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A symmetric, triply interlaced 3-D anionic MOF
that exhibits both magnetic order and SMM
behaviour†

J. Campo,‡a L. R. Falvello,*‡b E. Forcén-Vázquez,‡b C. Sáenz de Pipaón,§‡a

F. Palacio*‡a and M. Tomás‡c

A newly prepared 3-D polymer of cobalt citrate cubanes bridged

by high-spin Co(II) centres displays both single-molecule magnet

(SMM) behaviour and magnetic ordering. Triple interpenetration of

the 3-D diamondoid polymers yields a crystalline solid with

channels that host cations and free water molecules, with the SMM

behaviour of the Co4O4 cores preserved. The octahedrally

coordinated Co(II) bridges are implicated in the onset of magnetic

order at an experimentally accessible temperature.

The lure of potential applications in various fields – hydrogen
and solvent storage, separations, sensors and catalysis,1–6 inter
alia – continues to drive efforts to prepare new metal–organic
frameworks and other coordination polymers. In a specific
line of development, for polymers whose basic link is a magne-
tically active centre, it is conceivable that their bulk magnetic
properties can be tuned by variations of other components of
the structure – small molecules in channels or magnetically
active linkers – as well as by modulation of the porosity of the
material with its concomitant effect on the distance between
magnetic centres.7

Magnetic centres, and particularly single-molecule magnets
(SMMs), have their own appeal as the potential basis of future
applications, including in information storage, where the
unending quest for further size reduction leads naturally
to the molecular regime. The arrangement of SMMs into

superstructures such as MOFs advances the suggestion, as yet
unrequited in practice, of addressing individual nodes in the
structure, a vital aspect of any storage device. The proximity of
magnetic centres within polymers can affect their SMM
properties and also the collective behaviour of the material,8

facilitating the modification9–11 or extinction of the SMM
behaviour. Interestingly, orderly arrangements of SMMs have
displayed new behaviours, such as the coexistence of magnetic
order and slow magnetic relaxation in a 2D polymer of Co4citr4
cubane units12 (H4citr = citric acid, C6H8O7) and in a single
chain magnet (SCM) with three-dimensional magnetic order.13

From recent results using MOFs based on SMMs,7,8 only a
few of which possess 3-dimensional structures,8,14,15 it may be
surmised that such systems offer a promising alternative for
the preparation of high-temperature magnets and multi-
functional materials.

We report herein a new magnetic material based on the
known Co4citr4 SMM subunit and paramagnetic Co(II) bridges.
In the solid the complex is an anionic polymer with a
diamondoid topology. The 3D nets are triply interpenetrated,
giving a compact structure separated by channels that
accommodate the cations (K+) and free water molecules. It is a
MOF and has the potential for displaying properties, such as
ion exchange, typical of porous systems.16 The Co4citr4 sub-
units retain their SMM behaviour; and magnetic order appears
below the blocking temperature, at 2.7 K, a temperature acces-
sible to commercial cryostats and indeed about 10 times
higher than that observed for the aforementioned 2D polymer
of Co citrate cubanes.12

K4n{[μ-Co(H2O)4]2[Co4citr4]}n·8nH2O (1), with the tetragonal
space group I41/a, has a cobalt/citrate ratio of 6 : 4.¶ The
asymmetric unit comprises a quarter of the cubane, on a (−4)
symmetry element, half of a Co(II)(H2O)4 bridging unit, on an
inversion center, two free water molecules, and one K+ (Fig. 1
shows a full cubane unit plus its four attached linkers). The
Co(II) bridges describe a tetrahedron around the cube with
central angles in the range of 101.5–113.6°. This tetrahedron is
nearly regular (distortion parameter λtet. and variance 1.0097,
39.358 deg2).17 The S4 axis of the cube coincides with the (−4)
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crystallographic symmetry element. The 3D net has a point
symbol 66.

Triply interlaced, translation-related anionic diamondoid
nets (Fig. S3†) form channels parallel to the c-axis, in which
two-fold disordered potassium cations and two independent
water molecules are located. The two partially occupied K+

sites, at 0.722(6) Å from each other, are surrounded by six
oxygen atoms each; in each case one of the O atoms is a
peripheral citrate oxygen atom from a cubane, one is from an
aqua ligand bound to bridging Co2, and the remaining four
O atoms are from free water (Fig. S6†). It is conceivable that a
change of the cation in the channel could cause the re-
orientation of the octahedron about Co2, with important
changes in the interaction between this center and the
cubane. In the present structure, the Co2–O5 bond is inclined
68.5° to the principal (−4) axis of the cube.

DC magnetic susceptibility was measured in the presence
of a field of 500 Oe from room temperature to 1.8 K. At 300 K,
χmT (Fig. 2) has a value of 17 cm3 mol−1 K, consistent with six
independent Co(II) ions (S = 3/2, g = 2.4). A Curie–Weiss fit
above 200 K gives g = 2.469(2) and θ = −6.9(3) K. From 300 K,
the signal decreases slowly down to 65 K, a typical behaviour
for Co(II) ions due to the depopulation of the higher energy
Kramers doublets, where it reaches a value of 16 cm3 mol−1

K. On cooling further, a peak of 114 cm3 mol−1 K appears near
2.7 K. Below this temperature the signal decreases to a value of
82 cm3 mol−1 K at 1.8 K. The existence of a peak and the
decrease at lower temperatures is an indicator of the existence
of magnetic ordering. In addition, the temperature of the peak
in the χmT curve corresponds to that of an irreversible feature
in a zero-field-cooled/field-cooled (ZFC–FC) cycle (inset, Fig. 2),
revealing the magnetic order.

Magnetic order is also seen in the χAC measurements, in
which a frequency independent peak appears near 2.7 K
(Fig. 3). Below 6 K a frequency dependent peak appears. For
this compound the blocking temperature, TB, is considered to
be the temperature at which the time needed for the magneti-
zation to relax is 100 s, and is lower than the temperature at
which magnetic ordering occurs.18,19 The frequency dependent
peak occurs at temperatures and frequencies similar to those
seen for other Co(II) cubanes.20–22

Fig. 1 A cubane unit of compound 1 and the four bridging Co(II) units
showing the propagation of the polymer (broken bonds).

Fig. 2 χmT versus T for compound 1, measured at 500 Oe. Inset: ZFC–
FC cycle measured at 50 Oe.

Fig. 3 AC susceptibility measurements at different frequencies for
compound 1. Top: In-phase χ’ signal versus T; the inset on a logarithmic
scale reflects the presence of two peaks, one frequency-dependent
around 4 K at higher frequencies and one frequency-independent
around 2.7 K. Bottom: Out-of phase χ’’ signal versus T; the inset shows
an Arrhenius fit of the peak at 4 K for frequencies higher than 100 Hz.
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For frequencies below 100 Hz, the slow relaxation of the
magnetization occurs at temperatures closer to Tc, and the
blocking process occurs at temperatures higher than those
predicted by an Arrhenius-law fit (inset Fig. 3 bottom).
At those temperatures, intermolecular interactions may modify
the relaxation process, as observed for isolated clusters joined
through weak interactions.9 This effect may be more pro-
nounced in the present case, in which SMMs are covalently
linked by paramagnetic Co(II) bridges, which can mediate
exchange interactions. A fit to an Arrhenius law between
100 Hz and 1000 Hz gives an effective energy barrier of Δeff =
44.04(18) K and a pre-exponential factor of τ0 = 1.62(6) × 10−8

s−1, in agreement with the values found for isolated SMM
Co(II) cubanes.20–23

Heat capacity (HC) measurements show the onset of
magnetic order at 2.7 K, where a λ peak appears (Fig. 4).
At around 6 K, a dynamic process takes place; it was necessary
to thermalise the sample for several minutes at each tempera-
ture and to reduce the amplitude of the heat pulse to allow the
system to reach equilibrium. Heat capacity analysis for this
kind of compound can present difficulties, and the Debye
model needs to be extended.24 An empirical fit to a cubic poly-
nomial for the lattice contribution and a Schottky function for
the blocking of the cluster were used to subtract all but the
magnetic contribution (HCm) from the total heat capacity, as
in other networked SMM compounds.11,25

Integration of the curve HCm/T gave a magnetic entropy of
ΔS = 1.24R (inset Fig. 4). This value compares well to the sum
of two magnetic species of effective spin 1/2 (R ln 2 = 0.69R),
attributed to the two linking Co(II) per polymer unit. We
attribute the absence of a cubane contribution to the magnetic
entropy, together with the dynamic anomaly at 6 K, to the
blocking process of the SMM. The quality of the data in the
critical region obviated the determination of the critical
exponent for the transition. However, due to the high
anisotropy of the Co(II) atoms, we expect 1 to behave as a 3D
Ising system. The sign of the interaction between the magnetic

species can be extracted from data in the spin-wave region. For
a 3D lattice, the spin-wave contribution of a ferromagnet varies
as T3/2, while the dependency is T3 for an antiferromagnet.
Data at temperatures below the critical temperature are well
fitted by a T3 relationship, revealing an antiferromagnetic
interaction between the magnetic species.

Below 2.7 K, magnetic hysteresis appears (inset Fig. 5), con-
firming the existence of magnetic order. The coercive field at
1.8 K is 1340 Oe and the remanent magnetisation is 3.20μB.

In this range of temperatures linking Co(II) can be
considered to have an isolated spin value of 1/2 with an
experimental g value of g = 4.6, and a total spin ST can be used
to describe the cubane.26 For similar cubane structures a
ferromagnetic interaction between Co(II) in the cubane has
been found, and the cubane itself has been described with an
estimated ST = 2,20,27 and with a saturation magnetisation of
roughly 8.4μB. According to this, the remanent magnetisation
for 1 agrees with that expected for a model in which the
cubanes and bridging Co(II) centers align antiferromagneti-
cally (8.4μB − 2 × 2.3μB = 3.8μB).

In Fig. 5 the first magnetisation curve is shown for several
temperatures (a detailed curve for low fields can be seen in
Fig. S4†). Below TN and for fields around 21 000 Oe an in-
flexion point appears, which could indicate the critical field at
which the ferromagnetic order is destroyed. At 5 T, saturation
is not reached. A saturation value larger than 13μB (8.4μB +
2 × 2.3μB = 13μB) should be expected if the cubane and the
bridging Co(II) become aligned with the field. Fitting with sim-
plified models did not produce satisfactory results.

A thorough knowledge of the energy levels will be necessary
for a complete analysis of the magnetic properties.

To our knowledge, this compound is the first 3D magnet
built from Co(II) SMMs for which clear evidence of the exist-
ence of both SMM behaviour and magnetic order has been
found. The proximity of a slow magnetic relaxation below 6 K
and magnetic order at 2.7 K suggest the possibility of tuning

Fig. 4 Temperature dependence of the heat capacity of 1 measured in
the absence of a magnetic field and with a field of 10 000 Oe. The inset
shows the temperature dependence of the magnetic contribution nor-
malized by T.

Fig. 5 Magnetization versus field at different temperatures for com-
pound 1. The inset shows a hysteresis cycle at 1.8 K.
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the magnetic behaviour, for example by absorption of small
species into the MOF, or by a change of the counterion.

While weak coupling between clusters can bias the
quantum tunnelling effect and modulate the quantum be-
haviour of isolated Co4 cubanes,28 coupling through para-
magnetic bridges in 1 gives rise to long range magnetic order.
While in other networked SMM compounds11 the interaction
between clusters either does not affect the SMM behaviour, or
gives rise to magnetic order or to a competition between block-
ing and ordering that leads to frustrated order, in 1 both
phenomena – SMM behaviour and magnetic order – occur
within a small temperature range.

One plausible explanation for the negligible contribution of
the cubanes to the magnetic heat capacity near the transition
at 2.7 K would be a ground state ST = 0 for the cubane.
Although in this case SMM behaviour would still be possible
due to accessible excited levels with non-zero ST,

22 this hypo-
thesis can be discarded on the basis of the magnetisation
measurements. The position of the cubanes in the structure
and their links to the bridging Co(II) centres make it unlikely
that they do not participate in the magnetic ordering. The
most plausible explanation may be that the cubane is not in
equilibrium. In the AC susceptibility measurements, due to
the coexistence of magnetic order and SMM behaviour the
relaxation time and the energy barrier become frequency
dependent at low frequencies. As the critical temperature is
approached, the relaxation time and the energy necessary to
reverse the magnetisation increase. The boundary between DC
and AC behaviour is not clearly defined in this frequency
range. Therefore, on the time scale of the heat capacity
measurements, the cubane is not in thermodynamic equili-
brium. This is another example of the conflict between the
experimental time domain and the relaxation time of an SMM.

In the previously reported 2D compound with blocking and
ordering, in which Co4citr4 subunits are linked by Co(II) ions
through the fragments Co–O–C–C–C–O–Co and Co–O–C–O–Co,
the SMM behaviour of the clusters was similar, and magnetic
order appeared below 250 mK.12 In 1, the Co(II) ions
and cubanes are linked through two Co–O–C–O–Co arms
and the polymers are interpenetrated, which increases the
ordering temperature 10-fold to 2.7 K. Although the impor-
tance of dipolar interactions cannot be ruled out because the
distance between a cubane and a Co(II) from a neighbouring
net is 7.8 Å, the increase of the dimensionality of the lattice
and the change in the exchange pathways may also play
an important role in increasing the magnetic ordering
temperature.

Assuming the ground state of the cubane to be the same as
that of the cubanes in the previously reported 2D compounds,
ST = 2, we arrive at a magnetic model with two sublattices, one
of cubanes and one of linking Co(II) ions, which align anti-
ferromagnetically. Magnetisation measurements confirm this
conclusion.

Compound 1 also presents an opportunity to test the influ-
ence of guest molecules on TN by modifying the contents of
the channels.
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