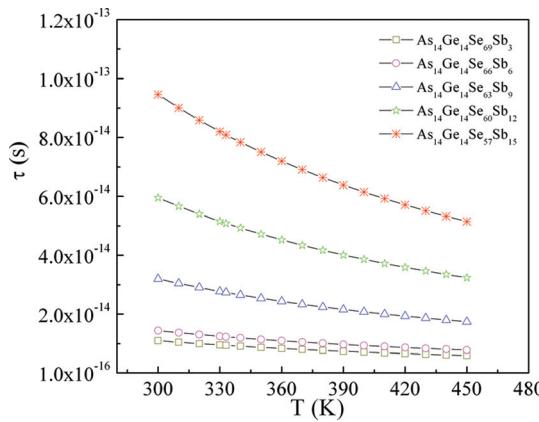


Cite this: *Dalton Trans.*, 2016, **45**, 2740

DOI: 10.1039/c5dt90222c
www.rsc.org/dalton

Correction: Semiconducting quaternary chalcogenide glasses as new potential thermoelectric materials: an As–Ge–Se–Sb case

A. Dahshan,^{a,b} Pankaj Sharma^{*c} and K. A. Aly^{d,e}


Correction for 'Semiconducting quaternary chalcogenide glasses as new potential thermoelectric materials: an As–Ge–Se–Sb case' by A. Dahshan, et al., *Dalton Trans.*, 2015, **44**, 14799–14804.

The authors regret that Table 1, Fig. 2 and Fig. 3 of the published version of the above paper are incorrect as the units reported in columns n_σ^a , n_s^b , μ^a and τ^a of the table did not account the effective electron mass (m^*) and its unit in SI units.

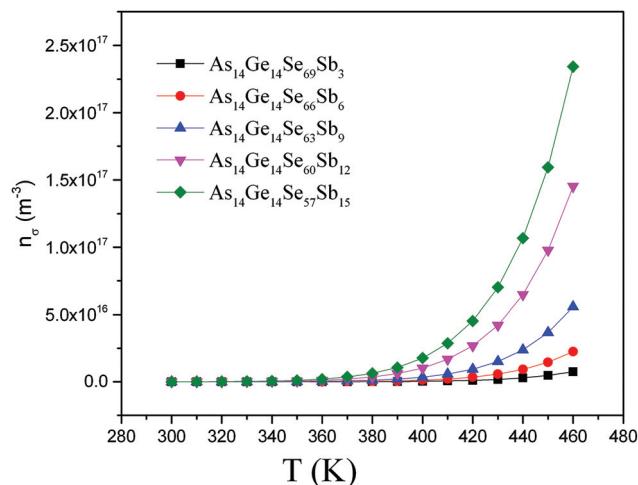
Table 1 Some electrical parameters as a function of Sb content for the $\text{As}_{14}\text{Ge}_{14}\text{Se}_{72-x}\text{Sb}_x$ (where $x = 3, 6, 9, 12$ and 15 at%) thin films

x	$\sigma^a \times 10^{-9}$ ($\Omega \text{ m}$) $^{-1}$	$\sigma_0 \times 10^3$ ($\Omega \text{ m}$) $^{-1}$	S^b ($\mu\text{V K}^{-1}$)	ΔE (eV)	ΔE_s (eV)	δ (eV)	$n_\sigma^a \times 10^{12}$ (m^{-3})	$n_s^b \times 10^{14}$ (m^{-3})	$\mu^a \times 10^{-3}$ ($\text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$)	E_F (meV)	$\tau^a \times 10^{-14}$ (s)
3	1.14	7.76	855.2	0.765	0.620	0.145	3.68	1.539	1.93	9.75	1.09
6	8.15	10.16	955.3	0.721	0.602	0.119	20.14	1.304	2.53	8.73	1.44
9	72.77	22.59	999.2	0.685	0.571	0.114	80.93	1.219	5.62	8.34	3.20
12	587.25	42.00	1055.0	0.647	0.563	0.084	351.25	1.124	10.45	7.91	5.95
15	1945.25	66.78	1124.0	0.628	0.547	0.081	731.76	1.021	16.61	7.42	9.46

^a At 300 K. ^b At 333 K.

Fig. 2 Free carrier relaxation time (τ) as a function of temperature for $\text{As}_{14}\text{Ge}_{14}\text{Se}_{72-x}\text{Sb}_x$ (where $x = 3, 6, 9, 12$ and 15 at%) thin films.

^aDepartment of Physics, Faculty of Science, Port Said University, Port Said, Egypt


^bDepartment of Physics, Faculty of Science for Girls, King Khalid University, Abha, Saudi Arabia

^cDepartment of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173234, India. E-mail: pks_phy@yahoo.co.in

^dDepartment of Physics, Faculty of Science and Arts, Jeddah University, Jeddah, Saudi Arabia

^eDepartment of Physics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, Egypt

Fig. 3 Free carrier concentration (n_c) obtained from electrical conductivity as a function of temperature (T) for $\text{As}_{14}\text{Ge}_{14}\text{Se}_{72-x}\text{Sb}_x$ (where $x = 3, 6, 9, 12$ and 15 at%) thin films.

The unit of electron mass was taken in gram while others are in SI units. This has affected the magnitude of data although there is no effect on the nature of data plots or overall trends in the data reported. There are no changes to the conclusions of the paper. The authors would like to apologise for any inconvenience caused.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

