Synthesis of mono-, di-, and triaminobismuthanes and observation of C–C coupling of aromatic systems with bismuth(III) chloride†

Christian Hering-Junghans,a,b Axel Schulz,*a,c Max Thomasa and Alexander Villingera

Cite this: Dalton Trans., 2016, 45, 6053

The reaction of lithium N-trimethylsilyl-amides of the type RN(SiMe3)Li with bismuth(III) chloride yielded mono-, di- or triaminobismuthanes depending on the sterical demand of the anilide ligand R and the used stoichiometry. For the bulky Mes* substituent the reaction with BiCl3 resulted in the formation of a C–C coupling product as the main product besides a small amount of the expected Mes*N(SiMe3)BiCl2.

Introduction

C–C coupling reactions of aromatic systems in the presence of bismuth(III) chloride have been known since 2002, when Hanna and coworkers described the reaction of LiOAr (Ar = 2,6-di-tert-butylphenyl) with BiCl3.1 A complex mixture of organic compounds along with a black precipitate was observed by the authors. Beside HOAr, the main products of this reaction were a diol (1) and a dione (2) as illustrated in Scheme 1,1,2 and their formation can be rationalized by a mechanism involving radical intermediates.

With the aid of EPR spectroscopy Hanna and coworkers could experimentally detect Bi(II) radicals in the reaction mixture.3 In 2011 the group of Evans reported the preparation of a formal Bi(II) species with an NCN pincer-type ligand and a CH-activated ArO-group (Ar = 2,6-ditertbutylphenyl) binding to bismuth through the 4-position (3, Scheme 2).2 In contrast the reaction of the BiCl2-precursor with KOAr′ (Ar′ = Dmp, 2,6-dimethylphenyl; Dipp, 2,6-diisopropylphenyl) substituents yielded the corresponding oxidobismuthanes, a C–H activation of the para-position could not be observed. In 2014, Evans et al. presented a catalytic cycle based on their pincer complex 3 (Scheme 2).3

With this complex in hand, the group of Evans was able to introduce a carboxyl group using 2,6-di-tert-butylphenolat and CO2 as starting materials. The carboxyl group in this reaction could also be replaced by a NO functionality.4 Just recently, a stable Bi(II)-radical was reported by the Coles group, making this a vital field of research.5 To the best of our knowledge, there are no similar reactions of amides (4, R = aryl in Scheme 3) reported. Herein, we report on the systematic study of silylated bulky mono-, di- and triminobismuthanes of the type RN(SiMe3)BiCl3, [RN(SiMe3)]2BiCl and [RN(SiMe3)]3Bi. There is only scarce information on substituted aminobismuthanes6 which are valuable starting materials for several transformations in main group chemistry such as the...
BiCl₃.

most cases

1, 2 and 3 equivalents of Li[N(SiMe₃)R] (R = Mes* (4a), Trip (4b), Dipp (4c), Ter (4d), Dp (4e), Dmp (4f), p-Tol (4g); Mes* = 2,4,6-tri-tert-butylphenyl, Trip = 2,4,6-trisopropylphenyl, Dipp = 2,6-diisopropylphenyl, Ter = 2,6-bis(2,4,6-trimethylphenyl)phenyl, Dp = 3,4-dimethylphenyl, Dmp = 2,6-dimethylphenyl, p-Tol = 4-methylphenyl) at ambient temperature. The lithium amides 4 were readily obtained in the reaction of the respective N-trimethylsilyl-aniline derivatives with n-BuLi, whereas in most cases 4 can be generated in situ prior to the reaction with BiCl₃.

Astonishingly, treatment of BiCl₃ with equimolar amounts of 4 resulted, depending on the steric strain, in a complex mixture of products as illustrated in Scheme 3 (cf. steric strain can be evaluated using the maximal cone angle at 1.45 Å, 251°Mes*, 222°Trip, 223°Dipp, 232°Ter, 158°Dp, 199°Dmp, 158°p-Tol).

Reaction with 4a. Surprisingly, the reaction of Mes*N(SiMe₃)Li (4a), which was usually formed in situ from Mes*N(SiMe₃)H and n-BuLi, with one equivalent of BiCl₃ in thf at ambient temperature led to C–C coupling product 8 besides a black precipitation of bismuth and bismuth chlorides as depicted in Schemes 3 and 4. In analogy to the observation of Hanna and co-workers, a radical mechanism is also assumed in this case.

Upon addition of a solution of Mes*N(SiMe₃)Li at room temperature to a suspension of BiCl₃ first the formation of Mes*N(SiMe₃)BiCl₂ (5a) was observed as indicated by ¹H NMR data. The yellow solution darkens upon complete addition of 4a and eventually gave the aforementioned black suspension. Presumably, decomposition is initiated by homolytic dissociation of the N–Bi bond affording, after a complex rearrangement, C–C coupling product 8 besides a black mixture of bismuth containing compounds (for example BiCl₃ thf could be identified) as illustrated in Scheme 4. It needs to be emphasized that the formation of 8 under this reaction conditions is reproducible and usually yields 8 in isolated yields of 40–50% with respect to 4a (Fig. 1). When the addition of 4a to BiCl₃ was carried out at low temperatures (−80 °C), we were successful to isolate 5a in small amounts besides 8 (1:9 ratio) upon slow warming to −20 °C and fractional crystallization. Hence, this experimentally proves that the initial formation of 5a represents the first reaction step as discussed before. The presence of 5a was unequivocally confirmed by X-ray diffraction (Fig. 2). Crystals of 5a 1.5 toluene were obtained from recrystallization in toluene (Fig. 2). Using isolated and recrystallized 4a rather than generating it in situ (in the reaction with BiCl₃ in diethyl ether at −80 °C) suppressed the formation of the C–C coupling product, however, not entirely. It was possible to obtain 5a as the main product in using this protocol. Using freshly sublimed BiCl₃ also helped to increase the

Results and discussion

Syntheses

In a series of experiments we studied the reaction of BiCl₃ with 1, 2 and 3 equivalents of Li[N(SiMe₃)₃]R [R = Mes* (4a), Trip (4b), Dipp (4c), Ter (4d), Dp (4e), Dmp (4f), p-Tol (4g); Mes* = 2,4,6-tri-tert-butylphenyl, Trip = 2,4,6-trisopropylphenyl, Dipp = 2,6-diisopropylphenyl, Ter = 2,6-bis(2,4,6-trimethylphenyl)phenyl, Dp = 3,4-dimethylphenyl, Dmp = 2,6-dimethylphenyl, p-Tol = 4-methylphenyl] at ambient temperature. The lithium amides 4 were readily obtained in the reaction of the respective N-trimethylsilyl-aniline derivatives with n-BuLi, whereas in most cases 4 can be generated in situ prior to the reaction with BiCl₃.

Astonishingly, treatment of BiCl₃ with equimolar amounts of 4 resulted, depending on the steric strain, in a complex mixture of products as illustrated in Scheme 3 (cf. steric strain can be evaluated using the maximal cone angle at 1.45 Å, 251°Mes*, 222°Trip, 223°Dipp, 232°Ter, 158°Dp, 199°Dmp, 158°p-Tol).

Reaction with 4a. Surprisingly, the reaction of Mes*N(SiMe₃)Li (4a), which was usually formed in situ from Mes*N(SiMe₃)H and n-BuLi, with one equivalent of BiCl₃ in thf at ambient temperature led to C–C coupling product 8 besides a black precipitation of bismuth and bismuth chlorides as depicted in Schemes 3 and 4. In analogy to the observation of Hanna and co-workers, a radical mechanism is also assumed in this case.

Upon addition of a solution of Mes*N(SiMe₃)Li at room temperature to a suspension of BiCl₃ first the formation of Mes*N(SiMe₃)BiCl₂ (5a) was observed as indicated by ¹H NMR data. The yellow solution darkens upon complete addition of 4a and eventually gave the aforementioned black suspension. Presumably, decomposition is initiated by homolytic dissociation of the N–Bi bond affording, after a complex rearrangement, C–C coupling product 8 besides a black mixture of bismuth containing compounds (for example BiCl₃ thf could be identified) as illustrated in Scheme 4. It needs to be emphasized that the formation of 8 under this reaction conditions is reproducible and usually yields 8 in isolated yields of 40–50% with respect to 4a (Fig. 1). When the addition of 4a to BiCl₃ was carried out at low temperatures (−80 °C), we were successful to isolate 5a in small amounts besides 8 (1:9 ratio) upon slow warming to −20 °C and fractional crystallization. Hence, this experimentally proves that the initial formation of 5a represents the first reaction step as discussed before. The presence of 5a was unequivocally confirmed by X-ray diffraction (Fig. 2). Crystals of 5a 1.5 toluene were obtained from recrystallization in toluene (Fig. 2). Using isolated and recrystallized 4a rather than generating it in situ (in the reaction with BiCl₃ in diethyl ether at −80 °C) suppressed the formation of the C–C coupling product, however, not entirely. It was possible to obtain 5a as the main product in using this protocol. Using freshly sublimed BiCl₃ also helped to increase the

Scheme 3 Product distribution in the synthesis of mono-, di- and tri-amino bismuthanes.

![Scheme 3](image-url)

Scheme 4 Formation of 5a and postulated reaction to the coupling product 8 in analogy to the suggested reaction pathway by Hanna et al.

![Scheme 4](image-url)
amount of 5a formed and suppressed formation of 8. The influence of freshly sublimed BiCl3 was already discussed by Evans et al. in the synthesis of Bi[N(SiMe3)2]3.26 In the reaction with 4a the as supplied bismuth(n)-chloride tends to pronounce the formation of 8. 5a is stable in the solid state with respect to the formation of 8. In dichloromethane solution the formation of a black precipitate indicated a partial decompo-

sition within 120 h at room temperature, but no decomposition products could be identified in the 1H NMR spectrum, which suggest decomposition into NMR-silent or insoluble products. Interestingly, Burford and co-workers reported the formation of (Mes*NH)3Bi in the reaction of three equivalents of the corresponding lithium amide with one equivalent BiCl3.27 Obviously, substitution of H by Me3Si prevents a higher degree of substitution at the bismuth.

We were interested in the generality of this C–C coupling reaction, prompting us to study differently substituted N-trimethylsilyl-amides, however, C–C coupling processes were only observed for the very bulky Mes* substituent.

Reaction with 4b. Treatment of 4b with BiCl3 in thf or diethyl ether resulted in the formation of the bis-substituted product [TripN(SiMe3)]2BiCl (9b, Fig. 4). The mono-substituted product 5b (Fig. 3) was only formed as a byproduct in minor quantities and could not be fully characterized. Recrystallization of the crude material from n-hexane gave single crystals of 9b in moderate yield (55%). Moreover, formation of TripN-SiMe3)H was detected by 1H NMR spectroscopy. In contrast to 5a no C–C coupling reaction was observed. 5b was only observed as a by-product besides 9b, therefore 5b could not be fully characterized. Due to the bulky Trip substituent, the threefold substitution product 12b was not observed. Utilizing two or three equivalents of 4b, TripN[SiMe3]H was observed as main product by 1H NMR spectroscopy.

Reaction with 4c. The Dipp substituted aniline 4c Li[N(SiMe3)Dipp] showed nearly the same reactivity in the
reaction with BiCl₃ compared to 4b. With a short reaction time and immediate work-up the 1:1 stoichiometry resulted in the formation of mono-substitution product Dipp[N(SiMe₃)₂]BiCl₂ (5e), which could be crystallized beside [DippN(SiMe₃)₂]₂BiCl₂ (9e). Unfortunately, even isolated crystals of 5e were contaminated with 9e and thus could not be fully characterized. Interestingly, reaction of two or three equivalents 4c with bismuth(m)-chloride afforded DippN(SiMe₃)H as the main product. In analogy to this reaction Roesky and co-workers demonstrated that the reaction of two or three equivalents of DippN(H)Li with BiCl₃ led to a four-membered heterocycle of the type [DippNBiN(H)Dipp]₂, the dimerization product of the intermediately formed iminobismuthane, similar to ring 11 (Scheme 3). Burford et al. reported a similar reaction but added t-BuNH₂ as additional base to the reaction mixture of DippN(H)Li and BiCl₃. This reaction also afforded [DippNBiN(H)Dipp]₂ but in higher yields and with an easier isolation of the four-membered ring system, because the byproduct t-BuNH₂ is considerably easier to remove than DippNH₂Cl.²⁴

Reaction with 4d. Since the terphenyl substituent is rather bulky, neither C-C coupling nor multi-substitution products (9d, 12d) could be detected. Only the mono-substitution product TerN(SiMe₃)₂BiCl₂ (5d) was afforded and isolated in rather low yields (ca. 35%). Re-crystallization from CH₂Cl₂ gave single crystals suitable for X-ray structure elucidation (Fig. 2, left). In case of the reaction of two or three equivalents of the lithium amide, again the formation of TerN(SiMe₃)H was left). In case of the reaction of two or three equivalents of the amide (Scheme 3) by BiCl₃ elimination from 5e/9e (Scheme 3) was detected in the solution from which single crystals (5e/9e) of a 1:1 mixture of 5e and 9e were obtained (Fig. 5). Generally, both the double as well as the triple substitution product can either be formed by reaction of 5e with 4e and 9e with 4e, respectively, or as depicted in Scheme 3 by BiCl₃ elimination from 5e and 9e as depicted. As shown in Fig. 5, in the solid state structure of 5e/9e BiCl₃ moieties are preformed, so it can be assumed that in solution dimeric or even oligomeric units are present which react under BiCl₃ elimination to give the trimerobismuthane 12c. Crystals of 5e/9e are only stable in the solid state, in solution they readily release BiCl₃ affording 12e (Fig. 6), which is also the main product, when three equivalents of 4e are reacted with BiCl₃.

Reaction with 4f. Treatment of BiCl₃ with only one equivalent of Li[N(SiMe₃)₂]DPp affords 12f, a mixture of DppN(SiMe₃)₂BiCl₂ (5e) and DppN(SiMe₃)₂BiCl (9e) (Scheme 3) was detected in the solution from which single crystals (5e/9e) of a 1:1 mixture of 5e and 9e were obtained (Fig. 5). Generally, both the double as well as the triple substitution product can either be formed by reaction of 5e with 4e and 9e with 4e, respectively, or as depicted in Scheme 3 by BiCl₃ elimination from 5e and 9e as depicted. As shown in Fig. 5, in the solid state structure of 5e/9e BiCl₃ moieties are preformed, so it can be assumed that in solution dimeric or even oligomeric units are present which react under BiCl₃ elimination to give the trimerobismuthane 12c. Crystals of 5e/9e are only stable in the solid state, in solution they readily release BiCl₃ affording 12e (Fig. 6), which is also the main product, when three equivalents of 4e are reacted with BiCl₃.

Reaction with 4g. The reaction of Li[N(SiMe₃)₂]p-Tol 4g with BiCl₃ in a 1:1 stoichiometry led to a mixture of products. From this mixture we were able to isolate the triple substitution product [p-TolN(SiMe₃)₂]Bi (12g) as pale yellow crystals suitable for X-ray structure elucidation (Fig. 6). However, utilization of an excess of base 4g (2 or 3 equivalents) resulted in sublimed BiCl₃ reacted with three equivalents of 4f a mixture of products was formed from which no substance could be isolated.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Bi-Cl</th>
<th>Bi-N</th>
<th>Cl-Bi-Cl</th>
<th>Cl-Bi-N</th>
<th>N-Bi-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>2.4771(5)</td>
<td>2.146(1)</td>
<td>89.9(2)</td>
<td>99.82(3)</td>
<td>—</td>
</tr>
<tr>
<td>5b</td>
<td>2.449(1)</td>
<td>2.111(3)</td>
<td>93.85(4)</td>
<td>97.03(7)</td>
<td>—</td>
</tr>
<tr>
<td>9b</td>
<td>2.4862(7)</td>
<td>2.140(2)</td>
<td>95.83(5)</td>
<td>105.81(7)</td>
<td>—</td>
</tr>
<tr>
<td>5c</td>
<td>2.4746(9)</td>
<td>2.125(3)</td>
<td>94.90(3)</td>
<td>92.50(7)</td>
<td>—</td>
</tr>
<tr>
<td>5d</td>
<td>2.485(1)</td>
<td>2.176(3)</td>
<td>87.64(3)</td>
<td>94.09(8)</td>
<td>—</td>
</tr>
<tr>
<td>5e in 9e</td>
<td>2.550(2)</td>
<td>2.116(6)</td>
<td>89.60(7)</td>
<td>94.7(1)</td>
<td>—</td>
</tr>
<tr>
<td>9e in 9e</td>
<td>2.515(1)</td>
<td>2.137(6)</td>
<td>94.6(2)</td>
<td>95.7(2)</td>
<td>—</td>
</tr>
<tr>
<td>12c</td>
<td>2.159(3)</td>
<td>2.155(3)</td>
<td>98.7(1)</td>
<td>97.9(1)</td>
<td>—</td>
</tr>
<tr>
<td>11f</td>
<td>2.176(9)</td>
<td>2.173(9)</td>
<td>102.1(3)</td>
<td>98.7(1)</td>
<td>—</td>
</tr>
<tr>
<td>11g</td>
<td>2.165(2)</td>
<td>2.129(2)</td>
<td>96.61(8)</td>
<td>98.7(1)</td>
<td>—</td>
</tr>
<tr>
<td>12g</td>
<td>2.150(3)</td>
<td>2.162(3)</td>
<td>98.5(1)</td>
<td>98.6(1)</td>
<td>—</td>
</tr>
</tbody>
</table>

| | 2.154(3) | 98.0(1) | — | — | — |

the formation of 12g (80%) when freshly sublimed BiCl₃ was added. Interestingly, when BiCl₃ was used as delivered by Alfa Aesar traces of four-membered heterocycle 11g were observed. Red crystals of 11g suitable for X-ray structure determination were isolated from such an experiment.

X-ray elucidation

X-ray quality crystals were selected in Fomblin YR-1800 perfluoroether (Alfa Aesar) at ambient temperature. The samples were cooled to 173(2) K during measurement. Selected structural data are listed in Table 1, the molecular structures are shown in Fig. 1–7.

As expected the molecular structures of all bismuth species feature a strongly distorted trigonal pyramidal coordination environment about the Bi center. Despite the pyramidal Bi centers, the four-membered rings in 11g and 11f are planar with both exocyclic amino groups in a trans orientation (deviation from planarity 11f: 0.0°, 11g: <2°). As can be seen from the data in Table 1, the molecular structures of all considered species display a fairly sharp distribution of Bi–N distances between 2.111–2.182 Å in accord with a typical polar Bi–N single bond ($\sum r_{\cos(Bi-N)} = 2.22$ Å ~ 2.16–2.17 Å in [DipNBiN(H)Dip]$_2$)24,28

The Bi–Cl bond lengths are in the range between 2.4369 to 2.658 Å, which is also indicative of single bonds ($\sum r_{\cos(Bi-Cl)} = 2.50$ Å).29 With respect to the angles around the bismuth center, the following trend was observed: $<$(Cl–Bi–Cl) (84.2–97.9°) \ll (Cl–Bi–N) (92.5–103.6°) \ll (N–Bi–N) (93.7–112.5°) which can mainly be attributed to the bulky Me$_3$Si and phenyl substituents attached to the N atoms.

The most prominent structural features are secondary inter- and intramolecular interactions stabilizing the Lewis acidic bismuth center. Three different types of such interactions were observed: (i) intramolecular π-arene...Bi contacts, (ii) intermolecular π-arene...Bi contacts and (iii) chlorine atoms as bridges between different Bi centers. Strong secondary interactions of type (i) (Menshutkin type π complexes)30 with one phenyl group of the terphenyl substituent were observed for 5d (Fig. 2) as indicated by very short Bi...C$_{\text{arene}}$ distances

Fig. 5 ORTEP drawing of the molecular structure of 5e/9e (top) and representation of the chain-like structure in the crystal of 5e/9e (bottom, view along a-axis). Thermal ellipsoids with 50% probability at 173 K (hydrogen atoms omitted for clarity). Selected distances (Å) and angles (°): Bi1–Cl1 2.4702(2), Bi1–Cl2 2.550(2), Bi2–Cl3 2.581(2), Bi1–N1 2.116(6), C12–Bi1–C13 171.000(6), C11–Bi1–C13 83.360(7); long range distances: Bi1–Cl3 3.057(2), Bi2–Cl1 3.516(2), Bi2–Cl2 3.644(2), Bi1–Bi2 4.8481(3).

Fig. 6 ORTEP drawing of the molecular structure of 12g (top) and 12e (bottom). Thermal ellipsoids with 50% probability at 173 K (hydrogen atoms omitted for clarity). Selected distances (Å) and angles (°): 12g: Bi1–N1 2.150(3), Bi1–N2 2.162(3), Bi1–N3 2.154(3), N1–Bi1–N2 98.6(1), N2–Bi1–N3 98.6(1), N3–Bi1–N1 98.0(1); 12e: Bi1–N1 2.159(3), Bi1–N2 2.155(3), Bi1–N3 2.155(3), N1–Bi1–N2 98.5(1), N2–Bi1–N3 97.9(1), N3–Bi1–N1 98.7(1).

Table 1. Selected distances (Å) and angles (°) for 5e/9e:

<table>
<thead>
<tr>
<th>Distance</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi1–Cl1</td>
<td>2.4702(2)</td>
</tr>
<tr>
<td>Bi1–Cl2</td>
<td>2.550(2)</td>
</tr>
<tr>
<td>Bi1–N1</td>
<td>2.116(6)</td>
</tr>
<tr>
<td>Cl1–Bi1–Cl2</td>
<td>171.000(6)</td>
</tr>
<tr>
<td>Cl1–Bi1–C13</td>
<td>83.360(7)</td>
</tr>
<tr>
<td>Cl1–Bi2–Cl2</td>
<td>3.516(2)</td>
</tr>
<tr>
<td>Cl2–Bi1–Cl3</td>
<td>3.644(2)</td>
</tr>
<tr>
<td>Bi1–Bi2</td>
<td>4.8481(3)</td>
</tr>
</tbody>
</table>

Fig. 4 ORTEP drawing of the molecular structure of 9b. Thermal ellipsoids with 50% probability at 173 K (hydrogen atoms omitted for clarity). Selected distances (Å) and angles (°): Bi1–Cl1 2.4862(7), Bi1–N1 2.140(2), Bi1–N2 2.179(2), N1–Bi1–Cl1 97.35(5), Cl1–Bi1–N2 95.83(5), N2–Bi1–N1 108.50(7).
Conclusions

Depending on the steric demand of the aryl group and the used stoichiometry the reaction of RN(SiMe3)2Li with BiCl3 leads to mono, double or even triple substitution at the bismuth atom. With bulky groups attached to the amide, preferentially the products of mono substitution (5) are found (Scheme 3), while triple substitution is mainly observed for smaller groups. The aminodichlorobismuthanes 5 with smaller R groups readily undergo BiCl3 elimination reactions to form diaminochlorobismuthanes (9) or even triaminobismuthanes (12). Instead of triaminobismuthanes also cyclobismidiazanes 11 can be formed when an excess of amide with a less bulky group is used and in solution both compounds 11 and 12 can even co-exist as well as in the solid state. For bulky groups, which are not able to form triple substitution products, the reaction of a huge excess of amide with BiCl3 leads to the formation of the amine RN(SiMe3)H. We want to stress that all reaction conditions (stoichiometry, solvent, reaction temperature, the use of isolated lithium amide or in situ generated and use of sublimed or unsublimed BiCl3) have a strong influence on the formed products and their distribution in mixtures. Even small changes to the reaction conditions can lead to very different results.

In the solid state the Lewis acidic bismuth atoms in these compounds can be stabilized by secondary interactions with aromatic solvents or intramolecularly, such as in the terphenyl substituted species. Another way to stabilize bismuth centers was established by bridging Cl atoms as found in some of the mono- and dichlorobismuthanes.

C–C coupling reactions rather than substitution was only observed for the supermesityl substituted derivative, which forms in the first step the mono-substitution product, that readily undergoes a C–C coupling process, presumably by a radical mechanism.

Acknowledgements

We are indebted to Dr Dirk Michalik for NMR measurements.

Notes and references