Chiral amino-phosphine and amido-phosphine complexes of Ir and Mg. Catalytic applications in olefin hydroamination†

Bernhard Schmid,†a Sibylle Frieß,†a Alberto Herrera,†a Anthony Linden,b Frank W. Heinemann,a Harald Locke,a Sjoerd Hardera and Romano Dorta*a

The reactions of rac- and (S,S)-trans-9,10-dihydro-9,10-ethanoanthracene-11,12-diamine (ANDEN) with PClPh2 in the presence of NEt3 yield the chiral amino-phosphine ligands rac-6 and (S,S)-6, respectively, on multi-gram scales. Both forms of 6 react quantitatively with MgPh2 to afford the C2-symmetric, N-bound Mg amidophosphine complexes rac-7 and (S,S)-7. The former crystallizes as a racemic conglomerate, which is a rare occurrence. Mixing (S,S)- or rac-6 with [IrCl(COE)2]2 leads in both cases to the homochiral dinuclear chloro-bridged P-ligated amidophosphine iridium complexes (S,S,S,S)-9 and rac-9 in excellent yields. X-ray quality single crystals only grow as the racemic compound (or ‘true racemate’) rac-9 thanks to its lowered solubility. In the coordinating solvent CH3CN, rac-9 transforms in high yield into mononuclear Ir-complex rac-10. The crystal structures of compounds rac-6, (S,S)-7, and rac-9, and rac-10 reveal the ambidentate nature of the P-N function: amide-coordination in the Mg-complex (S,S)-7 and P-chelation of the softer Ir(II) centres in complexes rac-9 and rac-10. Furthermore, the crystal structures show flexible, symmetry lowering seven-membered P-chelate rings in the Ir complexes and a surprising amount of deformation within the ANDEN backbone. The simulation of this deformation by DFT and SCF calculations indicates low energy barriers. (S,S)-7 and (S,S,S,S)-9 catalyze the intra- and intermolecular hydroamination of alkenes, respectively: 5 mol% of (S,S)-7 affords 2-methyl-4,4’-diphenylcyclcopentyl amine quantitatively (7% ee), and 2.5 mol% of (S,S,S,S)-9 in the presence of 5.0 mol% co-catalyst (LDA, PhLi, or MgPh2) gives exo-(2-arylamino)bornanes in up to 68% yield and up to 16% ee.

Introduction

Chiral amino-phosphines such as 1–3 are competent ligands for asymmetric hydrogenations of de-hydroaminoacids1 to the point where ligand 1 has been used industrially for the production of the artificial sweetener aspartame ((S,S’)-aspartylphenylalanine).2 The N-atom in aminophosphines may strategically be functionalized either by bulky substituents for steric control3 or by leaving a hydrogen atom for reactivity control via H-bridging interactions4 and possibly η3-P,N coordination.5 An indication of the importance of the N-substitution is the observation that the optical yield of hydrogenation products obtained with the H-substituted ligand 2 is not only markedly higher than with its N-methylated analogue, but also leads to products with inverted configurations.6 Moreover, the deprotonation of the N-H function in an aminoephosphine leads to a vicinal hard-amide/soft-phosphine donor system. The use of trans-9,10-dihydro-9,10-ethanoanthracene-11,12-diamine (termed ANDEN in what follows) as a rigid 1,2-diamino scaffold7 for the construction of effective chiral ligands is exemplified by the success of Trost’s ligand 4,8 which also remains the only example of an ANDEN-derived phosphine ligand. Here, we wish to communicate the synthesis of a new ANDEN-based amino-phosphine ligand and its Ir- and Mg-complexes, which are promising catalysts for the asymmetric hydroamination of olefins.9 Electron-rich Ir(II)-complexes figure among the first successful asymmetric intramolecular olefin hydroamination catalysts,10 and Hultzsch and co-workers recently showed that chiral Mg-complexes catalyze intramolecular hydroaminations with good enantioselectivities.11 Preliminary results on catalytic olefin hydroamination reactions employing the new chiral Ir- and Mg-complexes are also disclosed.

‡Authors contributed equally to this publication.
Results and discussion

The amino phosphines \((S,S)\)-6 and rac-6 are accessible in excellent yields and on multi-gram scales as crystalline materials according to Scheme 1. The solubility of \((S,S)\)-6 is significantly higher than that of rac-6, and the \(^{31}\text{P}\) NMR spectra of both products are characterized by a singlet resonance at 40.3 ppm. The protons of the N–H function resonate as dd (\(J\) values of 3.6 and 10.3 Hz) centered at 1.69 ppm, and the two protons of the connecting ethylene bridge appear as multiplets centered at 3.36 ppm. A single crystal X-ray diffraction study of rac-6 revealed that the molecule has approximate \(C_2\)-symmetry (Fig. 1) and co-crystallizes with half an equivalent of \(n\)-pentane. The P–N–C bond angles of \(ca. 120^\circ\) suggest sp\(^{2}\)

Scheme 1 Synthesis of diaminophosphines and their Mg–salts.

Fig. 1 The molecular structure of the \((R,R)\)-enantiomer in the crystal of rac-6 drawn with 50% probability displacement ellipsoids. Most H-atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) are: P1–N1 1.6840(14), P1(2)–N1 1.6911(14), P1(1)–C(17) 1.8363(17), N1–C(15) 1.4562(19), N2–C(16) 1.456(2), C(15)–C(16) 1.560(2), C(15)–N(1)–P(1) 122.20(11), C(16)–N(2)–P(2) 120.98(11), P1–P2 5.3045(15).
they are sterically protected by the surrounding phenyl rings.

The deprotonation of \((S,S)\)-6 with \(\text{MgPh}_2\)\(^{12}\) in THF solution followed by addition of benzene affords the off-white crystalline solvato complex \((S,S)\)-7 in good yield (Scheme 1). It has low solubility in benzene and toluene, and the \(^1H\)-NMR spectrum confirms the deprotonation of the amine functions (the dd resonance at 1.60 ppm is no longer present). The multiplet structure of the adjacent bridge-protons collapses to a singlet, which is shifted up-field to 3.17 ppm when compared to 3.36 ppm in 6, while the bridgehead protons exhibit a downfield shift from 3.95 in 6 to 4.55 ppm. The \(^{31}P\{^1H\}\)-NMR spectrum of 7 in THF-\(d_8\) shows a singlet resonance at 46.5 ppm with only a moderate downfield shift compared to the free aminophosphine 6, which is consistent with the absence of P-coordination (as established by the crystal structure). Complex 7 is stable in the solid state, and a THF-\(d_8\) solution that was heated to 60 °C for 30 min did not show any signs of decomposition. Single crystals suitable for an X-ray diffraction analysis were obtained from the corresponding racemic complex rac-7, which crystallizes in the chiral space group \(P2_1\) as a racemic conglomerate with one equivalent of benzene. The crystal that was picked contained exclusively the \((S,S)\)-enantiomer, and its molecular structure is depicted in Fig. 2. The formation of a racemic conglomerate of enantiomorphous crystals is also termed 'spontaneous resolution'\(^{13}\) and does not occur commonly.\(^{14}\) It means that rac-7 could in principle be mechanically separated into its enantiomers (Pasteur's method of triage). The formation of a conglomerate in the case of rac-7 is also consistent with the observed slower rate of crystallization due to its lower entropy of crystallization when compared to \((S,S)\)-7. The coordination sphere around magnesium is distorted tetrahedral with quite a small N–Mg–N bite angle of 91.82(9)°, and the molecule possesses an approximate \(C_2\) symmetry axis passing through the Mg atom and the midpoint of C1–C2 (see insert of Fig. 2).\(^{15}\) While the P–C and P–N bond distances in rac-6 and \((S,S)\)-7 are essentially unchanged, the N atoms in \((S,S)\)-7 display a pyramidal rather than a trigonal planar geometry as observed in rac-6. Their considerable sp\(^3\) character is indicated by the sums of the bond angles around atoms N1 and N2, which are 340.6(3)° and 337.1(3)°, respectively. The sums of the bond angles around P1 and P2 in \((S,S)\)-7 are 304.6(2)° and 304.73(2)°, respectively. The N–C–C–N torsion angle of the backbone is very small at 72.1(2)°,\(^{16}\) with a concomitant large deviation of –24.9(3)° from planarity of the C3–C2–C1–C6 bridge. These large distortions are caused by the five-membered magnesium chelate ring and also prove that the ANDEN backbone is surprisingly flexible (this observation will be discussed further

Fig. 2. The molecular structure of \((S,S)\)-7 in the chiral crystal drawn with 50% probability displacement ellipsoids (the insert shows its approximate \(C_2\) symmetry). Most H-atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) are: \(\text{Mg}(1)–\text{N}(1) 2.026(2), \text{Mg}(1)–\text{N}(2) 2.035(2), \text{Mg}(1)–\text{O}(1) 2.020(2), \text{Mg}(1)–\text{O}(2) 1.988(2), \text{P}(1)–\text{N}(1) 1.677(3), \text{P}(2)–\text{N}(2) 1.676(3), \text{P}(1)–\text{C}(17) 1.847(3), \text{C}(1)–\text{C}(2) 1.539(4), \text{N}(1)–\text{Mg}(1)–\text{N}(2) 91.82(9), \text{O}(2)–\text{Mg}(1)–\text{O}(1) 106.08(9), \text{O}(2)–\text{Mg}(1)–\text{N}(1) 113.83(10), \text{O}(1)–\text{Mg}(1)–\text{N}(1) 115.41(11), \text{O}(2)–\text{Mg}(1)–\text{N}(2) 121.23(10), \text{O}(1)–\text{Mg}(1)–\text{N}(2) 108.44(10).\)**
below). The H⋯Mg distances of the hydrogen atoms pertaining to the stereogenic C atoms measure 2.6 and 2.7 Å and span Mg⋯H–C angles of 72.5° and 77.5°, respectively, and thus do not fulfill the criteria for agostic interactions. The co-crystallized benzene in the structure links a benzo-group of the backbone of one molecule of 7 with a phenyl substituent on a P atom of the other molecule of 7 via two T-shaped C–H⋯π interactions. It should be noted that well characterized N-coordinated amido-phosphine metal complexes are rather rare, and to the best of our knowledge this is the first structurally authenticated chiral example of such a complex. Furthermore, the vicinity of the hard Lewis-acidic Mg centre subtends an angle of 123.68(6)°, which is in line with the conformation in similar chiral dinuclear Ir(i) phosphine complexes. The two anthracenyl backbone units of each half-dimer are almost orthogonal to each other with a dihedral angle of 82.1(5)° between both C3–C2–C1–C6 mean planes. One side of the dimeric complex is sterically protected by four axial phenyl rings resembling a bowl, while the other side exposes the IrCl2 core due to an equatorial arrangement of the remaining four phenyl rings. The seven-membered chelating rings have a twist-boat conformation with the Ir-atoms in the remaining four phenyl rings. The seven-membered chelating rings have a twist-boat conformation with the Ir-atoms

The enantiopure ligand (S,S)-6 reacts with [IrCl(COEt)2]2 (COE = cyclooctene) in benzene solution to afford almost quantitatively the dimeric orange complex (S,S,S,S)-9 (see Scheme 2). The compound is very air-sensitive, turning green partially occupied by randomly oriented toluene molecules that should facilitate the activation of polar bonds. Preliminary attempts to alkylate the amide functions in 7 with common organic electrophiles only led to inseparable mixtures.

The enantiopure ligand (S,S)-6 reacts with [IrCl(COEt)2]2 (COE = cyclooctene) in benzene solution to afford almost quantitatively the dimeric orange complex (S,S,S,S)-9 (see Scheme 2). The compound is very air-sensitive, turning green partially occupied by randomly oriented toluene molecules that should facilitate the activation of polar bonds. Preliminary attempts to alkylate the amide functions in 7 with common organic electrophiles only led to inseparable mixtures.

Even though the P donor atoms of the ligand are not symmetry-equivalent in the crystal structure, they display only one resonance in the 31P NMR spectrum and broadened 1H-NMR signals, which hints at a fast inversion – with respect to the NMR timescale – of either the chelate rings, or the IrCl2-butterfly. rac-9 has very low solubility in benzene, toluene, and THF but readily dissolves in the presence of aniline forming an inseparable mixture of hydride species with 1H NMR resonances between −19.4 and −19.9 ppm, which are the result of N–H activation and a prerequisite for Ir(i) catalyzed hydroamination of norbornene (vide infra). Also acetonitrile initially dissolves rac-9 by splitting the chloro-bridge and forming the mononuclear adduct rac-10. The 31P NMR spectrum shows a pair of doublets and the proton spectrum is consistent with two diastereotopic half-sides of the ligand backbone. The single crystal X-ray diffraction analysis confirms the mono-

![Scheme 2](image-url)
Scheme 2 Stereoselective syntheses of the Ir(i)–aminophosphine complexes 9 and 10.
nuclear nature of the acetonitrile adduct \textit{rac}-10, which, along selected geometric parameters, is depicted in Fig. 4. The Ir-atom is in a square planar coordination environment and, as in \textit{rac}-9, the conformation of the ligand is distorted considerably from the pseudo C_2 symmetry it adopts in the Mg complex (\textit{S,S})-7. As in \textit{rac}-9, the seven-membered chelate ring is boat-shaped,27 but in contrast to \textit{rac}-9, where the Ir-atom is located centrally over the C–C bridge of the ligand backbone, it is tilted towards one of the benzo-groups due to more severe puckering of the chelate ring. Similar off-center coordination of the metal with respect to the anthracenyl moiety has been observed in di-NHC complexes with flexible seven-membered chelation.28 The dihedral angle between the mean coordination plane around the Ir atom and the mean plane defined by the C2–C1–C10–C9 bridge of the ligand backbone is 56.25(18)°. Two phenyl rings on each of atoms P1 and P2 are in an axial position and on the same side of the chelate ring, thereby shielding one coordination hemisphere, while the other two phenyl rings are equatorially arranged. The N1–C1–C10–N2 torsion angle in the ligand backbone of \textit{rac}-10 decreased from 107.88(14)° to 100.1(3)° when compared to the free ligand in \textit{rac}-6, showing once more the flexibility of the ANDEN backbone under the influence of strain caused by bidentate coordination.29 Table 1 lists the N–C–C–N torsion angles and shows their correlation with the C–C–C–C torsion angle of the ethynyl bridge of the ligand backbone. In 17 published crystal structures that contain the ANDEN substructure, the N–C–C–N torsion angles range between 61° and 119°, and in unstrained molecules (i.e. free ligands and protonated ANDEN) they are usually around 110°.29

In order to model this type of flexibility in the ANDEN backbone we performed DFT calculations by varying the N–C–C–N torsion angle between 55° and 145°. The results shown in Fig. 5 agree well with the experimental data of an almost linear dependence of the two types of torsion angle, and for very strong deviations the linear trend between the angles is even more pronounced than predicted by the DFT-model. Furthermore, the calculations indicate an energy minimum at about 105° for the N–C–C–N angle in ANDEN, while the corresponding H–C–C–H torsion angle in the simple dibenzobicyclo[2,2,2]octane molecule approaches the expected ‘ideal’ value of 120°. The observation that substitution of the NH$_2$ groups in ANDEN for CH$_3$ groups also leads to a minimum at around 105° suggests that torsion angles smaller than 120° are the consequence of steric effects rather than H-bonding or electro-negativity effects.30 The experimentally observed flexibility of the ANDEN backbone is consistent with the calculated low strain energies: the bulk of the X-ray crystal structures have N–C–C–N angles between 95° and 115° (i.e. 10° deviation from the ideal value), which amounts to less than 5 kJ mol$^{-1}$ of strain.31 The strain energy in the highly distorted complex 7 is thus estimated to be around 20 kJ mol$^{-1}$.

Finally, complexes (\textit{S,S})-7 and (\textit{S,S,S})-9 were tested as catalysts for the hydroamination of olefins (see eqn (1) and (2) and

![Fig. 3](https://i.imgur.com/3Q5Q5Q.png) View of the \((S,S,S)\)-enantiomer in the crystal of \textit{rac}-9 along the crystallographic C_2-axis drawn with 50% probability displacement ellipsoids. Most H-atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) are: \(\text{Ir}(1)–\text{P}(1) 2.2024(16), \text{Ir}(1)–\text{P}(2) 2.1892(16), \text{Ir}(1)–\text{C}(1) 2.4200(15), \text{Ir}(1)–\text{Cl}(1) 2.4167(15), \text{P}(1)–\text{N}(1) 1.709(6), \text{P}(2)–\text{N}(2) 1.701(5), \text{N}(1)–\text{C}(1) 1.446(8), \text{N}(2)–\text{C}(2) 1.440(9), \text{C}(1)–\text{C}(2) 1.538(11), \text{C}(1')–\text{Ir}(1)–\text{Cl}(1) 79.48(6), \text{Ir}(1)–\text{C}(1')–\text{Ir}(1) 85.37(5), \text{P}(2)–\text{Ir}(1)–\text{P}(1) 96.41(6), \text{N}(1)–\text{P}(1)–\text{Ir}(1) 124.3(2), \text{N}(2)–\text{P}(2)–\text{Ir}(1) 118.1(2), \text{C}(1)–\text{N}(1)–\text{P}(1) 120.5(5), \text{C}(2)–\text{N}(2)–\text{P}(2) 119.2(5), \text{N}(1)–\text{C}(1)–\text{C}(2) 112.8(6), \text{N}(2)–\text{C}(2)–\text{C}(1) 115.7(8); \) primed atom labels are for atoms related to the corresponding unprimed atoms by the symmetry operation \(-x, 1 - y, z\).
The Mg-complex \((S,S)\)-7 turned out to be an active catalyst for the intramolecular hydroamination of 2,2\'′-diphenyl-pent-4-ene-amine to form 2-methyl-4,4\'′-diphenyl-cyclopentyl amine (eqn (1)). The reaction proceeds smoothly without the need for any additives and is surprisingly clean when monitored in situ by NMR, forming no side-products and reaching full conversion after only 4 h at room temperature with a catalyst loading of 5 mol% (Table 2, entry 1). However, at lower catalyst loadings, the reaction does not go to completion even after prolonged reaction times (entry 2), which is probably due to catalyst deactivation by trace amounts of water. Unfortunately, enantioselectivities are very low, and the slightly bulkier benzylated amine substrate yields the corresponding pyrrolidine in trace amounts only. For the reaction of eqn (2), the Ir-complex \((S,S,S,S)\)-9 is a promising candidate due to its ability to activate the N–H bond of aniline (vide supra), and indeed, in the presence of co-catalytic amounts of MgPh2, LDA, or PhLi, the addition product exo-(2-phenylamino)bornane forms in good yields but low optical purity. Even the notoriously unreactive substrate o-anisidine affords the corresponding norbornylamine in 35% isolated yield. The precise role of Ph2Mg, LDA, and PhLi as co-catalysts in the addition of aniline to norbornene is still unclear. Separate experiments, however, showed that these co-catalysts on their own form the Mg- and Li-anilides in situ, which do not catalyze any of the reactions of eqn (1) and (2), even under prolonged heating at 75 °C. Not unexpectedly then, the hydroamination of norbornene with aniline is not catalyzed by \((S,S)\)-7, because the magnesium complex reacts quantitatively with aniline to afford free ligand \((S,S)\)-6 and catalytically inert Mg[NHPh]2. Conversely, \((S,S,S,S)\)-9 is inactive in the intramolecular hydroamination of 2,2′-diphenyl-pent-4-ene-amine (eqn (1)).
In conclusion, the new ANDEN-based amino-phosphine ligand 6 is accessible in gram quantities and excellent yields as racemate and as optically pure compound. Its coordination chemistry with Mg and Ir highlights the ambidentate nature of the P–N function. The hard Mg(n) is coordinated by the hard amide functions in the C_2-symmetric complex (S,S)-7, while the soft Ir(n) centres in complexes (rac)-9 and (rac)-10 are P-bound through seven-membered chelate rings of low symmetry. The crystal structures of (rac)-6, (S,S)-7, (rac)-9, and (rac)-10 reveal considerable flexibility within the bicyclic scaffold of the ANDEN backbone, and DFT calculations demonstrate that these distortions do not induce large amounts of strain energy. Thus, the ANDEN backbone is not as rigid as it appears, apart from the fact that it does not allow conformational isomerism. The Mg complex (S,S)-7 and the Ir complex (S,S,S,S)-9 are active catalysts for the intra- and intermolecular hydroamination of olefins, respectively. We are currently modifying ligand 6 by introducing different phosphine

$$\text{R} = \text{H, Bn}$$ \hspace{1cm} (1)

$$\text{Ar} = \text{Ph, o-MeO-C}_6\text{H}_4$$ \hspace{1cm} (2)

Table 2 Mg- and Ir-catalyzed intra- and inter-molecular olefin hydroaminations

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction</th>
<th>R</th>
<th>Catalyst (mol%)</th>
<th>Co-catalyst (mol%)</th>
<th>Temp. [°C]</th>
<th>React. time [h]</th>
<th>Isolated yield [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>eqn (1)</td>
<td>H</td>
<td>(S,S)-7 (5.0)</td>
<td>—</td>
<td>22</td>
<td>4</td>
<td>98</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>eqn (1)</td>
<td>H</td>
<td>(S,S)-7 (1.0)</td>
<td>—</td>
<td>22</td>
<td>72</td>
<td>38</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>eqn (1)</td>
<td>Bn</td>
<td>(S,S)-7 (5.0)</td>
<td>—</td>
<td>22</td>
<td>72</td>
<td>Traces</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>eqn (2)</td>
<td>Ph</td>
<td>(S,S,S,S)-9 (2.5)</td>
<td>MgPh$_2$ (2.5)</td>
<td>80</td>
<td>115</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>eqn (2)</td>
<td>Ph</td>
<td>(S,S,S,S)-9 (2.5)</td>
<td>LDA (5.0)</td>
<td>80</td>
<td>115</td>
<td>68</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>eqn (2)</td>
<td>Ph</td>
<td>(S,S,S,S)-9 (2.5)</td>
<td>PhLi (5.0)</td>
<td>80</td>
<td>115</td>
<td>67</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>eqn (2)</td>
<td>o-MeO-C$_6$H$_4$</td>
<td>(S,S,S,S)-9 (2.5)</td>
<td>MgPh$_2$ (2.5)</td>
<td>110</td>
<td>115</td>
<td>35</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 5 DFT simulation (BP86/def2-TZVP) of N–C–C–N vs. C–C–C–C torsion angles in ANDEN compared with experimental data and strain SCF-energies (X–C–C–X torsion angles from 55° to 145°) of ANDEN, dibenzobicyclo[2,2,2]octane (the depicted molecule), and 2,3-dimethyl-dibenzobicyclo[2,2,2]octane. The torsion angles for the ANDEN-derivatives are taken from ref. 7 and 26.
groups in an attempt to improve on enantioselectivities and to expand the substrate scope, and results will be communicated in due course.

Experimental section

All reactions were carried out under anaerobic and anhydrous conditions, using standard Schlenk and glove box techniques, unless otherwise stated. THF, Et₂O, and benzene were distilled from purple Na/PtCl₂ solutions, toluene from Na, pentane, C₆D₆, and THF-D₈ from Na-K alloy, CH₂CN, CHCl₃, and CDCl₃ from NaH, NEt₃, and 1,4-dioxane from K. CDCl₃ and CDCl₂ were degassed with three freeze–pump–thaw cycles and then kept in a glove box over activated molecular sieves (3 Å and 4 Å, respectively). 2-Norbornene was distilled from Na₂K alloy, aniline from CaH₂. ANDEN,³³ [IrCl(CO)₂]₂,³⁴ diphenylmagnesium,³⁵ lithium diisopropylamide,³⁶ and 2,2-diphenylpent-4-en-1-amine⁷ were prepared according to published procedures. Resolution of rac-ANDEN (5) was simplified by using the cheaper (R)-enantiomer of the chiral auxiliary mandelic acid to obtain both enantiomers. Optically pure (S,S)-ANDENium-(R)-mandelate was obtained from a single crystallization in methanol, and the (S,S)-ANDEN was freed by treatment with KOH. The mother liquor containing mainly (R), (R)-ANDENium-(R)-mandelate (as judged from its optical rotation) was likewise treated with KOH to obtain (R,R)-enriched ANDEN. Contrary to Lennon’s protocol,³³ this material was not treated with (S)-mandelic acid, but recrystallized from benzene to yield optically pure (R,R)-5. Elemental analysis samples of air sensitive compounds were handled and prepared in a glove box. NMR spectra were recorded on 270 MHz or 400 MHz Jeol Lambda/Eclipse spectrometers, and the solvent residual signals were used as the internal reference for the ¹H-NMR-spectra.³⁸ Optical rotations were measured on a Perkin-Elmer 241 polarimeter.

rac-ANDEN-PPh₂ (rac-6)

rac-5 (3.00 g, 12.7 mmol) was suspended in Et₂O (90 ml) and Et₂N (6.43 g, 63.5 mmol) was added. Then a solution of Ph₂PCL (5.61 g, 25.4 mmol) in Et₂O (10 ml) was added dropwise affording a white precipitate. The mixture was stirred overnight and the solid removed by filtration over a glass fiber filter (GF/B). Evaporation of the filtrate under reduced pressure overnight and the solid removed by filtration over a glass fiber filter (GF/B). The filtrate was concentrated to approx. 10 ml under reduced pressure causing the formation of a white solid. Addition of n-pentane and cooling to −32 °C completed the crystallization. The white solid was washed with chilled pentane and dried in vacuo (8.86 g, 87%). Elemental analysis found: C, 79.65; H, 5.62; N, 4.56. Calcd for C₃₀H₃₄N₂P₂: C, 79.48; H, 5.39; N, 4.56. Calcd for C₄₀H₃₄N₂P₂: C, 79.45; H, 5.67; N, 4.63.

rac-ANDEN-PPh₃ (rac-7)

A solution of Ph₃Mg (178 mg, 0.841 mmol) in THF (3 ml) was added dropwise over 5 min to a well stirred solution of S,S-5 (0.05 g, 0.836 mmol) in THF (3 ml). The resulting yellowish solution was stirred for 7 h, after which a white precipitate had formed. Benzene (6 ml) was added to complete precipitation. The solid was separated by centrifugation (1 h at 3500 rpm) and dried under HV to afford 544 mg (80%) of an off-white powder. Elemental analysis found: C, 74.83; H, 6.24; N, 3.54. Calcd for C₃₀H₂₃MgN₂P₃(THF)ₓ·Et₂O: C, 74.95; H, 6.39; N, 3.50. [δ₆(CH₃)]₆⁺ -16.0 (c 1.00, THF).³¹H NMR (400 MHz, CDCl₃): δ 5.47 (s, 6H), 5.43 (s, 6H). ³¹C NMR (100 MHz, CDCl₃): δ 128.8 (m), 130.9 (d, CP = 14.8 Hz), 69.0 (dd, J₉₋₈ = 29.1 Hz, 8.2 Hz), 124.5, 126.3, 126.56, 126.59, 128.5–128.8 (m), 130.9 (d, J₉₋₈ = 4.9 Hz), 131.3 (d, J₉₋₈ = 20.1 Hz), 139.4, 142.7, 142.9 (d, J₉₋₈ = 10.4 Hz), 143.5 (d, J₉₋₈ = 14.8 Hz).³¹CNMR (100 MHz, CDCl₃): δ 53.5 (d, Jₙ₋₈ = 4.9 Hz), 69.0 (dd, J₉₋₈ = 29.1 Hz, 8.2 Hz), 124.2, 126.0, 126.30, 126.33, 128.0–128.6 (m), 130.9 (d, J₉₋₈ = 4.9 Hz), 131.3 (d, J₉₋₈ = 20.1 Hz). Crystals suitable for an X-ray diffraction experiment were grown by vapor diffusion of pentane into an Et₂O solution of rac-6.

[S,S]-ANDEN-PPh₂ ([S,S]-6)

[S,S]-5 (4.00 g, 16.9 mmol) was suspended in Et₂O (120 ml) and NEt₃ (8.57 g, 84.7 mmol). A solution of Ph₃PCL (7.48 g, 33.9 mmol) in Et₂O (13 ml) was added dropwise affording a white precipitate. The mixture was stirred overnight and the solid removed by filtration over a glass fiber filter (GF/B). The filtrate was concentrated to approx. 10 ml under reduced pressure causing the formation of a white solid. Addition of n-pentane and cooling to −32 °C completed the crystallization. The white solid was washed with chilled pentane and dried in vacuo (8.86 g, 87%). Elemental analysis found: C, 79.65; H, 5.62; N, 4.56. Calcd for C₃₀H₃₄N₂P₂: C, 79.48; H, 5.39; N, 4.56. Calcd for C₄₀H₃₄N₂P₂: C, 79.45; H, 5.67; N, 4.63.
C, 75.23; H, 5.98; N, 4.06. Calcd for C₄₄H₄₂MgN₂OP₂·C₄H₁₀O·5CH₃CN: C, 75.38; H, 6.04; N, 4.00. This material is very soluble in aromatic solvents, but NMR spectra in C₆D₆ solution are complicated, due to the presence of oligomeric species. Adding 2.2 equiv. of THF to such filtered (GF/B) benzene solutions affords the crystalline tetrahydrofuranate rac-7 in excellent yields (>85%). Single crystals obtained by this method were suitable for X-ray diffraction analysis. NMR spectra of these crystals are identical to those of (S,S)-7 (vide supra).

\[
(S,S,S,S)-[\text{IrCl(ANDEN-PPh₂)}]_2 ((S,S,S,S)-9)
\]

Benzene (4 g) was added to (S,S)-6 (500 mg, 0.827 mmol) and [IrCl(coe)]₂ (371 mg, 0.414 mmol) under stirring to a vial rapidly forming a clear, red solution, which after about 20 min turned orange. The solution was stirred for 3 d, and then the volatiles were removed under reduced pressure. The resulting bright yellow solid was slurried and washed in hexanes (3 × 10 mL, filtration over GF/B) and HV-dried to afford a pale yellow powder (688 mg, 99%). Elemental analysis found: C, 55.53; H, 4.02; N, 3.16. Calcd for C₄₄H₄₂MgN₂OP₂·0.15C₄H₁₀: C, 57.91; H, 4.21; N, 3.34. Values for C were consistently low (5 measurements on two different batches), and we suspect formation of carbides during combustion. \(^1\)H NMR (400 MHz, C₆D₆): \(\delta 1.96 (d, J = 7.5 \text{ Hz}, 4 \text{H}), 3.78-3.95 (m, 8 \text{H}), 6.65-7.15 (m, 40 \text{H}), 7.20-7.35 (m, 8 \text{H}), 7.71-7.88 (m, 8 \text{H}).\) \(^{31}\)P \(^{1}\)H NMR (162 MHz, C₆D₆): \(\delta 44.2 \text{ (s).}\)

\(^{13}\)C NMR (100 MHz, C₆D₆): \(\delta 50.6, 61.9, 124.1, 125.3, 126.6, 126.9, 127.9, 128.3, 128.8, 132.4, 138.8, 139.0, 139.4, 139.6, 139.8, 140.0, 140.3, 140.6, 140.8, 141.4.\) \(^{13}\)C-DEPT-135 NMR (100 MHz, C₆D₆): \(\delta 50.6, 61.9, 124.1, 125.3, 126.6, 126.9, 127.9, 128.3, 128.8, 132.4.\)

Crystaline rac-[IrCl(ANDEN-PPh₂)]₂ (rac-9)

Using toluene instead of benzene affords material of better crystallinity but in lower yield. Toluene (15 g) was added to rac-6 (708 mg, 1.12 mmol) and [IrCl(coe)]₂ (500 mg, 0.556) in a vial rapidly forming a clear, red solution, which after about 20 min turned orange. Within 2 d large amounts of needle-like orange crystals had grown and were collected by filtration, washed with chilled toluene (5 mL) and n-pentane (2 × 10 mL), and dried in vacuo (717 mg, 72%). The single crystals thus obtained were of X-ray dihedral quality. Elemental analysis found: C, 75.23; H, 6.04; N, 4.00. This material is very soluble in aromatic solvents, but NMR spectra in C₆D₆ solution are complicated, due to the presence of oligomeric species. Adding 2.2 equiv. of THF to such filtered (GF/B) benzene solutions affords the crystalline tetrahydrofuranate rac-7 in excellent yields (>85%). Single crystals obtained by this method were suitable for X-ray diffraction analysis. NMR spectra of these crystals are identical to those of (S,S)-7 (vide supra).

\[
\text{Crystalline rac-[IrCl(ANDEN-PPh₂)(CH₃CN)]·1CH₃CN (rac-10)}
\]

rac-9 (239 mg, 0.144 mmol, used as its toluene solvate) was dissolved in acetonitrile (5 mL) and the solution left undisturbed for 5 d at ~32 °C. This afforded copious amounts of yellow, X-ray quality crystals, which were separated from the orange mother liquor by decantation, washed with pentane (5 mL), and dried in HV (151 mg, 55%). Elemental analysis found: C, 58.49; H, 4.50; N, 6.26. Calcd for C₃₃H₂₇Cl₄Ir₃N₆P₄·1CH₃CN·C₂H₅₄: C, 58.29; H, 4.69; N, 6.41. Once crystals of (rac)-10 have formed, their solubility in CD₃CN and other common solvents is too low for meaningful NMR-spectra to be recorded. For spectra of (rac)-10 that were recorded before crystallization took place, see the protocol for (rac)-9.

\[
\text{Mg-catalyzed cyclization of 2,2'-diphenyl-pent-4-eneamine}
\]

In a glovebox, 2,2-diphenylpent-4-en-1-amine (366.9 mg, 1.546 mmol) and (S,S)-7 (62.8 mg, 0.0775 mmol) were mixed in a Teflon-lined screw cap vial and dissolved in 1.5 mL of THF. The clear colorless solution was stirred for 4 h. The solvent was removed under high vacuum. Hexane (1 mL) was added and the white mixture was filtered through celite. After removing the solvent, the obtained oil was further purified by Kugelrohr distillation to afford 359 mg (98%) of product. \(^1\)H-NMR (400 MHz, CDCl₃): \(\delta 1.31 (d, J = 7.5 \text{ Hz}, 3 \text{H}), 1.43-1.69 (m, 4 \text{H}), 1.78-1.91 (m, 1 \text{H}), 2.29 (s, 2 \text{H}), 2.30-3.35 (m, 3 \text{H}), 3.61 (bs, 1 \text{H}), 5.62-6.81 (m, 3 \text{H}), 7.13-7.22 (m, 2 \text{H}).\) HPLC analysis: Daicel Chiralcel AD-H column, n-hexane/i-PrOH = 85:15, 1.0 mL min⁻¹, \(t_R = 34.2 \text{ min (major), } t_{rk} = 22.6 \text{ min (minor).}\)

\[
\text{NMR-scale intramolecular hydroamination}
\]

(S,S)-7 (8 mg, 0.009 mmol) and 2,2-diphenylpent-4-en-1-amine (43 mg, 0.18 mmol) were added to an NMR tube and dissolved in 0.5 mL of THF-d₈. The reaction was monitored by \(^1\)H-NMR and after 2 h, 87% conversion was achieved. Full conversion was observed after 4 h.

\[
\text{Representative Ir-catalyzed addition of aniline to 2-norbornene}
\]

(S,S,S,S)-9 (104 mg, 0.0625 mmol) and LDA (13.4 mg, 0.125 mmol) were dissolved in a solution of 2-norbornene (235 mg, 2.50 mmol) in aniline (233 mg, 2.50 mmol) that contained a few drops of benzene. The orange mixture was stirred at 80 °C for 115 h in a sealed vial (Teflon-lined screw cap) after which time the reaction was quenched by exposure to air. The product was isolated as a yellowish oil after flash chromatography (Ge60 silica, \(l = 10 \text{ cm}, d = 2.5 \text{ cm}, n\text{-hexane/EtOAc} = 9:1\)) and HV drying (320 mg, 68%). \(^1\)H-NMR (400 MHz, CDCl₃): \(\delta 1.12-1.31 (m, 4 \text{H}), 1.43-1.69 (m, 4 \text{H}), 1.78-1.91 (m, 1 \text{H}), 2.29 (s, 2 \text{H}), 3.14-3.35 (m, 3 \text{H}), 3.61 (bs, 1 \text{H}), 5.62-6.81 (m, 3 \text{H}), 7.13-7.22 (m, 2 \text{H}).\) HPLC analysis: Daicel Chiralcel OJ-H column, n-hexane/i-PrOH = 90:10, 0.5 mL min⁻¹, 249 nm, \(t_R (R) = 19.05 \text{ min (minor), } t_R (S) = 21.27 \text{ min (major).}\) The addition of o-anisidine to norbornene gave a colorless oil.
after flash chromatography (G60 silica, l = 10 cm, d = 2.5 cm, n-hexane/EtOAc = 9 : 1) and HV drying. 1H–NMR (270 MHz, CDCl3): δ 1.12–1.42 (m, 4H), 1.48–1.67 (m, 3H), 1.78–1.99 (m, 1H), 2.26–2.48 (m, 2H), 3.13–3.42 (m, 1H), 3.86 (s, 1H), 4.14 (bs, 1H), 6.57–6.74 (m, 2H), 6.79 (d, J = 5.4 Hz, 1H), 6.90 (t, J = 5.4 Hz, 1H). HPLC analysis: Daicel Chiralcel OJ-H column, n-hexane/i-PrOH = 99.5 : 0.5, 0.5 mL min⁻¹, 212 nm, t_R = 19.95 min (major), t_R = 21.66 min (minor).

Crystal structure determinations

The measurements for [Mg(C40H32N2P2)(C4H8O)2]·C6H6 (rac-6) was conducted on a Bruker Smart Apex-II area-detector diffractometer using Mo Kα radiation (λ = 0.71073 Å) from a micro-focus X-ray source and an Oxford Instruments Cryosject XL cooler. That for C40H34N2P2·0.5C6H12 (rac-6) was conducted on a Bruker Smart Apex-II area-detector diffractometer using graphite-monochromated Mo Kα radiation, while the measurements for [Ir2Cl2(C40H34N2P2)2](C6H6)[Cl].1.33C2H3N (rac-10) were made on a Bruker-Nonius KappaCCD area-detector diffractometer also using graphite-monochromated Mo Kα radiation. Data reduction was performed with CrysAlisPro,39 APEX240 or EvalCCD,45 respectively. The intensities were corrected for Lorentz and polarization effects, and empirical absorption corrections using spherical harmonics43 were applied. Equivalent reflections, other than Friedel pairs for (S,S)-7, were merged. The structures were solved by direct methods using SHELXS-2013,44 or SHELXTL45 and the non-hydrogen atoms were refined anisotropically. The data collection and refinement parameters are given in Table 3.

Compound rac-6 crystallized as its n-pentane hemisolvate. The solvent molecule is disordered about a crystallographic centre of inversion. Similarity and pseudo-isotropic restraints were applied to the anisotropic displacement ellipsoids of the disordered atoms. The asymmetric unit of (S,S)-7 contains one molecule of the Mg-complex plus one molecule of benzene. Refinement of the absolute structure parameter 46 yielded a value of −0.01(5), which confidently confirms that the refined model represents the true absolute structure. The asymmetric unit of rac-9 contains half of a C2-symmetric dinuclear Ir-complex with the metal centres linked by a double C1-bridge. The structure model, when defined just by the Ir-complex contains two large voids of 1567 Å³ per unit cell, in which no significant electron density peaks corresponding with obvious solvent molecules could be discerned (Fig. 6). However, based on NMR evidence and elemental analysis, it is clear that highly disordered non-stoichiometric amounts of toluene molecules occupy the cavities. As the solvent molecules could not be modelled, the SQUEEZE routine of the program PLATON45 was employed. The electron count in each void in the unit cell was calculated to be approximately 225 e. One toluene molecule has 50 e, so it has been assumed that four toluene molecules lie in each void. This approximation has been used in the subsequent calculation of the empirical formula, formula weight, density, linear absorption coefficient and F(000). Based on this assumption, the ratio of Ir-complex to toluene molecules in the structure is 1 : 2. Refinement of the absolute structure parameter 46 yielded a value of −0.025(3), which confidently confirms that the refined model represents the true absolute structure. Although the space group for rac-9 is non-centrosymmetric, the presence of glide planes dictates that the compound in the crystal is racemic.

For rac-10, the Ir-complex crystallized with 1.33 equivalents of MeCN. The solvent molecules are distributed over two crys-

Table 3 Crystallographic data for compounds rac-6, (S,S)-7, rac-9 and rac-10

<table>
<thead>
<tr>
<th>Compound</th>
<th>rac-6</th>
<th>(S,S)-7</th>
<th>rac-9</th>
<th>rac-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C40H34N2P2·2C2H12</td>
<td>C40H34N2P2·C6H6</td>
<td>C40H34N2P2·2C2H12</td>
<td>C40H34N2P2·2C2H12</td>
</tr>
<tr>
<td>Formula wt (g mol⁻¹)</td>
<td>640.71</td>
<td>649.28</td>
<td>1885.04</td>
<td>928.07</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.25 × 0.30 × 0.45</td>
<td>0.10 × 0.20 × 0.30</td>
<td>0.08 × 0.10 × 0.30</td>
<td>0.12 × 0.16 × 0.24</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100(2)</td>
<td>160(1)</td>
<td>160(1)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Trigonal</td>
</tr>
<tr>
<td>Space group</td>
<td>P1</td>
<td>P2₁</td>
<td>P2₁</td>
<td>P4bc</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.016(2)</td>
<td>10.4127(3)</td>
<td>22.7261(15)</td>
<td>22.7261(15)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>12.061(3)</td>
<td>20.6503(10)</td>
<td>22.7261(15)</td>
<td>22.7261(15)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>16.103(4)</td>
<td>11.3111(3)</td>
<td>17.6278(2)</td>
<td>17.6278(2)</td>
</tr>
<tr>
<td>α (°)</td>
<td>104.466(2)</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>β (°)</td>
<td>107.161(2)</td>
<td>113.247(3)</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>γ (°)</td>
<td>102.209(2)</td>
<td>2234.72(10)</td>
<td>90.0</td>
<td>9104.40(16)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1712.1(6)</td>
<td>2234.72(10)</td>
<td>2234.72(10)</td>
<td>2234.72(10)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ρcalcd (g cm⁻³)</td>
<td>1.243</td>
<td>1.262</td>
<td>1.375</td>
<td>1.375</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.160</td>
<td>0.156</td>
<td>3.102</td>
<td>3.102</td>
</tr>
<tr>
<td>θ range (°)</td>
<td>2.2–27.9</td>
<td>21.395</td>
<td>2.1–28.3</td>
<td>2.1–28.3</td>
</tr>
<tr>
<td>Reflections measured</td>
<td>42 631</td>
<td>42 631</td>
<td>44 263</td>
<td>44 263</td>
</tr>
<tr>
<td>Independent refin.; Rint</td>
<td>8109; 0.037</td>
<td>8599; 0.051</td>
<td>9564; 0.037</td>
<td>9564; 0.037</td>
</tr>
<tr>
<td>Parameters; restraints</td>
<td>476; 78</td>
<td>550; 1</td>
<td>418; 1</td>
<td>418; 1</td>
</tr>
<tr>
<td>R[F] (I > 2σ[I])</td>
<td>0.042</td>
<td>0.043</td>
<td>0.028</td>
<td>0.028</td>
</tr>
<tr>
<td>wR[F²] (all data)</td>
<td>0.109</td>
<td>0.105</td>
<td>0.068</td>
<td>0.068</td>
</tr>
<tr>
<td>Goodness of fit (F²)</td>
<td>1.29</td>
<td>1.064</td>
<td>1.113</td>
<td>1.113</td>
</tr>
<tr>
<td>Δρmax/min (e Å⁻³)</td>
<td>0.44, –0.59</td>
<td>0.64, –0.32</td>
<td>1.82, –0.87</td>
<td>1.82, –0.87</td>
</tr>
</tbody>
</table>

This journal is © The Royal Society of Chemistry 2016
tallographic sites and are strongly disordered. One of the solvent molecules lies on a general position while the other is situated on a crystallographic three-fold axis. Two alternative orientations of the solvent molecules were refined at each site while applying bond length, bond angle and bond length similarity restraints. Similarity and pseudo-isotropic restraints were also applied to the anisotropic displacement ellipsoids of the disordered atoms. Three reflections, whose intensities were considered to be extreme outliers, were omitted from the final refinement.

For rac-9, the two unique amine H-atoms were placed in the positions indicated by a difference electron density map, then their positions were geometrically optimised and refined by using a riding model with refined isotropic displacement parameters. The H-atom of one amine group is disordered over the two possible positions on its parent N-atom. The amine H-atoms of rac-6 and rac-10 were placed in the positions indicated by difference electron density maps and their positions were allowed to refine together with a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom. All remaining H-atoms in each structure were placed in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for any methyl groups). The refinement of each structure was carried out on F2 by using full-matrix least-squares procedures, which minimised the function \(\sum w(F_o^2 - F_c^2)^2 \). The SHELXL-2014 program\(^{48}\) was used for the refinement of (S,S)-7 and rac-9, while SHELXTL\(^{45}\) was used for the other two structures.

Computational details

ANDEN and its modifications were drawn in a standard molecule editor and pre-optimized using the Merck Molecular Force Field MMFF94.\(^{49}\) Calculations were performed using the Turbomole 6.3 suite\(^{50}\) with the def2-TZVP\(^{51}\) basis set and the BP-86 exchange correlation functional.\(^{52}\) The calculations were accelerated using the R\(_f\) approximation.\(^{53}\) The energy curves were obtained by iterative increments of a fixed internal redundant coordinate resembling the X-C-C-X torsion angle and starting from the equilibrium geometry. Energy differences were calculated with respect to the SCF-energies only. Gibbs free energies were not taken into consideration because the complex-valued vibrational modes of the non-equilibrium structures would be ignored in their calculation (this would generate an extra error due to the fact that the reference is an equilibrium structure).

Acknowledgements

We thank Dr Achim Zahl for performing NMR measurements and Ms. Christina Wronna for carrying out the elemental analyses. Financial support by Friedrich-Alexander University is acknowledged.

References

6. M. Fiorini, F. Marcati and G. M. Giongo, *J. Mol. Catal.*, 1979, 4, 125. These authors also observed the opposite effect by N-methylation of the corresponding 1,2-diamino-
cyclohexane derived ligands, affording the hydrogenation product with higher ee and inverted configuration.

12 Attempts to deprotonate the aminophosphine with BuLi only led to inseparable yellow (Et2O) or dark red (THF) mixtures.

16 Even smaller torsion angles are seen in one of Zl’s N-ligated Ti-complex, which also exhibits a five-membered chelate ring (61.1°, ref. 7e) and Veige’s Rh-complex (69°, ref. 7a).

18 The distances are well within the range for π–σ interactions, and the shortest C⋯C distances are less than 4 Å. See: C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885.

20 Conversely, secondary diamines, such as (S,S)-8, did not react with PCIPh2 under the conditions described for ANDEN. Attempts to first deprotonate 8 with strong bases (BuLi, MeLi, LDA, MgPh2, etc.) led to the rapid decomposition of 8 to anthracene and other unidentified products. Preparation of (S,S)-8: (S,S)-5 and pivaloyl chloride afforded the bis-amide, which then was reduced with NaBH4/I2 (M. J. McKennon, A. I. Meyers, J. Org. Chem., 1993, 58, 3568) to neo-ANDEN on a gram scale. 1H-NMR (300 MHz, CD3CN): δ 7.24–7.36 (m, 4H), 7.05–7.17 (m, 4H), 4.39 (s, 2H), 2.64 (d, 2H, J = 11.4), 2.38 (t, 2H, J = 1.5), 2.29 (d, 2H, J = 11.4), 0.81 (s, 18H), 0.55 (br, 2H). 1H-NMR (300 MHz CD2D2): δ 7.20–7.31 (m, 4H), 7.04–7.15 (m, 4H), 4.38 (s, 2H), 2.68 (d, 2H, J = 11.5), 2.65 (s, 2H), 2.33 (d, 2H, J = 11.4), 0.91 (s, 18H), 0.53 (br, 2H). 13C-NMR (75 MHz, C 6D6): δ 132.82 (s), 131.06 (s), 116.67 (s), 116.29 (s), 114.60 (s), 58.48 (s), 50.07 (s), 39.82 (s), 22.05 (s). Elemental analysis found: C, 82.65; H, 9.64; N, 7.44. Caled for C32H36N4C: C, 82.93; H, 9.64; N, 7.44. [a]βH +24.4 (c 1.00, THF).

21 Reactions of (S,S)-7 with [IrCl(COE)2]2 under various conditions in an attempt to synthesize Ir(η1)-amido complexes only led to inseparable mixtures. Precipitation of MgCl2 was not observed.

22 For examples, see: (a) Ref. 10e, pp. 162–165; (b) O. V. Ozerov, C. Guo, V. A. Papkov and B. M. Foxman, J. Am. Chem. Soc., 2004, 126, 4792; (c) H. Locke, A. Herrera,
As the yield of the crystals was around 70% their composition may be regarded as representative of the bulk material.

Small peaks from rac-9 remain visible in the NMR-spectra and hint at an equilibrium with an apparent K_{eq} of around 15. Unfortunately, VT NMR experiments to prove the equilibrium were hindered by the high tendency of rac-10 to form sparingly soluble crystalline precipitates.

This conformation is common for cis-bis(1,2-diamino) phosphine complexes. (a) K. Onuma and A. Nakamura, Bull. Chem. Soc. Jpn., 1981, 761, 761; (b) V. F. Kuznetsov, G. R. Jefferson, G. P. A. Yap and H. Alper, Organometallics, 1988, 7, 6738; (c) Ref. 10. For an NMR method to measure such ligand flexibility, see: M. S. Jeletic, C. E. Lower, I. Ghiviriga and A. S. Veige, Eur. J. Inorg. Chem., 2011, 30, 6034. Related X-ray crystal structures are found in ref. 7b.

Fluorine substitution leads to an equilibrium F–C–F angle of 114°.

From this point of view it is not surprising that the torsion angles from the X-ray crystallographic data vary over such a wide range, because hydrogen bonds and packing effects may easily overcome this barrier. (a) Ref. 10c; (b) R. Dorta and A. Togni, unpublished results.

