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Expanding the family of bis-cyclometalated
chiral-at-metal rhodium(III) catalysts with a
benzothiazole derivative†

Jiajia Ma,a Xiaodong Shen,a Klaus Harmsa and Eric Meggers*a,b

Synthetic access to previously elusive single enantiomers of an

octahedral chiral-at-metal rhodium(III) complex containing two

cyclometalated 2-phenylbenzothiazoles and two acetonitrile

ligands is reported. The complex is a superior chiral Lewis acid

catalyst compared to its benzoxazole congener which can be

rationalized with a higher steric congestion around the coordi-

nation sites.

Chiral Lewis acids play an important role in asymmetric cata-
lysis because many reactions are amenable to Lewis acid acti-
vation.1 Recently, we introduced a new class of chiral Lewis
acids based on octahedral iridium(III)2–7 and rhodium(III)8–11

complexes which draw their chirality exclusively from the
metal-centered chirality (metal centrochirality).12,13 These
chiral-only-at-metal complexes are cyclometalated by two
5-tert-butyl-2-phenylbenzoxazoles or the analogous benzothia-
zole ligands in addition to two exchange-labile acetonitriles,
which generates a C2-symmetric, propeller-type geometry.

Whereas the iridium complexes Λ/Δ-IrO and Λ/Δ-IrS have
been demonstrated to be excellent catalysts for visible light
induced photoredox reactions,3,4,6,7 the rhodium congener
Λ/Δ-RhO features advantages for regular Lewis acid catalysis,8–10

apparently due to a more rapid ligand exchange kinetics
(Table 1). We expected that the related complex Λ/Δ-RhS, in
which the coordinating benzoxazole moieties are replaced by
benzothiazoles, should provide a higher asymmetric induction
due to an increased bond length of C–S over C–O which will
position the two tert-butyl groups somewhat closer to the sub-
strate coordination site. Here we disclose the previously elusive
access to the enantiomerically pure benzothiazole complexes
Λ- and Δ-RhS, characterize their structures and configurational

stability, and demonstrate their excellent performance as
asymmetric catalysts.

The auxiliary-mediated synthesis14–18 starts with rhodium
trichloride hydrate which is first converted into rac-RhS in a
yield of 73% by reaction with 2 equiv. of 5-tert-butyl-2-phenyl-
benzothiazole (1), followed by a treatment with 1.2 equiv. of
AgPF6 in MeCN (Fig. 1). The complex rac-RhS is then reacted
with the monofluorinated salicyloxazoline (S)-219 to provide a
diastereomeric mixture of Λ-(S)-3 and Δ-(S)-3 which can be
resolved into pure diastereomers (46% each) based on their
different solubilities in EtOH or by silica gel chromatography,
or a combination thereof depending on the reaction scale.
Configurations were assigned based on the crystal structure of
Λ-(S)-3 as shown in Fig. 2. Finally, starting with Λ-(S)-3 and
Δ-(S)-3, an acid induced replacement of the coordinated auxiliary
ligand with two acetonitriles under retention of the configur-
ation affords the individual enantiomers Λ-RhS (85%) and
Δ-RhS (80%). The key aspect of this auxiliary-mediated
synthesis is the fluorinated auxiliary (S)-2 which was first

Table 1 Overview of bis-cyclometalated, chiral-only-at-metal iridium
and rhodium catalystsa

Entry Complex M X Remarks

1 Λ- and Δ-IrO Ir O Ref. 2 and 4
2 Λ- and Δ-IrS Ir S Ref. 3 and 5–7
3 Λ- and Δ-RhO Rh O Ref. 8–11
4 Λ- and Δ-RhS Rh S This study

a Synthesis by an auxiliary-mediated strategy.

†Electronic supplementary information (ESI) available: Experimental details and
analytical data. CCDC 1455731 and 1455732. For ESI and crystallographic data
in CIF or other electronic format see DOI: 10.1039/c6dt01063f
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introduced by Ceroni and co-workers.19 All other tested auxili-
aries did not provide intermediate rhodium auxiliary com-
plexes with distinct solubilities and were not stable enough for
a resolution via silica gel chromatography.

The CD spectra of the complexes Λ- and Δ-RhS are shown
in Fig. 3, and confirm their mirror-imaged structures. HPLC
performed on a chiral stationary phase validates the high
enantiomeric purity of the individual enantiomers (Fig. 4).20

For the Δ-enantiomer an er of 99.9 : 0.1 was determined, while
peak tailing prevents an accurate validation of the Λ-enantio-
mer and an er of >99 : 1 was estimated.

Fig. 5 shows the superimposed crystal structures of Λ-RhS
and mirror-imaged Δ-RhO, not only confirming the assigned
metal-centered configuration of Λ-RhS, but also revealing the
differences in how the two tert-butyl groups flank the coordi-
nation site around the two exchange-labile acetonitrile
ligands. In comparison with RhO, the tert-butyl groups of RhS
are in closer proximity to the labile acetonitriles as quantified
by a 0.9 Å shorter intramolecular distance between the qua-
ternary carbons of the two tert-butyl groups in RhS (10.5 Å)
over RhO (11.4 Å). This is consistent and analogous with a
comparison of the related benzoxazole and benzothiazole
iridium complexes.3,5

The increased steric hindrance provided by the two tert-
butyl groups should make RhS an improved asymmetric cata-
lyst for many applications. This is confirmed by the prelimi-
nary results shown in Fig. 6. In both enantioselective Michael
addition8 and a photoinduced enantioselective radical reac-
tion,11 the determined enantioselectivities are appreciably

Fig. 1 Auxiliary-mediated synthesis of Λ- and Δ-RhS.

Fig. 2 Crystal structure of the auxiliary complex Λ-(S)-3. ORTEP
drawing with 50% thermal ellipsoids. CCDC number 1455732.

Fig. 3 CD spectra of Λ- and Δ-RhS recorded in CH3OH : CH2Cl2 4 : 1.

Fig. 4 HPLC traces of racemic, Λ- and Δ-RhS. HPLC conditions: Daicel
CHIRALPAK IB, 250 × 4.6 mm, column temp. = 25 °C, λabs = 254 nm,
flow rate = 0.6 mL min−1, solvent A = 0.1% aqueous TFA, solvent B =
MeCN, gradient = 40% to 50% B in 180 min.
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higher for the benzothiazole (RhS) over the benzoxazole (RhO)
catalyst.21

In conclusion, here we reported a new chiral-at-metal
benzothiazole complex Λ/Δ-RhS which expands the family of
bis-cyclometalated rhodium(III) complexes for applications in
asymmetric catalysis. Compared to the previously reported
benzoxazole complex Λ/Δ-RhO, the benzothiazole ligands in
Λ/Δ-RhS provide a higher steric congestion around the labile
acetonitrile ligands, thereby making Λ/Δ-RhS a superior asym-
metric catalyst. Applications of the new chiral Lewis acid cata-
lyst to challenging asymmetric transformations are underway
in our laboratory.

We thank the German Research Foundation (DFG) for
financial support of this research (ME 1805/13-1).
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