically contain ~10% H,O. Previous studies
on similar materials to those found in our screening, most
notably Li,Si0,*° and LisAl0,,% found that the addition of H,O
to the CO, gas stream results in a drastic decrease in carbona-
tion reaction temperature. Such a decrease would result in a
lower calculated energy penalty when compared to the results
from our screening in dry conditions. Therefore, many of the
materials studied in this work may in fact show even better
performances in more realistic reactor conditions, and future
work is planned to include H,O in both the theoretical and
experimental approaches outlined here.

Finally, given our recent work on novel CCS material,
Ba,Sb,0,,%° a material that was previously not characterised
and therefore not in the Materials Project database, under-
lines the importance of continually working to expand the
database with new compositions, either from theory or experi-
ment. Predicting new compositions and structures based on
ternary oxides containing the abundant alkali metals Na, Mg
and Ca using the Structure Predictor module already present
in the Materials Project system®' is a direction considered for
further study.

This journal is © The Royal Society of Chemistry 2016
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Conclusions

Through the use of open phase diagrams and the Materials
Project, the largest set to date of oxide compounds were
screened for their theoretical thermodynamics of carbonation,
as well as their theoretical gravimetric CO, capacity and volume
change upon carbonation. The results were validated both
against standard experimental values for known carbonation
reactions, and against similar previous DFT studies, and good
agreement was found with both. A single parameter, energy
penalty, was used to assess the relative efficiency of using a
compound in a model CCS process, and to provide a way to
rank materials in terms of their suitability for further study.

Using a variety of thermogravimetric techniques, experi-
mental validation was provided for a small set of candidate
materials suggested by the Materials Project screening. For
some of the materials, such as Na;SbO, and LisFeO,, the
experimental values of AHcarbonation Were in good agreement
with those calculated from the screening procedure, indicating
that the output of that screening can predict the carbonation
thermodynamics of materials from a theoretical standpoint.
This experimental validation is vital to developing a robust
screening procedure that is able to predict materials that
function under realistic reaction conditions.

Furthermore, the screening results give new insights to
implement in rational design approaches towards finding opti-
mal CCS materials. Firstly, the use of ternary alkali metal oxide
compounds is found to be advantageous both in being able to
achieve lower energy penalties due to less negative AHcarbonations
but also in avoiding very large volume changes that occur when
carbonating the binary oxide compounds, which could lead to
cycling instability through sintering and pore clogging.

The alkali earth metals Mg and Ca are found to be generally
more favourable than compounds containing Li and Na mainly
due to their lower energy penalty, and there are many com-
pounds found in the screening that are suitable for further
study. However, subsequent experimental results found that
Mg-based materials in particular display poor reaction kinetics,
and require further optimisation in order to be used. These
results show that large scale screening processes can employ a
reasonably efficient level of DFT theory to achieve accurate
results that give real information into overall trends that are
important to designing novel functional materials.

Cycling experiments on NazSbO, showed that this material
suffers similar capacity fading as seen in the CaO-CaCOj;
system, despite it having much lower predicted volume expan-
sion upon carbonation. SEM studies suggest that the decrease
in available surface area of the cycled particles compared to
those in the fresh sample contributes to this capacity fading,
and that some amount of the carbonate phase does not
regenerate in later cycles. Future studies on a wider range of
compounds will hopefully assist in understanding the under-
lying parameters influencing the stability of these compounds
over many cycles of carbonation.

These results show that large scale screening processes can
employ a reasonably efficient level of DFT theory to achieve

This journal is © The Royal Society of Chemistry 2016
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accurate results that give real information into overall trends
that are important to designing novel functional materials. As
more sophisticated high-throughput methods are devised it
will be increasingly possible to target functional materials with
an array of complex and useful properties all before entering
the laboratory.
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