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Introduction

Light-emitting electrochemical cells (LECs)' ™ based on poly-
and ionic transition-metal com-

mers,”® small molecules
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Peripheral halo-functionalization in
[Cu(NAN)(PAP)I™ emitters: influence on the
performances of light-emitting electrochemical cellst
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Alessandro Prescimone,? Edwin C. Constable,® Henk J. Bolink* and
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A series of heteroleptic [CU(NAN)(PAP)][PFg] complexes is described in which PAP = bis(2-(diphenyl-
phosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and NAN
= 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyridine substituted in the 4-position of the phenyl groups with
atom X (NAN =1 has X = F, 2 has X = Cl, 3 has X = Br, 4 has X = [; the benchmark NAN ligand with X = H
is 5). These complexes have been characterized by multinuclear NMR spectroscopy, mass spectrometry,
elemental analyses and cyclic voltammetry; representative single crystal structures are also reported. The
solution absorption spectra are characterized by high energy bands (arising from ligand-centred tran-
sitions) which are red-shifted on going from X = H to X = |, and a broad metal-to-ligand charge transfer
band with Anax in the range 387-395 nm. The ten complexes are yellow emitters in solution and yellow or
yellow-orange emitters in the solid-state. For a given NAN ligand, the solution photoluminescence (PL)
spectra show no significant change on going from [Cu(NAN)(POP)I* to [Cu(NAN)(xantphos)]*; introducing
the iodo-functionality into the NAN domain leads to a red-shift in 272 compared to the complexes with
the benchmark NAN ligand 5. In the solid state, [Cu(1)(POP)I[PFe]l and [Cu(l)(xantphos)][PFe] (fluoro-
substituent) exhibit the highest PL quantum yields (74 and 25%, respectively) with values of 7y, = 11.1 and
5.8 ps, respectively. Light-emitting electrochemical cells (LECs) with [Cu(NAN)(PAP)][PFg] complexes in
the emissive layer have been tested. Using a block-wave pulsed current driving mode, the best performing
device employed [Cu(1)(xantphos)]* and this showed a maximum luminance (Luma,) of 129 cd m™2 and
a device lifetime (ty,,) of 54 h; however, the turn-on time (time to reach Lum,,) was 4.1 h. Trends in per-
formance data reveal that the introduction of fluoro-groups is beneficial, but that the incorporation of
heavier halo-substituents leads to poor devices, probably due to a detrimental effect on charge transport;
LECs with the iodo-functionalized NAN ligand 4 failed to show any electroluminescence after 50 h.

plexes (iTMCs)"'>'* are an emerging technology'® with
potential for cheap and robust device fabrication methods
including the printing of flexible LECs.'® Although Ir-iTMCs
(and to a lesser extent Ru-iTMCs'’ %) are the light-emitting
components of many LECs, Cu-iTMCs are of growing impor-
tance. Copper has emerged as a promising alternative to less
Earth abundant metals both in LECs and for solar energy con-
version.”’ Among the copper(i) complexes investigated in
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LECs, the most ubiquitous are those of type [Cu(N"N)(P*P)]"
(PP and N”N = chelating bis(phosphine) and diimine
ligands, respectively).>>*® The synthesis of heteroleptic
[Cu(N~N)(P*P)]" complexes is straightforward, allowing rapid
screening of compound families for promising photo-
luminescence (PL) properties prior to testing in the LEC
configuration. It has also been reported that some Cu-iTMCs
exhibit thermally activated delayed fluorescence (TADF) giving
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1X=F
2X=Cl
3X=Br
4X=1
5X=H

Scheme 1 Structures of the NAN ligands 1-5.

access to a singlet-harvesting effect which could increase the
overall device performance.®”*>

A major design challenge for Cu-iTMCs is the combination
of high efficiency and long device lifetimes with long-term
device stability. For [Cu(N*N)(P*P)]" complexes in which P P is
bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphe-
nylphosphino)-9,9-dimethylxanthene (xantphos) and N”N is
2,2"-bipyridine (bpy) a 6- or 6,6"-substituted bpy, we have demon-
strated that the LEC efficacy and device lifetime can be tuned by
simple variations of the 6- or 6,6-substituents, whilst maintain-
ing acceptable turn-on times.**** Emission properties improve
on going from [Cu(bpy)(POP)]", to [Cu(Mebpy)(POP)]" (Mebpy =
6-methyl-2,2"-bipyridine) to [Cu(Me,bpy)(POP)]" (Me,bpy = 6,6'-
dimethyl-2,2"-bipyridine), in line with the observation of
McMillin and coworkers of enhanced PL on increasing the
number of 2,9-substituents in the phen (phen = 1,10-phenan-
throline) domain in [Cu(phen)(POP)]".** Changing from POP to
xantphos while maintaining N*N = Me,bpy leads to a LEC with
a maximum efficacy of 3.0 cd A~ (luminance = 145 cd m~?) and
a device lifetime (the time to reach one-half of the maximum
luminance) of 1 h. On going from [Cu(Me,bpy)(xantphos)]" to
[Cu(Mebpy)(xantphos)]’, the device lifetime increases to >15 h
but the efficacy drops to 1.9 cd A™'.?> The photoluminescence
of copper(i) complexes is strongly influenced by the surround-
ing environment,** and the presence of xantphos in place of
POP leads to copper(i) complexes having a higher degree of
rigidity which should lead to a stronger photoluminescence. In
the present investigation, we retain the optimized 6,6"-dimethyl
substitution pattern in the N*"N domain of the Cu-iTMC and
investigate the introduction of additional functionality at the
4- and 4'-positions of the bpy. We have investigated the
N”N ligands 1-4 shown in Scheme 1 with peripheral halo-
groups; 5 was included as a benchmark. We recently demon-
strated that, contrary to rational dye-design strategies, the incor-
poration of ligand 4 in copper-based dye-sensitized solar cells
lead to remarkably high photoconversion efficiencies.*® In view
of these unexpected effects which are not readily explained in
terms of electronic influences, we were prompted to investigate
the halo-functionalized N*N ligands 1-4 in [Cu(N"N)(P*P)]'
complexes in LECs in a systematic manner.

Experimental

General

'H, C and *'P NMR spectra were recorded using a Bruker

Avance I11-500 NMR spectrometer. 'H and '*C NMR chemical
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shifts were referenced to the residual solvent peaks with
respect to §(TMS) = 0 ppm and *'P NMR chemical shifts with
respect to §(85% aqueous H3zPO,) = 0 ppm. Solution absorp-
tion and emission spectra were measured using an Agilent
8453 spectrophotometer and a Shimadzu RF-5301PC spectro-
fluorometer, respectively; a Bruker esquire 3000plus instru-
ment was used to record electrospray ionization (ESI) mass
spectra. Quantum yields (CH,Cl, solution and powder) were
measured using a Hamamatsu absolute photoluminescence
(PL) quantum yield spectrometer C11347 Quantaurus-QY.
Emission lifetimes and powder emission spectra were
measured with a Hamamatsu Compact Fluorescence lifetime
Spectrometer C11367 Quantaurus-Tau, using an LED light
source with Aee = 365 nm. Quantum yields and PL emission
spectra in thin films were recorded using a Hamamatsu absol-
ute quantum yield €9920. The preparation of the thin film
samples consisted of deposition on a quartz plate (1 cm?) of
the complex with addition of the ionic liquid 1-ethyl-3-methyl-
imidazolium hexafluoridophosphate [Emim][PFg].

Compounds  1-5 prepared using reported
methods*>™” and the NMR spectroscopic data matched with
those reported. POP was purchased from Acros and xantphos
from Fluorochem. [Cu(MeCN),]|[PF¢] was prepared by the pub-
lished method.*®

[Cu(1)(POP)][PFs]. [Cu(MeCN),][PFs] (261 mg, 0.70 mmol)
and POP (415 mg, 0.70 mmol) were dissolved in CH,Cl,
(80 ml) and stirred for 2 h at room temperature. Compound 1
(261 mg, 0.70 mmol) was added and the mixture was stirred
for 2 h at room temperature during which it turned yellow.
The reaction mixture was filtered, the solvent was removed
from the filtrate, and the crude material was washed with
hexane (2 x 50 ml). It was redissolved in a small amount of
acetone before being layered with Et,O. After 2 days, yellow
crystals had formed. They were collected, ground to a powder
and dried under vacuum to give yellow [Cu(1)(POP)|[PFs]
(522 mg, 0.47 mmol, 66%). '"H NMR (500 MHz, acetone-d)
s/ppm: 8.70 (d, J = 1.7 Hz, 2H, H*), 8.02 (m, 4H, H*?), 7.76 (d,
J = 1.6 Hz, 2H, H*), 7.45 (m, 2H, H%), 7.38-7.33 (overlapping
m, 8H, H**'P*)| 7.32-7.27 (overlapping m, 4H, H®*'“*), 7.22 (t,
J =7.7 Hz, 8H, H™), 7.17 (m, 8H, H?), 7.08 (m, 2H, H®), 2.41
(s, 6H, H%). "*C NMR (126 MHz, acetone-dq) 6/ppm: 164.8 (d,
Jrc = 249 Hz, C®%), 160.0 (C*°), 159.1 (t, Jpc = 6.0 Hz, C°"), 154.1
(C*), 150.6 (C*"), 134.6 (C*), 134.1 (C*"), 134.0 (t, Jpc = 7.8 Hz,
C"%), 133.3 (C®), 132.9 (t, Jpc = 16.2 Hz, C""), 130.8 (C™),
130.7 (d, Jrc = 8.6 Hz, C®%), 129.6 (t, Jpc = 4.9 Hz, C™%), 126.2 (t,
Jrc = 2.4 Hz, C°Y), 126.2 (t, Jpc = 13.7 Hz, C%%), 124.7 (C),
121.1 (C®%), 119.0 (C*), 117.0 (d, Jsc = 21.9 Hz, C*?), 26.9 (C?).
3P NMR (202 MHz, acetone-dq) /ppm —13.6 (broad, FWHM =
180 Hz), —144.5 (septet, Jpr = 710 Hz, [PF4]"). ESI MS: m/z
973.3 [M — PFq]" (base peak, cale. 973.2). UV-vis (CH,Cl,,
2.5 x 107> mol dm™): A/nm (e/dm*® mol™ em™) 228 (52 000),
263 (53 700), 309sh (24 000), 388 (4600). Found: C 64.14, H 4.67,
N 2.74; CgoH,6CuFgN,OP; requires C 64.37, H 4.14, N 2.50%.

[Cu(1)(xantphos)][PFs].  [Cu(MeCN),][PFs] (37.3 mg,
0.10 mmol) was dissolved in CH,Cl, (5 ml). A suspension of
xantphos (59 mg, 0.1 mmol) and 1 (37.2 mg, 0.10 mmol) in

were
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CH,Cl, (5 ml) was added and the mixture turned red and then
orange while it was stirred for 2 h at RT. The solution was
filtered, the solvent was removed and the crude material was
ground to a powder, washed with hexane (2 x 15 ml) and dried
under vacuum to give [Cu(1)(xantphos)][PFs] (176 mg,
0.15 mmol, 76%) as a yellow solid. '"H NMR (500 MHz,
acetone-dg) 6/ppm: 8.61 (d, J = 1.7 Hz, 2H, H"®), 7.98 (m, 4H,
H®), 7.85 (dd, J = 7.8 Hz, J = 1.4 Hz, 2H, H®), 7.71 (d, J =
1.6 Hz, 2H, H"), 7.41 (m, 4H, H"*), 7.38-7.31 (overlapping m,
6H, H*'9"), 7.27-7.21 (overlapping m, 16H, H”>'"%) 7.01 (m,
2H, H®), 2.23 (s, 6H, H?), 1.77 (s, 6H, HP). *C NMR (126 MHz,
acetone-dg) 6/ppm: 164.8 (d, Jrc = 249 Hz, C"), 159.5 (C*°),
155.9 (t, Jpc = 6.6 Hz, C°"), 153.9 (C*?), 150.6 (C**), 134.8 (C°),
134.1 (t, Jpc = 7.7 Hz, CP?), 134.0 (d, Jrc = 3.2 Hz, C®'), 132.5 (t,
Jrc = 16.1 Hz, C""), 131.2 (C), 130.6 (d, Jsc = 8.7 Hz, C™?),
131.0 (CP%), 129.8 (t, Jpc = 4.5 Hz, C%), 128.1 (C™°), 126.4 (C*Y),
124.2 (C*), 122.7 (t, Jpc = 13.0 Hz, C), 119.0 (C*), 117.0
(d, Jpc = 21.9 Hz, C*), 36.9 (C©9), 28.7 (CP), 27.1 (C?). *'P NMR
(202 MHz, acetone-ds) 6/ppm —13.6 (broad, FWHM = 170 Hz),
—144.5 (septet, Jpp = 710 Hz, [PFg]"). ESI MS: m/z 1013.3
[M — PF¢]" (base peak, calc. 1013.3). UV-vis (CH,Cl,, 2.5 x 107>
mol dm™®): A/nm (¢/dm® mol™" cm™") 229 (58000), 266
(63 000), 312sh (24 000), 391 (4700). Found: C 65.45, H 4.71,
N 2.67; C¢3H;50CuFgN,OP; requires C 65.26, H 4.35, N 2.42%.
[Cu(2)(POP)][PF]). [Cu(MeCN),][PFs] (93.2 mg, 0.25 mmol)
and POP (135 mg, 0.25 mmol) were dissolved in CH,CI,
(30 ml) and the mixture was stirred for 1.5 h at room tempera-
ture. Compound 2 (101 mg, 0.25 mmol) was added and stir-
ring was continued for 1.5 h. The yellow solution was filtered
and the solvent was removed from the filtrate. The solid
material was washed with hexane (2 x 30 ml) and dried under
vacuum to give [Cu(2)(POP)|[PF,] (277 mg, 0.24 mmol, 96%) as
a yellow solid. "H NMR (500 MHz, acetone-d,) §/ppm: 8.71 (d,
J =1.7 Hz, 2H, H*), 7.97 (m, 4H, H"*), 7.78 (d, J = 1.6 Hz, 2H,
H*), 7.62 (m, 4H, H®), 7.50 (m, 2H, H®), 7.35 (t, J = 7.3 Hz,
4H, H"*), 7.32-7.28 (overlapping m, 4H, H®*'%"), 7.22 (t, J =
7.8 Hz, 8H, H"®), 7.17 (m, 8H, H?), 7.06 (m, 2H, H), 2.41 (s,
6H, H%). >C NMR (126 MHz, acetone-dq) §/ppm: 160.2 (C*°),
159.3 (t, Jpc = 5.9 Hz, C°), 154.3 (C*?), 150.5 (C**), 136.7 (C™"),
136.6 (C"") 134.7 (C®%), 134.2 (t, Jpc = 7.8 Hz, C"?), 133.5 (C*°),
133.0 (t, Jpc = 16.2 Hz, CP'), 131.0 (C"*), 130.4 (C®*), 130.2
(C®?), 129.8 (t, Joc = 4.6 Hz, C™), 126.4 (overlapping m,
C%, 124.8 (C*), 121.2 (C°), 119.3 (C*), 27.1 (C?). *'P NMR
(202 MHz, acetone-ds) 6/ppm —13.3 (broad, FWHM = 116 Hz),
—144.5 (septet, Jpr = 710 Hz, [PF4]7). ESI MS: m/z 1007.2
[M — PF¢]" (base peak, calc. 1007.2). UV-vis (CH,Cl,, 2.5 x 10~°
mol dm™®): i/nm (¢/dm® mol™ cm™) 228 (58000), 269
(62 000), 312sh (28 000), 395 (5500). Found: C 62.33, H 4.38,
N 2.66; CgoH,4Cl,CuFsN,OP; requires C 62.54, H 4.02, N 2.43%.
[Cu(2)(xantphos)][PFs].  [Cu(MeCN),][PFs] (93.2 mg,
0.25 mmol) was dissolved in CH,Cl, (15 ml). A suspension of
xantphos (148 mg, 0.25 mmol) and 2 (101 mg, 0.25 mmol) in
CH,Cl, (25 ml) was added and the mixture turned red and
then yellow while it was stirred for 1.5 h at room temperature.
The solution was filtered, and the solvent was removed from
the filtrate. The solid product was washed with hexane
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(2 x 30 ml) and dried under vacuum. [Cu(2)(xantphos)][PFs]
was isolated as a yellow solid (294 mg, 0.25 mmol, 98%).
'"H NMR (500 MHz, acetone-dg) 6/ppm: 8.62 (d, J = 1.8 Hz, 2H,
H™), 7.94 (m, 4H, H*), 7.85 (dd, J = 7.9 Hz, J = 1.4 Hz, 2H,
H®), 7.74 (d, ] = 1.6 Hz, 2H, H*®), 7.60 (m, 4H, H®), 7.42 (m,
4H, H™), 7.33 (t, J = 7.7 Hz, 2H, H®"), 7.27-7.20 (overlapping
m, 16H, H°*'™%) 7.01 (m, 2H, H), 2.23 (s, 6H, HY), 1.77 (s,
6H, H). *C NMR (126 MHz, acetone-dg) 6/ppm: 159.8 (C*®),
156.0 (t, Jpc = 6.5 Hz, C°1), 154.0 (C*?), 150.5 (C**), 136.7 (C**),
136.5 (C*), 135.0 (t, Jpc = 1.8 Hz, C°), 134.3 (t, Jpc = 7.7 Hz,
C™), 132.7 (t, Jpc = 16.3 Hz, CP"), 131.3 (C%), 131.2 (C™Y),
130.4 (C*), 130.2 (C®?), 129.9 (t, Jpc = 4.5 Hz, C°%), 128.9 (C™°),
126.5 (C%Y), 124.4 (C™), 122.8 (t, Jpc = 12.7 Hz, C%), 119.2
(C*), 37.0 (C°9), 28.9 (C"), 27.2 (C*). *'P NMR (202 MHz,
acetone-ds) 6/ppm —13.5 (broad, FWHM = 133 Hz), —144.5
(septet, Jpr = 710 Hz, [PFg]7). ESI MS: m/z 1047.2 [M — PF4]"
(base peak, calc. 1047.2). UV-vis (CH,Cl,, 2.5 x 10> mol
dm™): A/nm (¢/dm’® mol™" em™) 227 (57 000), 271 (64 000),
315sh (24 000), 395 (5000). Found: C 63.49, H 4.59, N 2.64;
Ce3H50Cl,CuFgN,OP; requires C 63.46, H 4.23, N 2.35%.

[Cu(3)(POP)][PF¢]. [Cu(3)(POP)][PFs| was prepared according
to the procedure for [Cu(2)(POP)][PFs] using [Cu(MeCN),][PFs]
(93 mg, 0.25 mmol), POP (135 mg, 0.25 mmol) and 3 (124 mg,
0.25 mmol). [Cu(3)(POP)][PFs] was isolated as an orange solid
(215 mg, 0.173 mmol, 69%). 'H NMR (500 MHz, acetone-d)
S/ppm: 8.70 (d, J = 1.7 Hz, 2H, H*), 7.91 (m, 4H, H®),
7.78-7.75 (overlapping m, 6H, H**'®?), 7.45 (m, 2H, H®), 7.35
(t,J = 7.3 Hz, 4H, H"%), 7.32-7.29 (overlapping m, 4H, H%'°%),
7.22 (t, J = 7.7 Hz, 8H, H™®), 7.17 (m, 8H, H?), 7.07 (m, 2H,
H®), 2.41 (s, 6H, H*). >C NMR (126 MHz, acetone-ds) §/ppm:
160.3 (C**), 159.3 (t, Jpc = 6.0 Hz, C°"), 154.3 (C*?), 150.6 (C**),
137.0 (CP") 134.7 (C®?), 134.2 (t, Jpc = 7.8 Hz, CP?), 133.5 (C®°),
133.0 (t, Jpc = 16.3 Hz, CPY), 131.0 (CP%), 130.4 (C**), 129.7 (t,
Jrc = 4.6 Hz, CP?), 126.3 (t, Jpc = 2.2 Hz, C*), 126.3 (t, Jpc =
14.0 Hz, C?) 125.0 (C?*), 124.8 (C*), 121.2 (C®®), 119.3 (C*),
27.1 (C%). *'P NMR (202 MHz, acetone-ds) §/ppm —13.6 (broad,
FWHM = 136 Hz), —144.5 (septet, Jpr = 710 Hz, [PF,] ). ESI MS:
m/z 1095.1 [M — PF¢]" (base peak, calc. 1095.1). UV-vis
(CH,Cl,, 2.5 x 10~ mol dm™): 2/nm (¢/dm’® mol™" em™) 229
(54000), 270 (57900), 310sh (26700), 393 (4900). Found:
C 58.34, H 4.11, N 2.39; CoH,6Br,CuF¢N,OP; requires C 58.06,
H 3.74, N 2.23%.

[Cu(3)(xantphos)][PF]. [Cu(3)(xantphos)|[PFs] was prepared
according to the procedure for [Cu(2)(xantphos)][PFs] using
[Cu(MeCN),][PF¢] (93 mg, 0.25 mmol), xantphos (148 mg,
0.25 mmol) and 3 (124 mg, 0.25 mmol). [Cu(3)(xantphos)][PF]
(315 mg, 0.25 mmol, 98%) was isolated as an orange solid.
'"H NMR (500 MHz, acetone-dg) 6/ppm: 8.61 (d, J = 1.7 Hz, 2H,
H"), 7.88-7.84 (overlapping m, 6H, H**'“®), 7.75 (m, 4H, H"?),
7.74 (d,J = 1.6 Hz, 2H, H*), 7.44-7.38 (m, 4H, H™*), 7.33 (t, ] =
7.7 Hz, 2H, H"), 7.26-7.20 (overlapping m, 16H, H”*'"3), 7.00
(m, 2H, H®), 2.24 (s, 6H, H%), 1.77 (s, 6H, H"). *C NMR
(126 MHz, acetone-ds) &/ppm: 159.8 (C*°), 156.0 (t, Jpc =
6.5 Hz, C°"), 154.0 (C*?), 150.6 (C**), 136.9 (C*"), 135.0 (C°),
134.3 (t, Jpc = 7.7 Hz, C?), 133.4 (CP?), 132.6 (t, Jpc = 16.2 Hz,
Cc""), 131.3 (C), 131.2 (CP*), 130.4 (C*?), 129.9 (t, Jpc = 4.5 Hz,

This journal is © The Royal Society of Chemistry 2016
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C"%), 128.9 (C%), 126.5 (C?*), 125.1 (C**), 124.4 (C*), 122.8 (t,
Jec = 12.1 Hz, C?), 119.2 (C*%), 37.1 (C°9), 28.9 (CP), 27.2 (CY).
*'P NMR (202 MHz, acetone-dg) /ppm —13.5 (broad, FWHM =
138 Hz), —144.4 (septet, Jpr = 710 Hz, [PF¢]7). ESI MS: m/z
1135.1 [M — PF4]" (base peak, calc. 1135.1). UV-vis (CH,Cl,,
2.5 x 107> mol dm™): 2/nm (¢/dm’® mol™* ecm™) 227 (54 000),
274 (63 000), 316sh (25 000), 395 (5400). Found: C 58.76, H 4.30,
N 2.37; Cg3H50Br,CuFgN,OP; requires C 59.05, H 3.93, N 2.19%.
[Cu(4)(POP)][PFs]. [Cu(4)(POP)|[PF,] was prepared in an analo-
gous manner to [Cu(2)(POP)][PF,] starting with [Cu(MeCN),][PF¢]
(93 mg, 0.25 mmol), POP (135 mg, 0.25 mmol) and 4 (147 mg,
0.25 mmol). [Cu(4)(POP)][PFs| was isolated as an orange solid
(290 mg, 0.22 mmol, 87%). '"H NMR (500 MHz, acetone-d)
5/ppm: 8.68 (d, J = 1.6 Hz, 2H, H*®), 7.97 (m, 4H, H®®), 7.77 (d,
J = 1.6 Hz, 2H, H™), 7.75 (m, 4H, H*?), 7.45 (m, 2H, H®), 7.35
(t,J = 7.3 Hz, 4H, H"*), 7.32-7.28 (overlapping m, 4H, H*"%),
7.22 (t, J = 7.7 Hz, 8H, H™®), 7.17 (m, 8H, H?), 7.08 (m, 2H,
H®), 2.41 (s, 6H, H*). "*C NMR (126 MHz, acetone-ds) /ppm:
160.3 (C"®), 159.3 (C°"), 154.3 (C*?), 150.8 (C™), 139.5 (C™?),
137.5 (C?'), 134.7 (C%°), 134.2 (t, Jpc = 7.8 Hz, CP?), 133.5 (C?),
132.9 (t, Jpc = 16.2 Hz, CP"), 131.0 (CP%), 130.4 (C*?), 129.8 (t,
Jrc = 4.6 Hz, C™), 126.4 (C°*), 126.3 (C?), 124.7 (C*), 121.2
(€%, 119.2 (C*), 97.0 (C®*), 27.1 (C?). *'P NMR (202 MHz,
acetone-dg) §/ppm —13.5 (bra, FWHM = 133 Hz), —144.5
(septet, Jpr = 710 Hz, [PFg]7). ESI MS: m/z 1189.0 [M — PF,]"
(base peak, calc. 1189.1). UV-wis (CH,Cl,, 2.5 x 107°
mol dm™®): A/nm (¢/dm® mol™ ecm™") 229 (57000), 273
(50 000), 315sh (29 800), 387 (4900). Found: C 53.88, H 3.91,
N 2.25; CgoH46CuF[,N,OP; requires C 53.97, H 3.74, N 2.10%.
[Cu(4)(xantphos)][PFs]. [Cu(4)(xantphos)][PFs] was prepared
in an analogous manner to [Cu(2)(xantphos)|[PFs] using
[Cu(MeCN),|[PFs] (93 mg, 0.25 mmol), xantphos (148 mg,
0.25 mmol) and 4 (147 mg, 0.25 mmol). The crude material
was dissolved in a small amount of acetone, layered with Et,O
and left for two days. The resulting crystals were ground to a
powder and dried under vacuum. [Cu(4)(xantphos)]|[PFs] was
isolated as an orange-red solid (138 mg, 0.10 mmol, 40%).
"H NMR (500 MHz, acetone-dg) 6/ppm: 8.60 (d, J = 1.7 Hz, 2H,
H™), 7.96 (m, 4H, H*), 7.85 (dd, J = 7.8 Hz, J = 1.4 Hz, 2H,
H), 7.73 (d, ] = 1.6 Hz, 2H, H"), 7.71 (m, 4H, H"?), 7.41 (m,
4H, HP%), 7.33 (t, J = 7.7 Hz, 2H, H®"), 7.26-7.20 (overlapping
m, 16H, H”*'™%), 7.01 (m, 2H, H), 2.23 (s, 6H, H%), 1.77 (s,
6H, H). *C NMR (126 MHz, acetone-de) 6/ppm: 159.6 (C*°),
153.9 (C*?), 150.5 (C*), 139.3 (C**), 137.2 (CP"), 134.8 (C®°),
134.1 (t, Jpc = 7.7 Hz, C"?), 132.5 (t, Jpc = 16.2 Hz, C°'), 131.2
(€%, 131.1 (C"*), 130.2 (CP?), 129.8 (t, Jpc = 4.5 Hz, C™?), 128.8
(C®), 126.4 (C%), 124.1 (C*), 122.6 (C??), 119.0 (C**), 96.8
(CP, 36.9 (C%Y), 28.8 (C"), 27.1 (C*). *'P NMR (202 MHz,
acetone-ds) 6/ppm —13.6 (broad, FWHM = 160 Hz), —144.5
(septet, Jpr = 710 Hz, [PF¢]7). ESI MS: m/z 1229.1 [M — PF,]"
(base peak, calc. 1229.1). UV-vis (CH,Cl,, 2.5 x 107> mol
dm™): A/nm (¢/dm*® mol™ em™) 230 (54 000), 278 (57 000),
316sh (29100), 393 (5400). Found: C 55.02, H 3.92, N 2.27;
Ce3Hs50CuFg I,N,OP; requires C 55.02, H 4.62, N 2.04%.
[Cu(5)(POP)][PFs]. [Cu(MeCN),][PF] (93.2 mg, 0.25 mmol)
and POP (135 mg, 0.25 mmol) were dissolved in CH,CI,
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(30 ml) and the mixture was stirred for 1.5 h at room tempera-
ture. Compound 5 (84.1 mg, 0.25 mmol) was added and the
mixture turned orange as it was stirred for another 2 h.
Additional POP (26.9 mg, 0.05 mmol) was added; stirring was
continued for another 1 h during which the solution turned
yellow. After filtration, the solvent was removed from the fil-
trate; the solid residue was washed with hexane (2 x 30 ml)
and Et,0 (7 x 30 ml) and dried under vacuum to give [Cu(3)
(POP)][PF¢] (130 mg, 0.12 mmol, 48%) as a yellow solid.
'H NMR (500 MHz, acetone-d,) §/ppm: 8.71 (d, J = 1.7 Hz, 2H,
H™*), 7.95 (m, 4H, H??), 7.76 (d, J = 1.6 Hz, 2H, H"®), 7.61-7.54
(overlapping m, 6H, H**'®%) 7.45 (m, 2H, H®), 7.35 (m, 4H,
H"*), 7.32-7.27 (overlapping m, 4H, H®"%"), 7.25-7.16 (over-
lapping m, 16H, H”*>*P?), 7.08 (m, 2H, H®), 2.41 (s, 6H, H?).
C NMR (126 MHz, acetone-ds) &/ppm: 159.9 (C*°), 159.1
(€Y, 154.2 (C*), 151.8 (C**), 137.7 (C*") 134.6 (C%), 134.0 (t,
Jrc = 7.8 Hz, C?), 133.3 (C), 132.9 (t, Joc = 16.2 Hz, CPY),
130.9 (overlapping m, C®*™*), 130.2 (C*), 129.6 (t, Jpc =
4.6 Hz, C™?), 128.3 (C*?), 126.2 (overlapping m, C®**"), 124.7
(C*), 121.1 (C%), 119.2 (C*), 27.0 (C¥). *'P NMR (202 MHz,
acetone-dg) §/ppm —13.6 (broad, FWHM = 150 Hz), —144.5
(septet, Jpr = 707 Hz, [PFg]7). ESI MS: m/z 937.1 [M — PF4]"
(base peak, calc. 937.2). UV-vis (CH,Cl,, 2.5 x 107> mol dm™):
Anm (e/dm® mol™ em™) 230 (60 000), 264 (56 000), 312sh
(24 000), 327sh (18 000), 387 (5100). Found: C 66.48, H 4.82,
N 2.59; C4oH,CuF¢N,OP; requires C 66.51, H 4.47, N 2.59%.

[Cu(5)(xantphos)][PF]. [Cu(5)(xantphos)|[PFs] was prepared
in the same manner as [Cu(2)(xantphos)]|[PFs] starting with
[Cu(MeCN),][PFs] (93 mg, 0.25 mmol), xantphos (148 mg,
0.25 mmol) and 5 (84.1 mg, 0.25 mmol). [Cu(5)
(xantphos)][PFs] was isolated as a yellow solid (264 mg,
0.24 mmol, 94%). "H NMR (500 MHz, acetone-d¢) §/ppm: 8.63
(d,J = 1.6 Hz, 2H, H"), 7.91 (m, 4H, H"?), 7.85 (dd, ] = 7.8 Hz,
J = 1.4 Hz, 2H, H®), 7.72 (d, J = 1.5 Hz, 2H, H*), 7.60-7.53
(overlapping m, 6H, H®*™®), 7.41 (m, 4H, H™), 7.33 (t, J =
7.7 Hz, 2H, H"), 7.26-7.20 (overlapping m, 16H, H*'™?), 7.01
(m, 2H, H®), 2.24 (s, 6H, H%), 1.77 (s, 6H, H"). *C NMR
(126 MHz, acetone-dg) §/ppm: 159.4 (C*°), 155.9 (m, C'), 153.9
(C*), 151.7 (C*), 137.1 (C*"), 134.9 (C°), 134.1 (t, Jpc = 7.7 Hz,
C™), 132.6 (t, Jpc = 16.2 Hz, C""), 131.2 (C?), 131.0 (C™Y),
130.8 (C®*), 130.1 (C*?), 129.8 (t, Jpc = 4.5 Hz, CP?), 128.9 (C™°),
128.3 (C™), 126.4 (t, Jpc = 2.3 Hz, C°), 124.3 (C*°), 122.7 (C®?),
119.1 (C*), 36.9 (C©9), 28.7 (CP), 27.1 (C?). *'P NMR (202 MHz,
acetone-dg) 6/ppm —13.5 (broad, FWHM = 180 Hz), —144.2
(septet, Jpr = 708 Hz, [PF¢]7). ESI MS: m/z 977.2 [M — PF4]"
(base peak, calc. 977.3). UV-vis (CH,Cl,, 2.5 x 107> mol dm™):
Anm (g/dm® mol™ ecm™) 231 (59 000), 266 (55000), 312sh
(20 000), 326sh (17 000), 389 (4800). Found: C 67.05, H 5.00,
N 2.67; Co3Hs5,CuFgN,OP; requires C 67.35, H 4.67, N 2.49%.

Crystallography

Data were collected on a Bruker Kappa Apex2 diffractometer
with data reduction, solution and refinement using the pro-
grams APEX*® and CRYSTALS.? Structural analysis was carried
out using Mercury v. 3.7.>%?
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[Cu(1)(POP)][PF¢]-0.8H,0.  CgoHus6CuFgN,O;y P, M =
1134.91, yellow block, triclinic, space group P1, a = 11.8717(7),
b =14.5153(11), ¢ = 17.3347(11) A, a = 76.797(5), /3 = 84.595(4),
y = 88.547(4)°, U = 2895.2(3) A%, Z = 2, D, = 1.302 Mg m >,
u(CuKa) = 1.894 mm™", T = 123 K. Total 36247 reflections,
10430 unique, Rj,¢ = 0.060. Refinement of 5821 reflections
(828 parameters) with I > 26(I) converged at final R, = 0.1078
(R, all data = 0.1526), wR, = 0.2856 (WR, all data = 0.3329), gof
=1.0746. CCDC 1486908.

[Cu(1)(xantphos)][PF]-Et,0.  Ce;HgoCuFgN,O,P3, M =
1233.68, yellow block, monoclinic, space group P2,/c, a =
14.3066(14), b = 16.4396(16), ¢ = 25.643(3) A, f = 101.190(3)°
U = 5916.4(10) A®>, Z = 4, D, = 1.385 Mg m™°, yu(Cu-Ko)
1.901 mm™ ', T = 123 K. Total 92 310 reflections, 10 709 unique,
Rine = 0.027. Refinement of 10 362 reflections (748 parameters)
with I > 206(I) converged at final R, = 0.0573 (R, all data =
0.0644), WR, = 0.1114 (WR, all data = 0.1149), gof = 0.7666.
CCDC 1486909.

[Cu(3)(xantphos)][PFs]-0.5H,0-Et,0. Cg;Hg;Br,CuFsN,O, 5P3,
M = 1233.68, yellow block, triclinic, space group P1, a =
10.8614(6), b = 17.1071(8), ¢ = 18.6668(9) A, a = 76.277(3), ff =
85.698(3), y = 77.922(3)°, U = 3293.7(3) A%, Z = 2, D, =
1.376 Mg m>, u(CuKa) = 3.089 mm™', T = 123 K. Total
40 048 reflections, 11 720 unique, Rj, = 0.082. Refinement of
11 716 reflections (845 parameters) with I > 26(I) converged at
final R, = 0.1035 (R, all data = 0.1727), wR, = 0.2563 (WR, all
data = 0.3243), gof = 0.9690. CCDC 1486906.

[Cu(4)(xantphos)][PFs]-2Et,O. C;;H;oCuF¢,LN,O3P;, M =
1523.61, yellow plate, triclinic, space group P1, a = 10.8361(6),
b = 16.8690(10), ¢ = 19.1696(11) A, a = 74.934(2), = 88.594(2),
y = 79.074(2)°, U = 3321.2(3) A%, Z = 2, D, = 1.523 Mg m >,
u(CuKa) = 8.984 mm™, T = 123 K. Total 35841 reflections,
12100 unique, Rj,c = 0.026. Refinement of 11 776 reflections
(793 parameters) with I > 26(I) converged at final R, = 0.0455
(R, all data = 0.0466), WR, = 0.0948 (WR, all data = 0.0949),
gof = 0.8865. CCDC 1486907.

[Cu(5)(xantphos)][PFs]. Ce3H5,CuF¢N,OP;, M = 1123.57,
yellow plate, hexagonal, space group P6,, a = b = 10.9508(5), ¢ =
76.094(3) A, U = 7902.6(7) A%, Z = 6, D, = 1.416 Mg m™>, u(Cu-
Ko) = 2.008 mm™', T = 123 K. Total 30411 reflections,
8703 unique, R;,; = 0.028. Refinement of 8359 reflections (686
parameters) with I > 26(I) converged at final R, = 0.0311 (R, all
data = 0.0330), wR, = 0.0674 (WR, all data = 0.0679), gof =
0.9999. CCDC 1486911.

[Cu(1),][PFs]. C4sH36CuF;oN,P, M = 953.33, orange block,
monoclinic, space group C2/c, a = 24.1972(18), b = 16.3688(12),
¢=23.0149(19) A, § = 108.421(4)°, U = 8648.6(12) A%, Z=8, D =
1.464 Mg m >, y(CuKa) = 1.791 mm ™, T = 123 K. Total 30 204
reflections, 7813 unique, Rj,. = 0.043. Refinement of 6016
reflections (580 parameters) with I > 20(I) converged at final
R, = 0.0594 (R, all data = 0.0791), WR, = 0.1303 (WR, all data =
0.1398), gof = 1.0319. CCDC 1486910.

Device preparation

LECs were prepared on pre-patterned indium tin oxide (ITO)
covered glass substrates. The substrates were previously
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cleaned using subsequent sonication with soap, deionized
water and 2-propanol. After drying with a N, flow, the
substrates were placed in a UV Ozone cleaner (Jelight 42-220)
for 20 minutes. An Ambios XP-1 profilometer was used to
determine the layer thickness. Following, 80 nm of poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
(CLEVIOS™ P VP AI 4083, aqueous dispersion, 1.3-1.7% solid
content, Heraeus) was coated in order to avoid the formation
of pinholes and to improve the reproducibility of the cells.
Subsequently, the emitting layer was deposited by spin-coating
from a 2-butanone solution of the emitting compound with
the addition of the ionic liquid 1-ethyl-3-methylimidazolium
hexafluoridophosphate [Emim][PFs] (>98.5%, Sigma-Aldrich)
in a 4 to 1 molar ratio. The active layer spin conditions were
optimized to form 100 nm thick films. 70 nm of aluminium,
acting as the top electrode, were thermally evaporated onto the
device using an Edwards Auto500 evaporator integrated into
an inert atmosphere glovebox (<0.1 ppm O, and H,O,
MBraun). The active areas of the devices are 6.5 mm®. The
devices were then characterized under inert atmosphere
conditions at room temperature.

Device characterization

The devices were measured by applying a pulsed current (J =
50 A m~2, 1 kHz, 50% duty cycle) and monitoring the voltage
and luminance versus time by using a True Colour Sensor
MAZeT (MTCSICT sensor) with a Botest OLT OLED Lifetime-
Test system. The electroluminescence (EL) spectra were
measured using an Avantes AvaSpec-2048 fiber optic spectro-
meter during device measurements. The turn-on time (¢,ax) is
defined as the time to reach the maximum luminance
(Lumyy,y) and the lifetime (¢/,) is the time to reach one-half of
Lum,,,, after this value is attained.

Results and discussion

Synthesis and characterization of the [Cu(N"N)(P"P)][PFs]
complexes

+

The formation of homoleptic [Cu(N"N),]", [Cu(P*P),]" and
[Cu(P*P)]" may compete with that of the desired heteroleptic
[Cu(N~N)(P*P)]" species from the reaction of [Cu(MeCN),][PF¢]
with the respective N°N and P~P ligands.**** The POP ligand
is more sterically demanding than xantphos, as demonstrated
by Kawai and coworkers who showed that the reaction of
[Cu(MeCN),]" with one equivalent of POP or xantphos leads to
[Cu(POP)(NCMe)]" or [Cu(xantphos)(NCMe),]', respectively, while
with two equivalents, the products are [Cu(POP-P,P')(POP-P)]"
or [Cu(xantphos-P,P"),]".>* This leads to different optimal
strategies®*>*  for preparing [Cu(N~N)(POP)][PF;] and
[Cu(N”N)(xantphos)][PFs]. The [Cu(N"N)(POP)|[PF¢] (N"N = 1-5)
complexes were synthesized in a stepwise manner, first com-
bining POP and [Cu(MeCN),][PFs] in CH,Cl, and then, after
2 hours, adding the N~N ligand to the reaction mixture. The
[Cu(N~N)(xantphos)]|[PFs] complexes were obtained by addition
of a CH,Cl, solution containing N*N and xantphos (1:1) to a

This journal is © The Royal Society of Chemistry 2016
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CH,Cl, solution of [Cu(MeCN),][PFs]. In the initial stages of
the reaction, a red colour is observed indicating the presence
of [Cu(N"N),]", but over time the yellow or bright orange
colour of the heteroleptic complex develops. NMR spectra of
CD,Cl, solutions of some of the [Cu(N"N)(P*P)][PFs] com-
plexes showed the presence of both homo- and heteroleptic
complexes; in contrast, the heteroleptic complexes were stable
in acetone-ds. The isolation of single crystals of [Cu(1),][PF]
from a CH,Cl, solution initially containing [Cu(1)(POP)|[PFs]
(see later) also demonstrates that ligand redistribution can
occur in CH,Cl,.

The complexes [Cu(N"N)(POP)|[PFs] and [Cu(N"N)
(xantphos)|[PFs] were isolated as yellow or orange solids in
yields ranging from 40 to 98%. The electrospray mass spec-
trum of each complex showed a peak envelope (base peak)
corresponding to [M — PFg]", and 'H and "*C NMR spectra
were consistent with the presence of both N*N and P*P
ligands. The *'P NMR spectrum of each complex showed the
[PF¢]” ion (6 —144.5 ppm) and a broad signal (§ —13.3 to
—13.6 ppm, see the Experimental section for FWHM) assigned
to the coordinated POP or xantphos ligand. The solution
"H NMR spectra of [Cu(5)(POP)][PF,] and [Cu(5)(xantphos)][PFe]
are shown as representative examples in Fig. 1; atom number-
ing is shown in Scheme 2. Spectra were assigned using COSY,
NOESY, HMQC and HMBC techniques. On going from [Cu(5)
(POP)]" (Fig. 1a) to [Cu(5)(xantphos)]" (Fig. 1b), the noteworthy
change in the "H NMR spectrum is the loss of the signal for
H®® as the CMe, bridge is introduced into the PP ligand. The
methyl groups in ligand 5 give rise to a signal at § 2.41 ppm in
[Cu(5)(POP)]" and & 2.24 ppm in [Cu(5)(xantphos)]’; the CMe,
group in the latter is characterized by a singlet at § 1.77 ppm.

Fig. 2 compares the solution "H NMR spectra of the
[Cu(N~N)(xantphos)][PFs] complexes. As expected, the reson-
ances for the xantphos ligand are not affected by the remote
halo-substituents in the diimine ligands. The only significant
changes involve signals for protons H®* and H® (see
Scheme 2), and the trend mimics that observed in the series of

(a)

B3+B4

A3

(b)

A3

_J

87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70

Fig. 1 The aromatic regions of the *H NMR spectra (500 MHz, 298 K,
acetone-dg) of (a) [Cu(5)(POP)I[PFs] and (b) [Cu(5)(xantphos)I[PFe].
Chemical shifts in 5/ppm. See Scheme 2 for labelling.
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X=F,Cl,BrI,H

Scheme 2 Atom numbering for NMR assignments in [Cu(NAN)(POP)]*
and [Cu(NAN)(xantphos)]* (NAN = 1-5).

D2+
@ g3+ D3
A3 B2 C5 A5 D4 G4 A s
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(b)

B2 B3
_A
(c) B3

B2 ‘

_A M
(d)

B3 B2
_ L

86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70

Fig. 2 The aromatic regions of the *H NMR (500 MHz, 298 K, acetone-
dg) of (a) [Cu(l)(xantphos)l[PFel, (b) [Cu(2)(xantphos)l[PFel, (c) [Cu(3)
(xantphos)][PFe]l and (d) [Cu(4)(xantphos)][PFel. Chemical shifts in §/ppm.
See Scheme 2 for labelling.

homoleptic complexes [Cu(1),][PFs], [Cu(2),][PFs] [Cu(3),][PFs]
and [Cu(4),][PF¢].*

Single crystals of [Cu(1)(xantphos)|[PF¢]-Et,O, [Cu(3)
(xantphos)][PF¢]-0.5H,0-Et,0, [Cu(4)(xantphos)][PFs]-2Et,0
and [Cu(5)(xantphos)][PFs] were grown by layering a CH,Cl,
solution of the compound with Et,0. The quality of the struc-
ture of [Cu(3)(xantphos)][PFs]-0.5H,0-Et,0 was poor due to
weakly diffracting crystals, and persistent attempts to grow
better quality crystals were unsuccessful. We therefore refrain
from detailed discussion of this structure. [Cu(3)
(xantphos)|[PF¢]-0.5H,0-Et,0  (Fig.  S1Y) [Cu(4)
(xantphos)|[PF¢]-2Et,O both crystallize in the triclinic space
group P1 and are structurally similar. [Cu(1)
(xantphos)|[PF¢]-Et,O crystallizes in the monoclinic space
group P2,/c and [Cu(5)(xantphos)][PFs] in the hexagonal space
group P6,; the latter is one of the 65 Sohncke space groups

and
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Fig. 3 Structure of the [Cu(l)(xantphos)]* cation in [Cu(l)
(xantphos)][PF¢l-Et,O with ellipsoids plotted at the 40% probability level;
H atoms are omitted for clarity. Selected bond parameters: Cul-P2 =
2.2470(8), Cul-P1 = 2.3159(8), Cul-N1 = 2.084(2), Cul-N2 = 2.102(2) A;
P2-Cul-P1 = 117.09(3), P2-Cul-N1 = 128.64(6), P1-Cul-N1 =
99.52(6), P2—-Cul-N2 = 124.20(6), P1-Cul-N2 = 100.98(7), N1-Cul-
N2 = 77.73(9)°.

(see below). Fig. 3-5 show the structures of the [Cu(1)
(xantphos)]’,  [Cu(4)(xantphos)]" and [Cu(5)(xantphos)]"
cations. In each, atom Cul is in a distorted tetrahedral coordi-
nation environment, with Cu-P and Cu-N bond lengths in
typical ranges (see captions to Fig. 3-5); halo-substitution does
not have a significant impact on the coordination environment
at copper. In each cation, the pyran ring adopts a boat con-
formation, consistent with crystallographic data for related
structures.*>>

In the [Cu(1)(xantphos)]" and [Cu(4)(xantphos)]’ cations,
the bpy unit is close to planar (angles between the pyridine-

1 C61

the

[Cu(4)(xantphos)]*
(xantphos)][PFgl-2Et,O with ellipsoids plotted at the 40% probability
level; H atoms are omitted for clarity. Selected bond parameters:
Cul-P1 = 2.3138(9), Cul-P2 = 2.2717(9), Cul-N1 = 2.077(3), Cul-N2 =
2.135(3) A; P1-Cul-P2 = 116.90(3), P1-Cul-N1 = 104.53(7), P2—Cul-

Fig. 4 Structure of cation in [Cu(4)

N1 = 117.77(8), P1-Cul-N2 =
N1-Cul-N2 = 79.18(10)".

101.52(8), P2-Cul-N2 = 129.47(8),
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Fig. 5 Structure of the [Cu(5)(xantphos)]* cation in [Cu(5)
(xantphos)][PF¢] with ellipsoids plotted at the 40% probability level;
H atoms are omitted for clarity. Selected bond parameters: Cul-P2 =
2.3100(7), Cul-P1 = 2.2614(7), Cul-N2 = 2.132(2), Cul-N1 = 2.090(2) A;
P2-Cul-P1 = 115.83(3), P2-Cul-N2 = 100.19(6), P1-Cul-N2 =
125.23(6), P2—Cul-N1 = 108.59(6), P1-Cul-N1 = 120.93(6), N2—Cu—N1 =
79.74(8)°.

ring planes = 5.0° and 2.5°, respectively). In contrast, the bpy
unit is significantly twisted in [Cu(5)(xantphos)]’ (angle
between ring planes = 31.6°). In [Cu(1)(xantphos)][PFs], the
fluorophenyl substituent containing F2 is approximately co-
planar (twist angle = 7.8°) with the pyridine ring (with N1) to
which it is bonded. This planarity is associated with the pres-
ence of triple-decker z-stacks between centrosymmetric pairs
of [Cu(1)(xantphos)]" cations (Fig. 6a). These involve the aro-
matic rings containing C25 (phenyl of xantphos), N1 and C19’
(fluorophenyl ring, i = —x, 1 — y, 1 — 2); in the triple-decker
n-stack, the ring-centroid separations are 3.39 and 3.44 A, and
the centroid—centroid distances are 3.72 and 3.61 A. In con-
trast, in the iodo-derivative [Cu(4)(xantphos)]|[PF¢], centrosym-
metric pairs of cations interact through =-stacking of the
iodophenyl rings (Fig. 6b); the distance between the ring-

Fig. 6 (a) Packing of centrosymmetric pairs of [Cu(l)(xantphos)*
cations with intra/intermolecular triple-decker r-stacks. (b) Intramolecular
n-stacking in [Cu(4)(xantphos)]* cations, and interactions between
centrosymmetric pairs of cations.

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Arrangement of [Cu(5)(xantphos)]* cations along the 6-fold screw axis; the accommodation of the xantphos domain within the cavity
created by the twisted 4,4'-diphenylbpy unit of a neighbouring cation is shown in space-filling representation.

planes and the inter-centroid separation are, respectively, 3.32
and 3.70 A. Each [Cu(4)(xantphos)]" cation also exhibits an
intramolecular n-stacking interaction between one phenyl ring
of xantphos and a pyridine ring (Fig. 6b).

We noted above that in [Cu(5)(xantphos)][PFe], the dihedral
angle between the pyridine rings in 5 is 31.6°. The twisting of
the 4,4'-diphenylbpy unit is a consequence of the chiral
arrangement along the 6-fold screw axis which follows the
c-axis (Fig. 7). The twisted 4,4'-diphenylbpy domain forms a
cavity which accommodates the xantphos unit of an adjacent
cation (Fig. 7), leading to highly efficient packing of cations in
infinite chains.

Yellow, single crystals of [Cu(1)(POP)][PFs]-0.8H,O were
obtained from a CH,Cl, solution of [Cu(1)(POP)]|[PFs] layered
with Et,O. However, whilst these crystals grew, orange crystals
of [Cu(1),][PFe] also formed (see earlier discussion on ligand
lability). Structure quality for [Cu(1)(POP)|[PF¢]-0.8H,0O was
poor due to weakly diffracting crystals (especially at high
angles), but provided confirmation of the gross structural
details of the heteroleptic complex (Fig. S27). [Cu(1),][PFs] crys-
tallizes in the monoclinic space group C2/c, and the structure
of the [Cu(1),]" cation and bond parameters for the copper
coordination sphere are given in Fig. S3.1 The structure of the
cation is similar to that of the dibromo analogue in
2{[Cu(3),][PF¢]}-3Me,CO;*® Cu-N bond lengths are unexcep-
tional (range 2.000(2) to 2.044(2) A). The angle between the
least squares planes containing Cul and each (near planar)
bpy unit is 88.0° very close to the 85.6° observed in
[Cu(3),]".® The tetrahedral coordination environment in both
these [Cu(N"N),]" cations is therefore less flattened than in the
salts of [Cu(6,6'-Me,bpy),]" (range = 74.3 to 80.9°).>”

Electrochemistry

The electrochemical behaviour of the [Cu(N"N)(P"P)][PFs]
complexes was investigated using cyclic voltammetry and data
are given in Table 1 and a typical CV is shown in Fig. 8. The
single oxidation wave for each complex is attributed to the
copper-centred oxidation process. For the POP-containing
complexes, this process is irreversible whilst with xantphos, it
is quasi-reversible provided that the potentials do not rise
above ~+1.1 V (Fig. 8). The presence of the halo-substituents

has a negligible effect on By The values of EY), ~ 0.9 V are

This journal is © The Royal Society of Chemistry 2016

Table 1 Cyclic voltammetric data for [Cu(NAN)(PAP)I[PFg] complexes
referenced to internal Fc/Fct = 0. V; CH,Cl, (freshly distilled or
degassed HPLC grade) solutions with ["BusN][PFg] as the supporting
electrolyte and a scan rate of 0.1 V s™. Processes are quasi-reversible
unless otherwise stated (ir = irreversible)

Complex cation EP,IV (Epe — Epa/mV) Epc/V
Cu(1)(POP)]* +0.99
Cu(2)(POP)]" +0.99'
Cu(3)(POP)]" +0.98""
(4)(1)013)]+ +0.99'
Cu(5)(POP)]" +0.95"
Cu(1)(xantphos)]" +0.91 (144)

Cu(2)(xantphos)]* +0.92 (133)
Cu(3)(xantphos)]" +0.92 (141)
Cu(4)(xantphos)]” +0.91 (119)
Cu(5)(xantphos)]* +0.88 (123)
4.00E-05 -
< 200E-05 |
5
© 0.00E+00 A f—/
-2.00E-05 . . . . : :
2.0 1.5 1.0 05 0.0 0.5 1.0
Potential / V
Fig. 8 Cyclic voltammogram for a CH,Cl, solution of [Cu(3)

(xantphos)][PFel; scan rate 0.1V s and referenced internally to Fc/Fc*.

compared with +0.82 and +0.81 V for [Cu(6,6-Me,bpy)
(POP)][BF,] and [Cu(6,6-Me,bpy)(xantphos)][BF,] (MeCN solu-
tion, vs. Fc/Fc*).** Reduction processes were poorly defined
within the solvent accessible window.

Photophysical properties

Fig. 9 and S47 display the solution absorption spectra of the
[Cu(N~N)(xantphos)]|[PFs] and [Cu(N~N)(POP)|[PFs] complexes,
respectively. The intense bands below ~330 nm arise from
ligand-based n — n* and n — n* transitions. Introduction of
the halo-substituents shifts the highest energy absorption

Dalton Trans., 2016, 45, 15180-15192 | 15187
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Fig. 9 Solution (CH,Cl,, 2.5 x 107> mol dm™) absorption spectra of
[Cu(NAN)(xantphos)l[PF¢] (NAN = 1-5).

maximum shown in Fig. 9 from 266 nm to 278 nm, the lowest
energy being the complex containing the iodo-functionality.
The same trend is observed for the [Cu(N"N)(POP)|[PF,] series
(Amax shifts from 266 to 278 nm, Fig. S4f) and reflects that
observed for the free N*N ligands.*> The broad absorption in
the range 387-395 nm is attributed to metal-to-ligand charge
transfer (MLCT).

The PL spectra of the solution, powder and thin film
samples of [Cu(N~N)(POP)][PF,] are shown in Fig. 10, S5 and
S7,1 and of [Cu(N~N)(xantphos)][PF¢] are displayed in Fig. S6,
11 and S8.7 All complexes are yellow or yellow-orange emitters
and Table 2 gives values of A75* as well as PL quantum yields
and emission lifetimes. The emission spectra are broad and
generally structureless, although the solution spectra of [Cu(3)
(POP)|[PF¢] and [Cu(3)(xantphos)][PFs] both exhibit a high
energy shoulder (Fig. 10 and S67). Little difference is observed
in the solution spectra of any given pair of [Cu(N~N)(POP)]"
and [Cu(N”N)(xantphos)]" complexes. The most blue-shifted
spectra are for complexes with 5 (no halo-substituent) and the
most red-shifted are for those in which N*N = 4 (iodo-functio-
nalized). [Cu(4)(POP)][PF¢] is very weakly emissive (PLQY = 1%
in the solid state). For the xantphos-containing compounds,

— [Cu(1)(POP)*
— [Cu(2)POP)I*
— [Cu(3)(POP)*
— [Cu()(POP)]*
— [Cus)(POP)*

Normalized intensity / a.u.

0 - T T T T T T T
420 470 520 570 620 670 720 770
Wavelength / nm

Fig. 10 Normalized solution (CH,Cly, 2.5 x 107> mol dm™) emission
spectra of [CU(NAN)(POP)][PFgl (1exc = 400 nm, see Table 2 for 17}2X).
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— [Cu(1)(xantphos)] *
— [Cu(2)(xantphos)]*
— [Cu(3)(xantphos)] *
— [Cu(4)(xantphos)] *

-
L

— [Cu(5)(xantphos)]*

Normalized intensity /a.u.

450 480 510 540 570 600 630 660 690 720
Wavelength / nm

Fig. 11 Normalized solid-state emission [Cu(NAN)

(xantphos)][PF¢] (NAN = 1-5) (Aexc = 365 nm).

spectra of

[Cu(4)(xantphos)]|[PFs] shows the lowest PLQY in the powder
(Table 2). Complexes containing N”N ligands 1, 2, 3 or 5
undergo a blue shift on comparing the solution with the solid
state (except for complexes with ligand 5 in thin film). This
is consistent with other [Cu(N~N)(POP)]" emitters,*>*3°
although the opposite trend has been observed when N*N =
2,2":6',2"-terpyridine.”® The PLQY of degassed solutions of
[Cu(N~N)(POP)][PF¢] are generally higher than that of the
xantphos-containing analogues (Table 2). However, in the
solid state, due to packing interactions, luminescence pro-
perties can be significantly influenced by the type of substi-
tuent; this is more prevalent in powders than in thin films. An
explanation for this behaviour has previously been proposed
on the basis of the flattening that the pseudo-tetragonal
geometry of the complexes experience while passing from the
electronic ground state (S,) to the emitting excited state.’* This
flattening, which is more favoured in a fluid medium, is
hindered in the crystalline state (powder) and is partially hindered
in thin films. The highest PLQY values are exhibited by the
fluoro-functionalized complexes; powdered [Cu(1)(POP)][PFs]
has a PLQY = 74% with a lifetime 7;,, = 11.1 ps (Tables 2 and
S1t), while the thin film has a PLQY = 13%. The range of
values of 7/, (Table 2) is similar to that observed for [Cu(N"N)
(POP)][PF¢] and [Cu(N~N)(xantphos)|[PFs] complexes in which
NN = 6-methyl-2,2"-bipyridine,  6-ethyl-2,2"-bipyridine,
6-phenyl-2,2"-bipyridine or 6,6-dimethyl-2,2-bipyridine,***
and for [Cu(6,6'-Me,bpy)(POP)][BF,] in PMMA thin-films.**
The solid-state emission data indicate that the introduction of
the remote fluoro-substituent enhances PL (compare complexes
with N*N = 1 versus 5), but that replacement of the fluorine
atom by a heavier congener in ligands 2, 3 or 4 is detrimental.

Electroluminescence

The electroluminescence behaviour of the complexes was
tested by incorporating them into LEC devices. For LEC
characterization, the turn-on time (¢.,,,) is defined as the time
to reach the maximum luminance (Lum,,,,). The time to reach
one-half of the maximum luminance is referred to as ¢, (the
device lifetime). The devices were operated using a block-wave

This journal is © The Royal Society of Chemistry 2016
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Table 2 Emission maxima, photoluminescence quantum yields (PLQY) and lifetimes (ry,,) for [CU(NAN)(PAP)][PF¢] complexes
CH,Cl, solution Powder” Thin film”?¢
PLQY*? (non-degassed/  7,5(av)™”

Complex cation AgdXnm degassed)/% (degassed)/ps AgX/nm PLQY/% 7y 5(av)/ps Ao nm PLQY/%
[Cu(1)(POP)]" 578 2/26 4.5 542 74 11.1 573 13
[Cu(2)(POP)]" 583 2/21 4.3 567 12 4.0 571 4
[Cu(3)(POP)]" 577 3/21 4.4 570 11 4.2 574 2
[Cu(4)(POP)]* 589 1/14 4.1 590 1 1.2 580 1
[Cu(5)(POP)]" 573 2/22 3.0° 550 44 10.2 576 8
[Cu(1)(xantphos)]* 576 1/12 2.5 555 25 5.8 565 16
[Cu(2)(xantphos)]" 577 2/12 2.8 569 18 5.2 572 11
[Cu(3)(xantphos)]” 571 2/12 2.7 567 14 6.1 573 10
[Cu(4)(xantphos)]" 579 2/12 2.6 575 8 3.0 576 6
[Cu(5)(xantphos)]* 570 2/15 3.7 562 21 5.7 570 10

“Solution concentration = 2.5 x 10> mol dm™ except for [Cu(5)(POP)][PFs] (1.0 x 10~ mol dm?) and [Cu(5)(xantphos)][PFs] (1.88 x 10~ mol

dm™). b Jexe = 365 nm. ° Biexponential fit using the equation 7,/,(av) =

YAzl YA; where 4A; is the pre-exponential factor for the lifetime (see

Table S1). ¢ Thin films consisted of the [Cu(N*N)(P"P)][PF¢] complex mixed with the ionic liquid (IL) 1-ethyl-3-methylimidazolium hexafluorido-

phosphate in a molar ratio 4 : 1 (complex: IL).

pulsed current driving mode (as described in the Experimental
section), which was selected in order to enhance the device
response. Under these conditions, the voltage required to
maintain the current density decreases versus time due to the
formation of p- and n-doped regions, which reduces the resist-
ance of the active layer. The electroluminescence (EL) spectra
recorded for the LECs showed maxima in the 565-585 nm
range (yellow emission) for all complexes (Fig. S97).

On the one hand, LECs containing [Cu(4)(POP)]", [Cu(4)
(xantphos)]" and [Cu(3)(POP)]", which contain the complexes
with iodo- and bromo-substituted N*N ligands, did not show
any EL after 50 hours (Fig. S$10-S12t). However, the LEC with
[Cu(3)(xantphos)]" (which also has a bromo-functionalized
N~N) showed EL, although this is rather low. The device
characteristics for this LEC are depicted in Fig. S13.1 This LEC
showed a fast t,.x (10 s), although a rather low Lump,,, of
10 cd m™2. Moreover, the device exhibited a fast luminance
decay, and hence a poor device lifetime (¢, = 4.3 min). These
results seem to indicate that the attached bromo or iodo
atoms have a detrimental effect on the device performances.
In view of the weak EL for one bromo-containing complex, it
would appear that introducing an iodo-group leads to poorer
performances than a bromo-group. On the other hand, LECs
containing [Cu(1)(POP)]", [Cu(1)(xantphos)]’, [Cu(2)(POP)]’,
[Cu(2)(xantphos)]’, [Cu(5)(POP)]" and [Cu(5)(xantphos)]’
exhibited a typical LEC behaviour under bias. This consists of
an increase of luminance accompanied by a fast decrease of
the voltage. The luminance and voltage behaviours are graphi-
cally depicted in Fig. 12 and S14,f respectively, and the
performance parameters are summarized in Table 3.

The ty.x Was reached in 6.5, 4.1, 3.2, 1.5, 0.1 and 5.3 h for
LECs containing [Cu(1)(POP)]", [Cu(1)(xantphos)]’, [Cu(2)(POP)]",
[Cu(2)(xantphos)]’, [Cu(5)(POP)]" and [Cu(5)(xantphos)]’,
respectively. Except for complex [Cu(2)(POP)]’, the average
voltage versus time (Fig. S1471) showed a similar behaviour for
all devices with an initial fast decay stabilizing in the

This journal is © The Royal Society of Chemistry 2016

140 LECs containing:
[Cu(2)(POP)]"
120 ——[Cu(2)(xantphos)]"
[Cu(1)(POP)]"
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Fig. 12 Luminance for glass/ITO/PEDOT:PSS/active layer/Al devices
measured by applying a block-wave pulsed current of 50 A m™2 at a
frequency of 1 kHz and a duty cycle of 50%. The active layer consisted
of different [Cu(NAN)(PAP)][PF¢] complexes mixed with the ionic liquid
1-ethyl-3-methylimidazolium hexafluoridophosphate.

range 3.9-4.5 V. LECs containing [Cu(1)(POP)]" and
[Cu(1)(xantphos)]" (1 = fluoro-substituted N*N) showed higher
Lum,,, (52 and 129 cd m™?, respectively) when compared to
LECs containing [Cu(2)(POP)]" (10 cd m™?), [Cu(2)(xantphos)]"
(87 cd m™?), [Cu(5)(POP)]" (14 cd m~?) and [Cu(5)(xantphos)]*
(24 cd m™>). Due to the constant current operation, the efficacy
values (cd A™') are directly obtained from the luminance
values described above. Hence, LEC containing [Cu(1)
(xantphos)]"  (fluoro-substituent) showed the
efficacy (2.7 cd A™"), power conversion efficiency (PCE = 1.1 Im
W) and external quantum efficiency (EQE = 0.94%), while
the remaining LECs achieved lower efficiencies (Table 3).
These results, therefore, indicate that the best LECs are
obtained from complexes with the xantphos ligand instead of

maximum
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Table 3 Performance parameters obtained for glass/ITO/PEDOT:PSS/active layer/Al devices by applying a block-wave pulsed current of 50 A m™
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2

at a frequency of 1 kHz and duty cycles of 50%. All copper complexes in the emissive layers are [PFg]™ salts

Complex cation tmax “/h Lumy,a ’/cd m™> t1 “/h Efficacynax /cd A7 PCE o /Im W1 EQE max /%
[Cu(1)(POP)]" 6.5 52 38 1.1 0.4 0.38
[Cu(1)(xantphos)]" 41 129 54 2.7 1.1 0.94
[Cu(2)(POP)]" 3.2 10 8.2 0.2 0.1 0.07
[Cu(2)(xantphos)]* 1.5 87 15.2 1.8 0.6 0.64
[Cu(5)(POP)]" 0.1 14 4.4 0.3 0.1 0.12
[Cu(5)(xantphos)]* 5.3 24 61.2 0.5 0.2 0.21

“Time to reach Lum,,.,. ”Maximum luminance.  Time to reach one-half of the maximum luminance. ¢ Maximum efficacy. “ Maximum power

conversion efficiency.” Maximum external quantum efficiency (EQE).

the devices that employ complexes with POP ligands. This is in
agreement with the results presented in previous reports.*>**

From a comparison of the devices, a trend relating to peri-
pheral halo-substituents can be determined. LECs containing
complexes with a fluoro-substituted N*N ligand (LECs with
[Cu(1)(POP)]" and [Cu(1)(xantphos)]') performed better than
those with analogous chloro-functionalized ligands, which is
consistent with the tendency for devices containing the
iodo-ligand 4 or the bromo-ligand 3 to perform poorly. Hence,
the results show that the LEC performance is strongly influ-
enced by the attached halogen atoms, and improves on going
from iodo- to fluoro-functionalization which is in line with the
trend for PLQY in thin-films (see Table 2) for each series (1 > 2
> 3 > 4). Hence, the observed trend suggests that PLQY is the
limiting factor for the electroluminescence behavior of the
devices when the ligands are functionalized with I or Br.
However, we note that although [Cu(4)(xantphos)]" exhibits a
PLQY of 6% in thin films, the LEC containing
[Cu(4)(xantphos)]” did not show any electroluminescence
whereas this is not the case for [Cu(2)(POP)]" with a PLQY of
4% (thin film). Moreover, [Cu(3)(xantphos)]" with a PLQY of
10% shows a rather poor performance in LECs. The origin of
this behaviour remains unclear, but our results are consistent
with the detrimental effect observed in LECs employing
[Ir(C*"N),(N*N)]" emitters with a bromophenyl unit in the
4-position of the bpy ligand, which has been reported before.>
This effect has not been studied in depth.

Conclusions

We report a series of [Cu(N”N)(POP)|[PFs] and [Cu(N"N)
(xantphos)|[PFs] complexes in which N”N is either the bench-
mark ligand 5 (Scheme 1) or is functionalized on the periphery
with a halo-substituent (ligands 1-4). The complexes have
been fully characterized by mass spectrometry, solution NMR
spectroscopy, and cyclic voltammetry. The single crystal struc-
tures of several of the complexes confirm the expected dis-
torted tetrahedral environment of the Cu(i) centre, and the
chelating nature of the NN and P*P ligands. The solution
absorption spectra are characterized by high energy bands
arising from ligand-centred transitions; these bands are red-

15190 | Dalton Trans., 2016, 45, 15180-15192

shifted on going from [Cu(5)(P*P)][PFs] to [Cu(1)(P"P)][PFs]
(1 contains the fluoro-substituent). A characteristic MLCT
band appears around 390 nm for each heteroleptic complex.
[Cu(N"N)(POP)|[PF¢] and [Cu(N”N)(xantphos)][PFs] complexes
are yellow emitters in solution whilst their powdered samples
emit in the yellow or yellow-orange region. Changing the P*P
ligand while retaining the same N*N domain has little effect
on the solution PL spectrum. Going from [Cu(5)(P"P)|[PFs] to
[Cu(1)(P*P)][PF¢] leads to a red-shift in A22%. In the solid state,
[Cu(1)(POP)][PFs] and [Cu(1)(xantphos)][PFs] (fluoro-substitu-
ent) exhibit the highest PL quantum yields (74 and 25%,
respectively) with values of 7;,, = 11.1 and 5.8 ps, respectively.
The ten complexes have been tested in the LEC configuration.
LECs with the iodo-functionalized ligand 4 did not show any
electroluminescence after being under bias for 50 h. An over-
view of the performance data demonstrates that the introduc-
tion of the fluoro-groups is beneficial, and the best performing
device employed [Cu(1)(xantphos)]" (Lumyy. = 129 ¢d m™ and
device t;, = 54 h); however, a long turn-on time of 4.1 h was
observed. We propose that the poor performance of LECs with
chloro- or bromo-substituents®® relates to their lower PL
quantum yield in thin films on going from fluoro- to iodo-
functionalized ligands.
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