AlPd$_{15}$B$_{7}$: a new superconducting cage-compound with an anti-Yb$_{3}$Rh$_{4}$Sn$_{13}$-type of structure†

Qiang Zheng, a Walter Schnelle, a Yuri Prots, a Matej Bobnar, a Ulrich Burkhardt, a Andreas Leithe-Jasperb and Roman Gumeniuk*a,b,d

A new intermetallic compound AlPd$_{15}$B$_{7}$ was synthesized by arc-melting the stoichiometric mixture of the elements. Single crystal X-ray diffraction data of ternary metal-rich boride reveal a new type of structure with the space group $Ia3d$ and the lattice parameter $a = 16.4466(3)$ Å. It adopts a filled anti-Yb$_{3}$Rh$_{4}$Sn$_{13}$-type structure, where the positions corresponding to 3Yb, 4Rh and 13Sn atoms are occupied by 3Pd, 4B, and 1Al + 12 Pd, respectively and 3B additionally at interstitial sites. Magnetic susceptibility, electrical resistivity, and specific heat measurements reveal bulk superconductivity with a critical temperature $T_c \approx 2.9$ K. Electronic structure calculations show that Pd 4d and B 2p states dominate the density of states (DOS) at the Fermi level E_F.

Introduction

In the early 1980s, Remeika and co-workers discovered a family of M$_3$T$_4$X$_{13}$ cage-compounds (where M = rare-earth, alkaline-earth, or actinide metal, T = transition metal, and X = In or group-IV elements) crystallizing with a primitive cubic Yb$_3$Rh$_4$Sn$_{13}$-type structure (space group $Pm3n$).1–4 They became an object of numerous studies, mostly owing to the interesting interplay between magnetic and superconducting properties.1,5–9 The crystal structures of both Remeika M$_3$T$_4$X$_{13}$ phases and filled-skutterudites10,11 are derivatives of the simple perovskite-type structure, and show similar arrays of corner-sharing trigonal prisms/antiprisms (octahedra) enclosing icosahedral voids. For more details about their structural relationships, we refer to ref. 12 (and references therein). In recent studies,12–14 several new cubic, tetragonal, rhombohedral and monoclinic distorted variants of the Remeika prototype with a Pt–Ge framework were reported. In these structures, distortions occur exclusively in the Ge-framework, while M and Pt atoms remain in their original positions. In the M$_3$T$_4$X$_{13}$ structures, twelve X atoms form icosahedra filled by one remaining X atom, T atoms reside in trigonal prisms formed by two neighboring $[X_{12}]$ icosahedra, and M atoms are encapsulated in cubic-octahedra built by X atoms (see Fig. S3 in the ESI†). Owing to the variety of M, T, and X elements forming such compounds without major changes in the crystal structures, substitution by elements not only limited to the above mentioned groups should be possible.

In this study, we report the boride AlPd$_{15}$B$_{7}$ with a new type of structure, which is closely related to the Yb$_3$Rh$_4$Sn$_{13}$ prototype. Physical property measurements reveal superconducting behavior of this new boride with $T_c \approx 2.9$ K. The thermodynamic properties are compatible with an s-wave energy gap conventional superconductivity and moderate electron–phonon coupling.

Experimental section

Sample preparation

The samples with a nominal composition of AlPd$_{15}$B$_{7}$ were synthesized by arc-melting of aluminum (Chempur, 99.9999 mass%) and palladium (Chempur, 99.9 mass%) foils and crystalline boron powder (Alfa Aesar, 99.999 mass%). The obtained button was remelted several times to obtain a homogeneous sample. The weight loss during arc-melting was less than 0.1 mass%. All above operations were performed inside an argon-filled glove box (p(O$_2$/H$_2$O) ≤ 1 ppm). A nearly single phase sample was obtained. The resulting sample is stable in air for long time.

Powder and single-crystal X-ray diffraction

Due to the ductility, stress annealing of ground powders was performed at 840 °C for 1.5 h to obtain powder diffraction patterns with sharper and better resolved diffraction peaks. Powder X-ray diffraction (XRD) data were collected on a
HUBER G670 imaging plate Guinier camera (Cu Kα1 radiation, λ = 1.540598 Å). Phase analysis and indexing were performed within the WinXpow program package. Lattice parameters were refined by least-squares fitting with LaB₆ internal standard correction within the program package WinCSD. Single crystals were selected from the stress-annealed crushed sample. Single crystal XRD data were collected on a Rigaku AFC7 diffraction system equipped with a Saturn 724+ CCD detector (Mo Kα radiation, λ = 0.71073 Å). Absorption correction was made using a multi-scan procedure. The crystal structure was solved by a direct phase determination method and refined by a full-matrix least-squares procedure within the program package WinCSD. Details of the single crystal XRD data collection are listed in Table 1.

Table 1 Crystallographic data for AlPd₁₅B₇

<table>
<thead>
<tr>
<th>Composition</th>
<th>AlPd₁₅B₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Ia3d</td>
</tr>
<tr>
<td>Lattice parameters</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>16.4466(3)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4448.7(3)</td>
</tr>
<tr>
<td>Formula unit per cell, Z</td>
<td>16</td>
</tr>
<tr>
<td>Calculated density (g cm⁻³)</td>
<td>10.14</td>
</tr>
<tr>
<td>Radiation; λ (Å)</td>
<td>Mo Kα₁, 0.71073 Å</td>
</tr>
<tr>
<td>2θmax (°)</td>
<td>67.07</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>23.07</td>
</tr>
<tr>
<td>N(hkl); observed</td>
<td>18108</td>
</tr>
<tr>
<td>N(hkl); unique</td>
<td>730</td>
</tr>
<tr>
<td>N(hkl); measured (Fe₃O₄ > 4σ(F))</td>
<td>718</td>
</tr>
<tr>
<td>R_{wp}/R_{F}</td>
<td>0.035/0.037</td>
</tr>
<tr>
<td>Refined parameters</td>
<td>32</td>
</tr>
<tr>
<td>Residual electron density (e Å⁻³)</td>
<td>+1.1; –0.8</td>
</tr>
</tbody>
</table>

Table 2 Atomic coordinates and isotropic displacement parameters (in Å²) for AlPd₁₅B₇

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B_{iso}</th>
<th>B_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>16a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.08(8)</td>
<td></td>
</tr>
<tr>
<td>Pd1</td>
<td>48g</td>
<td>1/8</td>
<td>0.24484(6)</td>
<td>0.00516(6)</td>
<td>1.23(2)</td>
<td></td>
</tr>
<tr>
<td>Pd2</td>
<td>96h</td>
<td>0.00090(6)</td>
<td>0.14693(6)</td>
<td>0.07718(6)</td>
<td>0.99(2)</td>
<td></td>
</tr>
<tr>
<td>Pd3</td>
<td>96h</td>
<td>0.10758(6)</td>
<td>0.24514(6)</td>
<td>0.33770(6)</td>
<td>1.13(2)</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>16b</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1.4(5)</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>48f</td>
<td>0.263(2)</td>
<td>0</td>
<td>1/4</td>
<td>1.5(3)</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>48g</td>
<td>1/8</td>
<td>0.619(1)</td>
<td>0.631(1)</td>
<td>1.4(1)</td>
<td></td>
</tr>
</tbody>
</table>

Electronic structure calculations

The scalar-relativistic band-structure of AlPd₁₅B₇ was calculated within the local-density approximation (LDA) of density functional theory (DFT) using the full-potential local-orbital FPLO code (version 9.01-35). The calculation was performed by employing the exchange-correlation potential of Perdew and Wang and using the experimental structural data from Table 2. The first Brillouin zone was sampled by a mesh of 12 × 12 × 12 (1728) k points.

Results and discussion

Crystal structure determination

As shown in Fig. 1 and Fig. S1 (in the ESI†), the XRD patterns of the ground powders of an as-cast AlPd₁₅B₇ sample with and without stress-annealing reveal no difference between them besides peaks broadening in the latter one. As revealed by Fig. S2 in the ESI†, the content of impurities in the as-cast sample is less than 1 vol%. The strong reflections could be indexed in a simple cubic unit cell with lattice parameter a = 8.2233(2) Å. However, as one can see as an example in the inset of Fig. 1, there are still many reflections that could not be indexed in this unit cell, revealing the appearance of a superstructure. Taking these reflections into account, a body-centered cubic unit cell with lattice parameter a = 16.4466(3) Å is obtained. Subsequently, single crystals were selected for XRD experiments.

Details on single crystal XRD data collection for AlPd₁₅B₇ are listed in Table 1. Analysis of the reflection intensities and the extinction conditions confirm the appearance of the superstructure, indicating centrosymmetry and only one possible space group Ia3d. Positions of the heavy Pd and Al atoms and the light B atoms were acquired by a direct phase determination procedure and from difference Fourier maps, respect-
Anisotropic displacement parameters for all the Al and Pd atoms were refined. Final atomic coordinates and anisotropic atomic displacement parameters are listed in Tables 2 and 3, respectively. Moreover, diffraction data were also collected for single crystals selected from powders of the as-cast sample without stress annealing, and reveal the same structure solution result and only larger residual values due to broadening of the reflections. The acquired composition is in good agreement with the compositions from the EDXS and WDXS analysis.

Crystal structure
AlPd$_{15}$B$_7$ crystallizes with a new type of structure, which can be regarded as a filled anti-Yb$_3$Rh$_4$Sn$_{13}$ structure. The crystal structures of AlPd$_{15}$B$_7$ and Yb$_3$Rh$_4$Sn$_{13

Table 3 Anisotropic displacement parameters (in Å2) for AlPd$_{15}$B$_7$

<table>
<thead>
<tr>
<th>Atom</th>
<th>B$_{11}$</th>
<th>B$_{22}$</th>
<th>B$_{33}$</th>
<th>B$_{12}$</th>
<th>B$_{13}$</th>
<th>B$_{23}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>1.1(1)</td>
<td>B$_{11}$</td>
<td>B$_{11}$</td>
<td>-0.06(15)</td>
<td>B$_{12}$</td>
<td>B$_{13}$</td>
</tr>
<tr>
<td>Pd1</td>
<td>1.09(5)</td>
<td>1.31(4)</td>
<td>B$_{22}$</td>
<td>-0.11(3)</td>
<td>B$_{12}$</td>
<td>0.12(4)</td>
</tr>
<tr>
<td>Pd2</td>
<td>0.93(4)</td>
<td>1.09(4)</td>
<td>0.96(4)</td>
<td>0.01(2)</td>
<td>-0.02(2)</td>
<td>0</td>
</tr>
<tr>
<td>Pd3</td>
<td>1.26(4)</td>
<td>1.06(4)</td>
<td>1.06(4)</td>
<td>-0.09(3)</td>
<td>-0.02(3)</td>
<td>-0.14(3)</td>
</tr>
</tbody>
</table>

Fig. 1 Experimental (black circles) and calculated (red line) powder XRD patterns of an as-cast AlPd$_{12}$B$_7$ sample after grinding and subsequent stress-annealing at 840 °C for 1.5 h. Peak positions of AlPd$_{12}$B$_7$ are given by black ticks; the difference plot is shown as a black line in the bottom. The inset shows the 2θ-range from 45.8° to 52°, where the reflections corresponding to the superstructure are marked by asterisks (see text).

Fig. 2 (a) Crystal structure of AlPd$_{15}$B$_7$. For a better visualization, only a part of the structure in one unit cell is shown. [Al@Pd$_{12}$] icosahedra – light gray; distorted [B@Pd$_6$] trigonal prisms – dark gray; [B@Pd$_6$] octahedra – blue. (b) group–subgroup relationship between the structures of Yb$_3$Rh$_4$Sn$_{13}$ and AlPd$_{15}$B$_7$ (see text). For better visualization the coordinates for AlPd$_{15}$B$_7$ are not standardized, like those given in Table 2.

M$_3$T$_4$X$_{12}$X$_1$ | anti-type | T$_3$X$_4$T$_{12}$M$_1$ | T$_3$X$_4$T$_{12}$M$_1$X$_3$ | M$_1$T$_{15}$X$_7$

where M, T, and X are Yb, Rh, and Sn in Yb$_3$Rh$_4$Sn$_{13}$, and Al, Pd and B in AlPd$_{15}$B$_7$. Different from Yb$_3$Rh$_4$Sn$_{13}$, the lattice parameters of AlPd$_{15}$B$_7$ are doubled and the space group changes from $Pm\overline{3}n$ to $Ia\overline{3}d$, due to the shift of the Pd atoms from some special positions. As one can see in Fig. 6 in ref. 13, the relationship between many derivatives of the primitive cubic Yb$_3$Rh$_4$Sn$_{13}$-type of structure (e.g. La$_3$Rh$_4$Sn$_{13}$ ($I4_132$), Ca$_3$Pt$_4$Ge$_{13}$ ($I\overline{4}13$), HT-Y$_3$Pt$_4$Ge$_{13}$ ($R3c$),13 Yb$_3$Pt$_4$Ge$_{13}$ ($P4cm$),12 and LT-Y$_3$Pt$_4$Ge$_{13}$ ($C\bar{c}$)12) can be understood within a group–subgroup scheme. AlPd$_{15}$B$_7$ crystallizes with the space group $Ia\overline{3}d$, which links the space groups $Pm\overline{3}n$ and $I4_132$ via...
the indices of \(k4 \) (klassengleiche) and \(t2 \) (translationengleiche) symmetry reductions, respectively.

The AlPd\(_{15}\)B\(_7\) structure is shown in Fig. 2a, and interatomic distances are listed in Table S1 in the ESI.\(^\dagger\) In such a structural arrangement, similar to Al residing in \([\text{Ni}_{12}]\) icosahedra in the AlNi\(_{14}\)B\(_7\) structure,\(^1\) each Al atom resides in a distorted \([\text{Pd}_{13}]\) icosahedron, consisting of 6Pd2 and 6Pd3 atoms, with the Al–Pd and Pd–Pd distances ranging from 2.730 Å to 2.752 Å, and from 2.714 Å to 2.955 Å, respectively. The empty spaces between the icosahedra are occupied by the Pd1, B1, B2, and B3 atoms. Each \([\text{Al@Pd}_{12}]\) icosahedron interconnects with 14 neighboring \([\text{Al@Pd}_{12}]\) icosahedra via 8 distorted corner-sharing trigonal prisms and 6 distorted octahedra. The two sorts of corner-sharing \([\text{Pd}_6]\) trigonal prisms, formed by 6 Pd2 atoms or 2Pd2 and 4Pd3 atoms, are centered by the B1 or B3 atoms, respectively. In a \([\text{B1Pd}_6]\) trigonal prism, the Pd2–Pd2 distances are 2.850 Å and 2.942 Å, and the Pd–B distance is 2.217 Å; in a \([\text{B3Pd}_6]\) trigonal prism, the Pd–Pd distances are in the range of 2.885 Å to 2.955 Å, the Pd2–B3 distance is 2.139 Å, and the Pd3–B3 distances are 2.157 Å and 2.28 Å. Each \([\text{Pd}_6]\) octahedron, formed by 2Pd1, 2Pd2, and 2Pd3 atoms, is centered by a B2 atom, with Pd–Pd distances and Pd–B distances ranging from 2.714 Å to 3.5423 Å and from 2.08 Å to 2.252 Å, respectively. These kinds of metal–atom coordination of boron are commonly observed in borides.\(^20,21\)

In Pd3B (Fe3C type of structure),\(^22\) B resides in trigonal prisms with Pd–B distances of 2.166 Å to 2.180 Å; in Pd3B (anti-CaCl\(_2\) type of structure),\(^23\) B centers Pd octahedra with Pd–B distances of 2.104 Å to 2.122 Å. In comparison with the sum of atomic radii of pure elements (\(r_{\text{Fe}} = 0.83 \, \text{Å}, \ r_{\text{Pd}} = 1.43 \, \text{Å}, \ r_{\text{B}} = 1.38 \, \text{Å} \) (ref. 24)), the Al–Pd distances are shorter than the sum of atomic radii of Al and Pd, the Pd–Pd distances obviously deviate from the two-fold atomic radius of Pd, and the shortest and longest Pd–B distances are 6% shorter and \(~3\%) longer than the sum of atomic radii of Pd and B, respectively. Coordination polyhedra of all the atoms in AlPd\(_{15}\)B\(_7\) are shown in Fig. S4 in the ESI.\(^\dagger\)

Physical properties

The magnetic susceptibility of AlPd\(_{15}\)B\(_7\) in an external field of \(\mu_0 H = 7 \, \text{T}\) is shown in the inset of Fig. 3, revealing that it is a diamagnet with an extrapolated value of \(\chi_0 = -2.0 \times 10^{-4} \, \text{emu mol}^{-1}\) at \(T = 0\). The slight upturn towards low temperature is probably due to minor paramagnetic impurities or point defects.

The temperature dependence of the zero-field-cooled \((\text{zfc})\) and field-cooled \((\text{fc})\) magnetic susceptibility of AlPd\(_{15}\)B\(_7\) in an external field of \(\mu_0 H = 2 \, \text{mT}\) is given in Fig. 3, indicating a superconducting transition. The transition temperature was determined via a tangent to the steepest slope of \(\chi_{\text{zfc}}(T)\), resulting in \(T_{c}^{\text{zfc}} = 4.07 \, \text{K}\). Considering the demagnetization correction, the diamagnetic response in zfc is close to complete. The fc signal (Meißner effect) is much weaker, which is due to strong flux line pinning in the type-II superconductor (see below).

As shown in Fig. 4, the electrical resistivity of AlPd\(_{15}\)B\(_7\) increases with increasing temperature in the range of 3.0–320 K, revealing a metallic behavior of this compound. For \(4 \, \text{K} < T < 40 \, \text{K}\), it can be fitted to \(\rho_0 + A_{\text{fl}} T^2\) with a residual resistivity \(\rho_0 = 0.20(1) \, \mu\Omega \, \text{m}\) from impurity scattering, and the cross section of quasiparticle–quasiparticle scattering \(A_{\text{fl}} = 3.96(3) \times 10^{-5} \, \mu\Omega \, \text{m} \, \text{K}^{-2}\). The room-temperature resistivity \(\rho(300 \, \text{K})\) is 0.68 \(\mu\Omega \, \text{m}\), and the residual resistivity ratio \(\text{RRR} = 3.4\) indicates moderate quality of the investigated polycrystalline sample. As revealed by the inset of Fig. 4, a sharp superconducting transition can be observed, and the resistivity drops to zero at \(T_c = 2.89 \, \text{K}\).

The specific heat \(c_p / T \) vs. \(T \) for AlPd\(_{15}\)B\(_7\) in the temperature range 0.35–4.0 K and in various magnetic fields is shown in Fig. 4. The temperature-dependent electrical resistivity \(\rho(T) \) for AlPd\(_{15}\)B\(_7\). The solid line shows a fitting by \(\rho_0 + A_{\text{fl}} T^2\) in the range of 4 K < \(T < 40 \, \text{K}\); the inset shows a magnification for low temperatures.
The resulting parameters for zero field are the jump in the temperature range $0.5-5$ K, where γ_0 is the Sommerfeld coefficient of the electronic heat capacity, and $\beta T^3 + \delta T^5$ are the first terms of the harmonic lattice approximation for the phonon contribution. The resulting parameters are $\gamma_0 = 28.3(1) \text{mJ mol}^{-1} \text{K}^{-2}$ and $\beta = 1.38(2) \text{mJ mol}^{-1} \text{K}^{-3}$, which corresponds to an initial Debye temperature $\Theta_D(0) = 319 \text{K}$, and $\delta = 2.86(6) \times 10^{-5} \text{mJ mol}^{-1} \text{K}^{-6}$.

The electronic contribution $c_{el}(T, H)$ below T_c can be analyzed by subtracting the lattice terms $\beta T^3 + \delta T^5$. Fig. 5c shows $\Delta c_p = c_{el} - \gamma_0 T$ which is well described by the BCS theory (for weak electron-phonon coupling) in the whole temperature range. The resulting parameters are the jump $\Delta c_p/T_c = 37.5 \text{mJ mol}^{-1} \text{K}^{-2}$, the transition midpoint $T_{c1} = 2.796 \text{K}$, and the width of the transition of 0.026 T_c. The ratio $\Delta c_p/(\gamma_0 T_c)$ of 1.32 is somewhat lower than the value 1.43 from the BCS theory. At the lowest temperatures (in the range 0.35–0.70 K) $c_{el}(T)$ is well fitted by $c_{el} = \gamma_0 T + \gamma T^2 A e^{-\lambda T}$ (as shown in Fig S5a in the ESI†). Such exponential behavior is expected for an s-wave superconductor without nodes of the gap, as in the BCS theory. The resulting parameters for zero field are $\gamma_0 = 2.17 \text{mJ mol}^{-1} \text{K}^{-2}$ and the energy gap ratio $\Delta/k_b T_c = 1.08$. The non-zero γ_0 is probably due to the presence of a non-superconducting metallic impurity phase. We may thus correct the normal state electronic specific heat coefficient by $\gamma_n = \gamma_0 - \gamma_0$. The corrected value for the jump $\Delta c_p/(\gamma_n T_c)$ = 1.44 reproduces even better the weak-coupling BCS value 1.43. However, the energy gap ratio $\Delta/k_b T_c$ observed at the lowest temperatures is much smaller than expected from BCS theory ($\Delta/k_b T_c = 1.76$). It is therefore possible that AlPd$_{13}$B$_7$ needs to be described within a two-gap model. The resolution of the present specific heat data, due to the small available mass for the study, is insufficient for a more sophisticated analysis.

The DFT calculations reveal a DOS at the Fermi level $N(E_F) = 7.9$ states eV$^{-1}$ f.u.$^{-1}$ (see below), converting to a “bare” Sommerfeld coefficient of the electronic specific heat $\gamma_{bare} = 18.6 \text{mJ mol}^{-1} \text{K}^{-2}$. The electron–phonon coupling parameter λ in the relation $\gamma_n = (1 + \lambda) \gamma_{bare}$ is calculated to be 0.40. λ can also be estimated from the McMillan formula $\ln(1.45 T_c/\Theta_D) = -1.04 (1 + \lambda) [1 - \mu^*(1 + 0.62\lambda)]$. Assuming the common value $\mu^* = 0.15$, λ results as 0.58, which is somewhat larger than the above value.

The fitted Sommerfeld parameters $\gamma(H) - \gamma_0$, extrapolated to $T = 0$, were plotted against the fields (Fig. S5b in the ESI†), showing a linear relationship with the magnetic fields. This also indicates a typical s-wave gap for AlPd$_{13}$B$_7$. The upper critical field values were estimated from the midpoints of superconducting transition in $c_p(T, \mu_0 H)$, as shown in Fig. 5d. It is obvious that $T_c(\mu_0 H)$ varies almost linearly with $\mu_0 H$. This most extreme extrapolation results in $\mu_0 H_{c2}(0) \approx 500(100) \text{mT}$.

Electronic structure

The total and partial (atomic and orbital resolved) density of states (DOS) for AlPd$_{13}$B$_7$ are shown in Fig. 6(a–c). Similar to the electronic structures of the M$_3$Pt$_4$Ge$_{13}$ compounds12,13 the Fermi level E_F for AlPd$_{13}$B$_7$ is located close to a dip in the DOS. Thus, the system is a metal with 7.9 states eV$^{-1}$ f.u.$^{-1}$ at E_F.
This DOS is mostly due to the contributions of the Pd 4d (~71%) and the B 2p (~25%) states. The broad valence band (~7 eV) in the electronic structure of AlPd15B7 is dominated by Pd 4d states (Fig. 6b) with sizeable B 2p contributions (Fig. 6c) at lower energies (between ~7 eV and ~3.5 eV). Furthermore, the lowest lying separate band (between ~11 eV and ~7.5 eV) is mainly formed by B 2s and Pd 4d states. All this is related to the covalent bonding in the Pd–B framework. Al contributions to the valence band are negligibly small. Interestingly, a narrow separate band (~0.3 eV) centered at ~7.1 eV is mostly due to 4d states of Pd2 and Pd3 as well as Al 3s. Obviously, it reflects covalent interaction of Al and Pd atoms within the [Al@Pd12] icosahedra (Fig. 2). The electronic band structure of AlPd15B7 is reminiscent of the electronic structures of such Pd-rich borides as Pd3B and SrPdB.25 They also possess a broad valence band dominated by Pd 4d and B 2p states followed by a separate low energy band due to the mixing of B 2s and Pd 4d states. The differences are that for AlPd15B7 a larger DOS at E_F as well as an additional narrow band at ~7.1 eV are observed.

Conclusions

We gratefully acknowledge Prof. Yu. Grin’s interest and steady support. A new ternary boride AlPd15B7, with a filled anti-YbRh2Sn13-type structure, has been synthesized by arc-melting mixtures of elements, and its crystal structure was determined from the single-crystal X-ray diffraction data. In this structure, the Al atoms reside in the [Pd12] icosahedra, and each icosahedron interconnects with 14 neighboring [Pd12] icosahedra, forming 8 corner-sharing trigonal prisms and 6 octahedra, which are all filled by the B atoms. In comparison, the corresponding octahedra are empty in the YbRh2Sn13-type structure.

Magnetic susceptibility, electrical resistivity, and specific heat measurements show a superconducting transition of AlPd15B7 at a T_c of about 2.9 K. The specific heat measurements reveal AlPd15B7 to be a conventional s-wave superconductor with weak electron–phonon coupling according to the BCS theory. Electronic structure calculations by DFT reveal that the DOS at E_F is dominated by d states.

AlPd15B7 is the first boride with a crystal structure comprising the framework of the Remeika YbRh2Sn13 prototype but being decorated by completely different types of elements. The occurrence of this new type of structure suggests that the constituting elements in the Remeika structure framework could be extended to a variety of elements in future investigations.

Acknowledgements

We thank Mr S. Hückmann and Dr H. Borrmann for performing powder X-ray diffraction measurements, Ms. P. Scheppan, Ms. M. Eckert and Ms. S. Kostmann for the metallographic analysis, and Mr R. Koban for physical property measurements.

References